2026年2月実施入試(冬入試)

電気電子デジタル理工学専攻

博士課程前後期連携教育プログラム(融合工学コース・高度工学コース)

I. 専攻別志望区分一覧

±+-L	/ = (-4)	志望	THE effect of the	U 谷		
専攻	領域	区分	研 艽 內 谷	融合工学コース	高度工学コース	
	デジ	1	電気情報システム論 (非線形システム、エネルギーシステム・モビリティ、制御応用・ロボット) 薄教授、グエン講師、持山助教			
		9	時空間センシング (時空間信号処理、視聴覚環境理解、生体磁気計測、脳機 能イメージング、量子磁気センサ、機械学習) 吉井教授、伊藤准教授、上田博助教			
	デジタル・グリーン領域	3	知的回路設計 (電気電子回路、電気電磁回路、エネルギー回路、機械学 習による回路設計、ネットワーク数理) 久門准教授			
	領域	4	物理情報融合工学 (固体電子工学、光電子工学、光量子電子工学) 浅野教授†、吉田助教			
電気電		5	光機能デバイス工学 (光電子材料、光応用工学、光物性工学) 船戸教授†、正直講師、石井助教、松田助教†	교소자 즐거워쓰	光・電子理工学 任意の志望区分を 選択することが	
電気電子デジタル理工学専攻		6	自動制御工学 (制御工学、システム・制御理論、数値最適化手法、システム解析) 萩原教授、細江准教授	融合光・電子科学 創成分野 任意の志望区分を 選択することが		
一学専攻		7	システム創成論 (システム理論の生体計測応用、波動イメージングと逆問題、生体システム信号処理、人体電波センシング) 阪本教授	できます。	できます。	
	電気・システム・	8	超伝導工学 (超伝導体の電磁現象、超伝導マグネットの電磁特性、超 伝導の医療応用、超伝導のエネルギー応用) 雨宮教授、曽我部准教授			
	えテム・生体工学領域	9	電磁エネルギー工学 (電磁気学、マイクロ磁気学、電磁界解析、計算工学)			
	域	10	松尾教授、美船准教授 電波科学シミュレーション (電磁力学、プラズマ理工学、計算機シミュレーション、 宇宙空間物理学) 海老原教授、謝講師			
		11	宇宙電波工学 (宇宙電波工学、宇宙プラズマ理工学) 小嶋教授、栗田准教授、上田義助教			

		12	マイクロ波エネルギー伝送 (マイクロ波工学、無線電力伝送、マイクロ波広用工学)				
			篠原教授、三谷准教授				
		13	優しい地球環境を実現する先端電気機器工学 (電気機器、輸送機器、再生可能エネルギー、超伝導機 器) 中村教授†、寺尾准教授†				
	光・電子・量子領域	14	極限電子機能工学 (超伝導・磁性物性、超伝導・磁性材料、超伝導デバイス 工学、テラヘルツ分光、極微真空電子工学) 米澤教授、掛谷准教授、後藤准教授、池田助教				
電気雷		15	固体量子物性工学 (量子スピントロニクス、純スピン流デバイス物性、トポロジカル物性物理) 白石教授、プエブラ准教授、大島准教授)		
気電子デジタル理工学専攻		16	光量子情報工学 (光量子情報、ナノフォトニクス、光量子計測) 竹内教授、岡本准教授、向井助教	融合光・電子科学 創成分野 任意の志望区分を 選択することが	光・電子理工学 任意の志望区分を 選択することが		
<u></u> 工学専攻		17	半導体物性工学 (半導体工学、電子材料、エネルギー変換素子、電子デバイス工学) 木本教授、金子准教授、三上助教		できます。		
		電子 行類 18 (電 ス、	電子材料物性工学 (電子材料物性、プローブ顕微鏡、ナノエレクトロニクス、有機・バイオエレクトロニクス) 小林准教授				
		19	量子電磁工学 (電磁波工学、メタマテリアル、テラヘルツ工学、量子エレクトロニクス) 杉山准教授、中西講師				
		20	ナノプロセス工学 (ナノ構造における光物性、ナノ構造形成、新機能ナノフォトニックデバイス) デ ゾイサメーけ教授、井上准教授				

†:特定教員

※願書提出時に、入学後に履修するコースを、融合工学コース(融合光・電子科学創成分野)、高度工学コース(光・電子理工学)から選択すること。

II. 募集人員

8 名

III. 出願資格

(1) 募集要項「Part A: II-i 出願資格」に記載の条件を満たす者。

(2) 受験区分

A	京都大学大学院工学研究科・電気系博士課程前後期連携教育プログラムを出願時点で履修中の者で修士課程修了見込者
В	京都大学工学部卒業者で修士課程修了(見込)者であり筆記試験免除者*
1 (:	京都大学大学院工学研究科・情報学研究科・エネルギー科学研究科修士課程修了(見込)者で筆記試験免除者**
D	京都大学大学院工学研究科・情報学研究科・エネルギー科学研究科修士課程修了(見込)者で筆記試験非免除者

E 上記以外の受験者

- *学部において所定の成績を修めた者。
- **修士課程において所定の成績を修めた者。
- ※筆記試験免除の有無については、出願後に A クラスター教務掛から各受験者に通知する。

IV. 学力検査日程

(1) 試験日時・試験科目

期日	受験区分	時間・科目	受験区分	時間・科目	受験区分	時間・科目
2月12日 (木)	D E	9:00~12:00 専門科目	B C D E	13:00~ 口頭試問	A B C D	16:30~ 面接 A は全員 B, C, D, E は留学生のみ

(2) 試験場

試験場は桂キャンパス A クラスターである。試験は対面で実施する(オンライン試験は非実施)。**試験室等の詳細は受験票送付時に通知**する。

V. 入学試験詳細

(1) 英語

- ・受験区分 E の該当者のみ。筆記試験は行わず、TOEFL、IELTS または TOEIC の成績により評価する。 提出方法については、項目「VII. (5) 別途提出書類」を参照のこと。
- ・受験区分 A, B, C, D の該当者は提出する必要はない。

(2) 専門科目

筆記試験を行う。志望区分(志望研究室)の研究内容に関連する電気・電子工学の基礎科目から、合計 3 題出題する。出願後に、出題科目を A クラスター教務掛から各受験者に通知する。3 題とも解答すること。

筆記試験の注意事項

- ・試験中に使用できるのは、鉛筆、シャープペンシル(ボールペンは不可)、鉛筆削り(非電動式)、消しゴム、時計(時計機能のみのもの・スマートウォッチは不可)・眼鏡に限る。
- ・電卓、辞書、定規およびこれに類するものの使用は認めない。
- ・携帯電話、スマートフォン、スマートウォッチ等の電子機器類は、なるべく持ち込まないこと。 持ち込む場合には、電源を切り、かばんにしまって所定の場所に置くこと。 身につけている場合、不正行為と見なされることがあるので注意すること。
- ・試験開始30分前までに指定された試験室前に集合すること。試験開始から30分経過以降は入室不可。

(3) 口頭試問

- ・受験者はまず、修士課程における研究内容と進展状況(社会人特別選抜受験者の場合は在職中の研究内容)、ついで博士後期課程における研究計画等について説明する。その後教員から試問が行われる。口頭試問時間は、説明が8分、質疑応答を含めて全部でおよそ20分とする。
- ・説明に当たっては、原則として原稿を読み上げるようなことはしないこと。
- ・説明用資料 (パワーポイントのスライド 5 ページ以内、A4 用紙 5 枚以内に印刷できるもの (厳守)) を 用意し、持参したノート PC を用いて説明すること。

(4) 面接

- ・受験区分Aの該当者は全員が対象。
- ・受験区分B,C,D,Eの該当者は留学生のみが対象。

VI. 合格者決定方法

筆記試験(専門科目)の成績(対象者のみ)、英語の成績(対象者のみ)、学部成績、修士成績、口頭試問 (対象者のみ)および面接(対象者のみ)の結果を総合して有資格者を決定し、研究遂行能力等を専攻内 で判断のうえ、合否を決定する。

VII. 出願要領

(1) 志望区分の申請

- ・インターネット出願システムの志望情報入力画面で、志望区分を選択すること。
- ・出願に際しては、志望区分の指導予定教員に必ず連絡を取っておくこと (事前コンタクト)。
- ・教員が不明の場合や疑問があれば、「VII. (6) 問合せ先」まで問い合わせること。
- ・詳しい研究内容については、専攻ホームページ (https://www.ee.t.kyoto-u.ac.jp/) を参照すること。

(2) 事前コンタクト

募集要項「Part A: III 出願要領」に記載の通りである。

(3) 口頭試問の発表指導

募集要項「Part A: IV-iii 口頭試問の発表指導」に記載の通りである。

(4) 社会人の受験者について

募集要項「Part A: II-v 社会人特別選抜について」に記載の通り、出願時に官公庁、会社等に在職し、入学後も引き続きその身分を有する者で、原則、所属長の推薦を受けた者は、社会人特別選抜で出願することができる。当専攻では、在職しながら就学することを予定する者は、社会人特別選抜で出願することを原則とする。ただし、事情により一般選抜で出願することを希望する場合は、事前コンタクトの際に指導希望教員に申し出ること。

(5) 別途提出書類

1月15日(木)16時必着(厳守)

- ・様式は工学研究科ホームページからダウンロードすること
- ・下記 (a) あるいは (b) の必要書類全てを「VII.(6) 別途書類提出先」へ送付または持参すること。
- ・工学研究科に提出する出願書類の提出先は異なることに注意すること。
- ・郵送の場合は「書留」又は「簡易書留」とすること(学内便不可)。
- ・(b) のうち「英語成績証明書」に限り2月2日(月)16時(厳守)まで提出を認める。

(a) 受験区分 A の該当者

1. 履歴書・希望事項調査

(b) 受験区分 B, C, D, E の該当者

- 1. 履歴書・希望事項調査
- 2. 修士課程における研究内容説明書(※)
- 3. 博士課程前後期連携教育プログラムにおける研究計画説明書(※)

- 4. 英語成績証明書 (B, C, D の該当者は不要)
- 5. 学部の成績証明書(京都大学工学部電気電子工学科を卒業した者は不要) 外国の大学を卒業した者も、可能な限り、和文または英文で提出すること。 ※自由様式でも可能だが、A4 用紙 1 枚でまとめること。

英語成績証明書として、以下のいずれかを提出すること。ただし、本入学試験受験日当日(2026 年 2 月 12 日)から過去2年以内に受験した証明書に限る。英語を母国語とする受験者も提出が必要である。提出後の変更は認めない。提出された成績証明書は試験日に返却する。なお、受験資格等の問題で TOEFL 等を受験することが困難な場合は、予め問合わせること。

・TOEFL の成績証明書 (Test Taker Score Report)

TOEFL-iBT のみを有効とする。TOEFL iBT Home Edition および団体試験である TOEFL-ITP は不可。なお、Test Score を利用し、MyBest™ Scores は利用しない。My TOEFL Home から**指定コード (DI コード) G147 (Graduate Organization)** を選択し、スコアの直送を手配すること。

・IELTS の成績証明書 (Test Report Form) の原本

Academic Module のみを有効とする。

・TOEIC の成績証明書 (Test Report Form)

TOEIC Listening & Reading 公開テストのみ有効とする。団体試験である TOEIC-IP は不可。公式認定証 (Official Score Certificate) の原本のほか、デジタル公式認定証 (Digital Official Score Certificate) を印刷したものも受け付ける。いずれの場合も、紙媒体で提出すること。

(6) 別途書類提出先・問合せ先

〒615-8510 京都市西京区京都大学桂

京都大学桂キャンパス A クラスター事務区教務掛(電気系)

電話: 075-383-2077

E-mail: <u>090kakyomudenki@mail2.adm.kyoto-u.ac.jp</u>

(問合わせの際は「電気電子デジタル理工学専攻志望」と記載すること)

HP: https://www.ee.t.kyoto-u.ac.jp/ja

VIII. 入学後の教育プログラムの選択

博士後期課程入学後には2種類の教育プログラムが準備されている。本専攻の入試に合格することにより履修できる教育プログラムは下記の通りである。

- (a) 連携教育プログラム 融合工学コース (融合光・電子科学創成分野)
- (b) 連携教育プログラム 高度工学コース (光・電子理工学)

どのプログラムの履修を志望するかは、受験者の希望と受入教員の判断に応じて決定する。詳細については「I. 専攻別志望区分一覧」を参照のこと。また、教育プログラムの内容については、工学研究科 HP (「工学研究科教育プログラム」 https://www.t.kyoto-u.ac.jp/ja/education/graduate/dosj69) および「IX. 教育プログラムの内容について」を参照すること。

IX. 教育プログラムの内容について

【融合工学コース(融合光・電子科学創成分野)】

21世紀においては全世界規模で情報処理量とエネルギー消費が爆発的に増大し、既存の材料・概念で構成されるハードウェアの性能限界と地球資源の枯渇が顕著になると予測されています。このような課題を解決し、光・電子科学分野で世界を先導するためには、電気工学、システム工学、電子工学、量子物性工学、材料科学、化学工学、光機能工学、集積システム工学、量子物理工学、デジタル工学など複数分野を融合して新しい学術分野を開拓し、かつ当該分野を牽引する若手研究者、高度技術者を育成することが重要です。

本教育プログラムでは、光・電子科学に関わる融合領域を開拓する教育研究を通じて、新しい学術分野における高い専門的知識・能力に加えて、既存の物理限界を超える概念・機能を創出する革新的創造性を備え

た人材の育成を目指します。究極的な光子制御による新機能光学素子や高効率固体照明の実現、極限的な電子制御による耐環境素子や超集積システムの実現、光・スピン・イオンを用いた新機能素子や新規プロセスの開発、強相関電子系物質や分子ナノ物質の創成と物性制御、高密度エネルギーシステムの制御とその基礎理論、新しい物理現象を用いたナノレベル計測とその学理探求、高度なデジタル技術を活用した機能デバイスの設計などの融合分野において、常に世界を意識した教育研究を推進します。様々な分野で世界的に活躍する教員による基盤的および先端的な講義、各学生の目的に応じたテーラーメイドのカリキュラムやインターンシップ等を活用した教育、光・電子理工学教育研究センターの協力を得て行う先端的融合研究を通じて、広い視野と高い独創性、国際性、自立性を涵養し、光・電子科学分野を牽引する人材を育成します。

【高度工学コース(光・電子理工学)】

現実世界と仮想世界が高度に融合した次世代の社会システムを実現するために必要となる、ハードウェアとソフトウェアの基礎から最先端研究レベルまでの学習とともに、デバイスからシステムまで発展する電気電子デジタル理工学分野のフロンティアにおける科学技術の修得を通して、広範な科学知識と豊かで弾力ある創造性を兼ね備えた人材を育成します。このプログラムの推進する教育及び研究は、光においては、任意の波長、強度、方向の、発光及び受光を可能にして光を自在にあやつり、電子においては、これまでの概念を超えるデバイスや量子効果などを通して、光と電子を極限まで制御することとその理解を目的とします。フォトニック結晶やワイドギャップ半導体、分子ナノデバイスや量子凝縮系デバイスなどの新規材料・デバイス創成、パワーデバイス、電子・光・イオンによる革新的ナノプロセスなどに加えて、超伝導、電磁界解析、システム制御、データサイエンスなどの最先端応用である、低環境負荷なエネルギーシステムの構築、機械学習と高度に融合した生体センシングなど、世界でトップクラスの研究成果を挙げている分野で教育と研究を推進することにより、博士号取得の段階で、自立し、幅広い専門知識を有し、国際的に通用する一流の人材を育成します。

X. 教員・研究内容一覧

教 員 名	研 究 内 容	区分
薄 教授 グエン 講師 持山 助教	電気情報システム論研究室 (1) 非線形・多自由度システムの理論とデータ駆動型工学 (2) ソフトウェア工学による複雑システムの制御 (3) エネルギーシステム・モビリティシステムの解析・制御・設計 (4) 環境適応型ロボット歩行、ベストエフォート型モータドライブ	第1
吉井 教授 伊藤 准教授 上田博 助教	時空間センシング研究室 (1) マルチモーダル時空間信号処理(音響・画像・磁場等) (2) 物理拘束付き確率的生成モデル・深層学習 (3) 量子磁気センサによる生体磁気計測 (4) MRI を用いた脳機能イメージング	第2
久門 准教授	知的回路設計研究室 (1) 電磁現象を含む回路システム (2) 高速高周波回路のモデル化とシステム信頼性 (3) 機械学習を用いた回路設計 (4) パワーエレクトロニクス・インタラクティブ制御・電力システムの診断	第3
浅野 教授† 吉田 助教	<u>物理情報融合工学研究室</u> (1) フォトニック結晶を用いた高ビーム品質・高輝度半導体レーザの開発と応用 (2) フォトニック結晶レーザの高機能化(ビーム偏向制御・短パルス化等)に関する研究 (3) 熱輻射制御による高効率光源およびエネルギー変換に関する研究 (4) 高 Q 値ナノ共振器と極微小光回路による自在な光子制御に関する研究 (5) ワイドギャップ半導体を用いた次世代フォトニック結晶の開発	第4

船戸 教授† 正直 講師 石井 助教 松田 助教†	 光機能デバイス工学研究室 (1) 窒化物半導体を用いた可視・紫外域光源の開発に関する研究 (2) 半導体のナノ局在系光物性の解明と制御に関する研究 (3) 高い時間・空間分解能を有する分光マッピング技術に関する研究 (4) 任意の波長合成を可能とするテーラーメイド光源の開発と応用に関する研究 	第5
萩原 教授 細江 准教授	自動制御工学研究室 (1) ディジタル制御系と周期時変系の解析と設計 (2) ロバスト制御系の解析と設計 (3) 確率的なダイナミクスをもつ系の解析と制御 (4) 機械系、空圧系に対する現代制御理論の応用に関する実験的研究	第6
阪本 教授	システム創成論研究室 (1) システム理論の生体計測応用 (2) 波動イメージングと逆問題 (3) 生体システム信号処理 (4) 人体電波センシング	第7
雨宮 教授 曽我部 准教授	超伝導工学研究室 (1) 超伝導体の電磁現象 (2) 超伝導マグネットの電磁特性 (3) 超電導の医療応用 (4) 超電導のエネルギー応用	第8
松尾 教授 美舩 准教授	電磁エネルギー工学研究室 (1) 電気電子機器に対するモデル縮約法の開発 (2) 磁性材料のマルチフィジクスモデリング (3) 電気電子機器最適設計手法の開発 (4) 高速高精度電磁界計算技術	第9
海老原 教授 謝 講師 (生存圈研究所)	電波科学シミュレーション研究室 (1) 計算機シミュレーションによる宇宙環境変動に関する研究 (2) 計算機シミュレーションを用いた非線形プラズマ波動現象の研究 (3) 宇宙ー地球間の電磁気的結合に関する研究	第10
小嶋 教授 栗田 准教授 上田義 助教 (生存圏研究所)	字宙電波工学研究室 (1) 科学衛星観測による宇宙空間プラズマ環境の研究 (2) 科学衛星搭載観測機器の超小型化に関する研究 (3) 宇宙利用のためのナノバブル水特性に関する研究	第11
篠原 教授 三谷 准教授 (生存圈研究所)	マイクロ波エネルギー伝送研究室 (1) 宇宙太陽発電所 SPS に関する研究 (2) マイクロ波を用いた無線電力伝送に関する研究 (3) マイクロ波を用いた新材料創生に関する研究	第12
中村 教授† 寺尾 准教授† (寄附講座)	優しい地球環境を実現する先端電気機器工学研究室 (1) 回転機を中心とする先端的電気機器の研究 (2) 輸送機器に関する研究 (3) 再生可能エネルギーの利用技術に関する研究 (4) 超伝導機器に関する研究	第13

米澤 教授 掛谷 准教授 後藤 准教授 池田 助教	極限電子機能工学研究室 (1) 超伝導体や磁性体の新規物質応答・機能性の研究(超伝導グループ) (2) 新規物質機能性の次世代測定技術の開発(超伝導グループ) (3) 高温超電導体のジョセフソン効果とエレクトロニクス応用(超伝導グループ) (4) 巨視的量子状態のテラヘルツ時間領域分光(超伝導グループ) (5) 耐過酷環境極微真空デバイスおよび新奇顕微質量分析技術の開発(真空電子グループ)	第14
白石 教授 プエブラ准教授 大島 准教授	固体量子物性工学研究室 (1) 半導体量子スピントロニクスの研究 (2) 純スピン流物性物理の研究 (3) トポロジカル絶縁体/超伝導体・ワイル強磁性体などを用いた新奇な固体量子物性の研究 (4) 上記研究を基盤とした新機能デバイスや量子ハイブリッド系の創成と量子技術への発展	第15
竹内 教授 岡本 准教授 向井 助教	 光量子情報工学研究室 (1) 光量子コンピュータ・量子シミュレータや集積光量子回路の実現に関する研究 (2) 光量子情報等への応用にむけた、極微光デバイスの実現に関する研究 (3) 光子のさまざまな量子もつれ状態の生成と制御に関する研究 (4) 量子光を用いた、高感度・高分解能の新規光計測に関する研究 	第16
木本 教授 金子 准教授 三上 助教	半導体物性工学研究室 (1) 低次元半導体ナノ構造の電子輸送とデバイス応用 (2) 抵抗変化不揮発性メモリの基礎研究 (3) ワイドギャップ半導体シリコンカーバイド(SiC)パワーデバイスと高温動作集積回路	第17
小林 准教授	電子材料物性工学研究室 (1) 走査型プローブ顕微鏡を用いた新規物性計測法の開発 (2) 電子材料のナノスケール構造・物性評価 (3) 有機薄膜デバイスの開発とその光・電子物性に関する研究 (4) バイオデバイス・センサの構築へ向けた生体分子の構造機能計測	第18
杉山 准教授中西 講師	量子電磁工学研究室 (1) 電磁メタマテリアルを用いたテラヘルツ波及びマイクロ波の制御 (2) メタマテリアルを用いた新しい物理現象の理論的提案 (3) テラヘルツ波の測定技術の開発	第19
デ ゾ 付 メーナカ教授 井上 准教授 (光・電子理工学 教育研究センタ ー)	ナノプロセス工学研究室 (1) ナノプロセス技術の深化に関する研究 (2) ナノ構造における電磁界シミュレーション (3) 新機能ナノフォトニックデバイスの開発 (4) ナノ構造を導入した新機能デバイスを用いた応用研究	第20

†特定教員

*The Japanese language version is to be given precedence.

Entrance Examination in February 2026 (Winter Entrance Examination) Department of Electrical, Electronic, and Digital Science and Engineering Integrated Master's-Doctoral Course Program

(Interdisciplinary Engineering Course and Advanced Engineering Course)

I. Research Areas

		Are		Postgraduate Integra	ited Course Program
Department	Field	No	Description	Interdisciplinary Engineering Course	Advanced
Electrical, Electronic, and Digital Science		1	Electrical and Information Systems (Nonlinear systems, Energy systems & mobility, Control applications & robotics) Professor Susuki, Senior Lecturer Nguyen, Assist. Professor Mochiyama		
	Digital and Green	2	Spatio-Temporal Sensing (Spatio-temporal signal processing, Audio-visual scene analysis, Biomagnetic measurement, Functional brain imaging, Quantum magnetic sensors, Machine learning) Professor Yoshii, Assoc. Professor Ito, Assist. Professor Ueda	Electronics You can select any	Photonics and Electronic Science and Engineering You can select any of these research areas.
	en Science and Engineering	3	Intelligent Circuit Design (Electrical and electronic circuits, Electro- electromagnetic circuits, Energy circuits, Circuit design by machine learning, Network mathematics) Assoc. Professor Hisakado		
		4	Physical and Information Engineering (Solid-state electronics, Optoelectronics, Quantum optoelectronics) Professor Asano†, Assist. Professor Yoshida		
		5	Advanced Optoelectronic Device Engineering (Optoelectronic materials, Optical properties and engineering, Optical application engineering) Professor Funato†, Senior Lecturer Shojiki, Assist. Professor Ishii, Assist. Professor Matsuda†		
nce and Engineering	Electric	6	Automatic Control Engineering (Control engineering, Control theory, Numerical optimization method, System analysis) Professor Hagiwara, Assoc. Professor Hosoe		
ineering	Electrical, Systems, an	7	Innovative Systems Theory (Biometric applications of systems theory, Wave imaging and inverse problems, Biological systems signal processing, Human body radio wave sensing) Professor Sakamoto		
	and Biomedical Engineering	8	Applied Superconductivity (Electromagnetic phenomena in superconductors, Electromagnetic characteristics of superconducting magnet, Medical applications of superconductor, Power applications of superconductor) Professor Amemiya, Assoc. Professor Sogabe		
	ngineering	9	Electromagnetic Energy Engineering (Electromagnetics, Micromagnetics, Electromagnetic field analysis, Computational engineering) Professor Matsuo, Assoc. Professor Mifune		

		T		
Electrical,	10	Space Radio Science Simulation (Electromagnetic dynamics, Plasma science and engineering, Computer simulation, Space physics) Professor Ebihara, Senior Lecturer Hsieh		
Electrical, Systems, and Biomedical Engineering	11	Space Radio Engineering (Space radio engineering, Space plasma science and engineering) Professor Kojima, Assoc. Professor Kurita, Assist. Professor Yoshikatsu Ueda		
3iomedical F	12	Microwave Energy Transmission (Microwave engineering, Wireless power transmission, Applied microwave engineering) Professor Shinohara, Assoc. Professor Mitani		
ingineering Elect	13	Advanced Electric Machinery Engineering for Sustaining Global Environment (Electrical machinery, Transportation equipment, Renewable energy, and Superconducting equipment) Professor Nakamura†, Assoc. Professor Terao†		
Photonic, El Electrical, Electronic, and Digital Science	14	Frontier Electronic Functional Engineering (Superconductivity and magnetic properties, Superconducting and magnetic materials, Superconducting device engineering, Terahertz spectroscopy, Ultra-high vacuum electronics) Professor Yonezawa, Assoc. Professor Kakeya, Assoc. Professor Gotoh, Assist. Professor Ikeda	Interdisciplinary Photonics and Electronics You can select any of these research areas.	Photonics and Electronic Science
Photonic nd Digital Scie	15	Condensed-Matter Physical Electronics (Quantum spintronics, Physical properties of pure spin current device, Physics of topological properties) Professor Shiraishi, Assoc. Professor Puebla, Assoc. Professor Ohshima		and Engineering You can select any of these research areas.
Photonic, Electronic, and Q		Photonic Quantum Information (Photon information, Nano-scale photonics, Photon measurement) Professor Takeuchi, Assoc. Professor Okamoto, Assist. Professor Mukai		
Quantum	17	Semiconductor Science and Engineering (Semiconductor engineering, Electronic materials, Energy transducer, Electronic device engineering) Professor Kimoto, Assoc. Professor Kaneko, Assist. Professor Mikami		
Science and Engineering	18	Electronic Material Science and Engineering (Electronic material properties, Scanning probe microscopy, Nanoelectronics, Organic and bioelectronics) Assoc. Professor Kobayashi		
ngineering	19	Quantum Optical Engineering (Electromagnetic wave engineering, Metamaterials, Terahertz engineering, Quantum electronics) Assoc. Professor Sugiyama, Senior Lecturer Nakanishi		
	20	Nano-Process Engineering (Optical phenomena in nanostructures, Nanostructure fabrications, Novel functional nanophotonic devices) Professor Menaka, Assoc. Professor Inoue		

[†]Program-specific faculty members

When submitting your application, you must select the course you will enroll in after admission from either the Interdisciplinary Engineering Course (Interdisciplinary Photonics and Electronics) or the Advanced Engineering Course (Photonics and Electronic Science and Engineering).

II. Enrollment Capacity

8 students shall be admitted.

III. Application Eligibility

(1) Those who satisfy the requirements described in "Part A: II-i Eligibility" of the Application Guidelines.

(2) Examination category

	imminutes onegety
A	Those enrolled in the Integrated Master's-Doctoral Course Program, Department of Electrical Engineering or that of Electronic Science and Engineering, Graduate School of Engineering, Kyoto University at the time of application and expected to complete the Master's Course
В	Those who have graduated from the Faculty of Engineering, Kyoto University, have completed (or are expected to complete) the Master's Course, and are exempt from the written examination*
С	Those who have completed (or are expected to complete) the Master's Course in the Graduate School of Engineering, that of Informatics, or that of Energy Science, Kyoto University and are exempt from the written examination**
D	Those who have completed (or are expected to complete) the Master's Course in the Graduate School of Engineering, that of Informatics, or that of Energy Science, Kyoto University and are NOT exempt from the written examination
Е	Others not specified above

^{*}Those who have achieved the required academic standing in their undergraduate program.

Whether the written examination is waived will be notified to each applicant by the Educational Affairs Division, A Cluster Office after application.

IV. Examination Schedule

(1) Examination date/time and subjects

Date	Category	Time/Subject	Category	Time/Subject	Category	Time/Subject
February 12 (Thursday)	D E	9:00~12:00 Specialized Subjects	B C D	13 : 00∼ Oral Examinations	A B C D	16:30~ Interview A: All applicants B, C, D, E: Only international students

(2) Examination Venue

The examination venue is the A Cluster of the Katsura Campus. The examination shall be conducted in person (no online option available). Further details will be provided when the examination voucher is sent.

V. Examination Details

(1) English

- Applicable only to Category E applicants. No written examination will be administered; evaluation will be based on TOEFL, IELTS, or TOEIC scores. For submission of English scores, refer to "Section VII. (5) Additional Document Submission Address".
- · Applicants in Categories A, B, C, and D are not required to submit.

(2) Specialized Subjects

A written examination will be administered. Three questions will be selected from fundamental electrical and electronic engineering subjects relevant to the research content of the desired area (desired research laboratory). After application, the assigned subjects will be notified to each applicant by the Educational Affairs Division, A Cluster Office. All three questions must be answered.

^{**}Those who have achieved the required academic standing in their Master's Course.

Important notes regarding the written examination

- Only (mechanical) pencils (ballpoint pens are not permitted), pencil sharpeners (non-electric), erasers, watches (with clock function only; smartwatches are not permitted) and eyeglasses may be used.
- The use of calculators, dictionaries, rulers, and similar items is not permitted.
- Avoid bringing electronic devices such as cell phones, smartphones, or smartwatches. If you bring them, turn them off, place them in your bag, and leave the bag in a designated area. Note that carrying or wearing such devices may be considered cheating.
- On the day of the examination, assemble in front of the designated exam room at least 30 minutes before the exam begins. You will not be admitted after 30 minutes have passed since the exam started.

(3) Oral Examination

- You must explain your research content and progress during your master's program (or your research content while employed in the Special Selection for Career-Track Working Student), followed by your research plan for the doctoral program. Faculty members will then conduct questioning. The oral examination time is approximately 20 minutes in total, including an 8-minute presentation and Q&A.
- When presenting, you should generally avoid reading from prepared notes.
- You must prepare presentation materials (limited to 5 PowerPoint slides or 5 printed A4 pages; this limit is strictly enforced) and make your presentation using your own laptop PC.

(4) Interview

- All applicants in Examination Category A are eligible.
- Only international students in Examination Categories B, C, D, and E are eligible.

VI. Successful Candidate Determination

Candidates will be determined based on comprehensive evaluation of the written examination (specialized subjects) scores (applicable candidates only), English scores (applicable candidates only), undergraduate academic record, graduate academic record, oral examination results (applicable candidates only), and interview results (applicable candidates only). The department will then determine final acceptance by assessing the candidate's research capabilities etc.

VII. Application Instructions

(1) Application for Research Area

- Select your desired area (research laboratory) on the entry screen of the online application system.
- You must contact the prospective supervisor of your desired area in advance (prior contact).
- If you have any questions or are unsure about the prospective supervisor, contact the "VII. (6) Contact Information".
- For detailed research content, refer to the department homepage (https://www.ee.t.kyoto-u.ac.jp/).

(2) Prior Contact

The prior contact procedure is as described in "Part A:III Application" of the Application Guidelines.

(3) Guidance on Presentation for Oral Examination

The procedure is as described in "Part A: IV-iii Guidance on Presentation for Oral Examination" of the Application Guidelines.

(4) Applicants Currently Employed

As described in "Part A: II-v Special Selection of Career-Track Working Applicants" of the Application Guidelines, applicants who are currently employed by a government agency, company, or similar organization at the time of application and who will retain that status after enrollment may apply through the Special Selection for Career-Track Student, provided they have obtained a recommendation from their supervisor in principle. For this program, applicants planning to study while employed should generally apply through it. However, if circumstances require applying through the general selection, applicants

must inform their prospective supervisor during the prior contact.

(5) Additional Documents to be Submitted

Must be submitted by 4:00 PM on January 15 (Thr) (no late submissions accepted)

- Download the forms from the Graduate School of Engineering website.
- Submit all documents listed in (a) or (b) below to "VII. (6) Additional Document Submission Address".
- Note that the submission address for application documents to the Graduate School of Engineering is different.
- If mailing, use "Registered Mail" or "Simplified Registered Mail" (internal campus mail is not acceptable).
- Only the English Score Certificate included in (b) can be accepted by 4:00 PM on February 2 (Mon) (no late submissions accepted).
- (a) Applicants under Category A
 - 1. Resume and Statement of Research Interests
- (b) Applicants under Categories B, C, D, and E
 - 1. Resume and Statement of Research Interests
 - 2. Description of Research Conducted in Master's Course*
 - 3. Description of Research Plan in the Integrated Master's-Doctoral Course Program*
 - 4. English Score Certificate (not required for Categories B, C, D)
 - 5. Undergraduate Transcript (not required for those who have graduated from the Faculty of Engineering, Kyoto University)
 - Graduates of foreign universities should also submit in Japanese or English whenever possible.
 - * Free-form style is acceptable, but it must be summarized on one sheet of A4 paper.

Submit one of the following. Only certificates for tests taken within the past two years prior to the entrance examination date (February 12, 2026) are valid. Applicants whose native language is English must also submit a certificate. No changes will be accepted after submission. Submitted certificates will be returned after the oral examinations. If you encounter difficulties taking the TOEFL or similar exams due to eligibility issues or other problems, inquire in advance.

· TOEFL Test Taker Score Report

Only TOEFL iBT is valid. TOEFL iBT Home Edition and the institutional TOEFL-ITP are not acceptable. **Test Score will be used**, and MyBestTM Scores will not be used. The scores must be submitted through My TOEFL Home. The institution code (DI code) is **G147** (**Graduate Organization**).

• IELTS Test Report Form (Original)

Only Academic Module is valid.

• Test Report Form

Only TOEIC Listening & Reading Test is valid. The institutional TOEIC-IP is not acceptable. In addition to the original Official Score Certificate, printed copies of the Digital Official Score Certificate will also be accepted. In either case, submission must be on paper.

(6) Additional Document Submission Address / Contact Information

Educational Affairs Division (Electrical and Electronic Engineering),

A Cluster Office Bldg., Katsura Campus, Kyoto University

Kyoto-daigaku-katsura, Nishikyo-ku, Kyoto 615-8510, Japan

Telephone: +81-75-383-2077

E-mail: 090kakyomudenki@mail2.adm.kyoto-u.ac.jp

(When contacting, state that your inquiry relates to admission to the Department of Electrical, Electronic and Digital Science and Engineering)

HP: https://www.ee.t.kyoto-u.ac.jp/en?set_language=en

VIII. Selection of Educational Program after Enrollment

Two programs are offered in the Doctoral Course. Successful candidates of this entrance examination will enroll in (a) or (b):

- (a) Integrated Master's-Doctoral Course Program:
 Interdisciplinary Engineering Course (Interdisciplinary Photonics and Electronics Science)
- (b) Integrated Master's-Doctoral Course Program:
 Advanced Engineering Course (Photonics and Electronics Science and Engineering)

Which program a candidate will enroll in is determined based on the candidate's preference and the judgment of the prospective supervisor. For detailed information, refer to the Graduate School of Engineering website ("Educational Programs": https://www.t.kyoto-u.ac.jp/en/education/graduate/dosj69/dosj69-en) and "IX. Educational Programs".

IX. Educational Programs

[Interdisciplinary Engineering Course (Interdisciplinary Photonics and Electronics Science)]

In the 21st century, it is predicted that the volume of information processing and energy consumption will increase explosively on a global scale. This will bring the performance limitations of hardware built on existing materials and concepts, as well as the depletion of the earth's resources, into sharp focus. To contribute to solving these challenges and to lead the world in the field of opto-electronic science, it is crucial to pioneer new academic fields by integrating multiple diverse disciplines—such as electrical engineering, systems engineering, electronic engineering, quantum materials engineering, materials science, chemical engineering, optical functional engineering, integrated systems engineering, quantum physics engineering, and digital engineering—and to cultivate the young researchers and highly skilled engineers who will drive these fields forward.

This educational program, through education and research that pioneers interdisciplinary areas in optoelectronic science, aims to cultivate individuals who possess not only a high level of specialized knowledge and ability in new academic fields, but also the innovative creativity to generate concepts and functions that surpass existing physical limitations. We will promote globally-conscious education and research in convergent fields, including: realization of novel optical devices and high-efficiency solid-state lighting through ultimate photon control, realization of environment-resistant devices and ultra-large-scale integrated systems through extreme electron control, development of novel functional devices and new processes using light, spin, and ions, creation and property control of strongly correlated electron systems and molecular nano-materials, control of high-density energy systems and its fundamental theory, nano-level measurement using new physical phenomena and the exploration of its scientific principles, design of functional devices utilizing advanced digital technologies.

Through foundational and advanced lectures by our internationally distinguished faculty, an educational approach utilizing tailor-made curricula and internships suited to each student's goals, and cutting-edge interdisciplinary research conducted in cooperation with Photonics and Electronics Science and Engineering Center, we will nurture a broad perspective, high originality, a global mindset, and independence. In doing so, we will cultivate the next generation of leaders in the field of opto-electronic science.

[Advanced Engineering Course (Photonics and Electronics Science and Engineering)]

To realize the next-generation social systems in which the real and virtual worlds are highly integrated, we cultivate individuals who possess both broad scientific knowledge and a rich, flexible creativity. This is achieved through a curriculum that covers everything from the fundamentals of hardware and software to the most advanced research, and through the mastery of science and technology at the frontiers of the electrical, electronic, and digital science and engineering fields, spanning from devices to systems. The education and research promoted by this program aim for the ultimate control and understanding of light and electrons. In

photonics, our goal is to manipulate light at will, enabling the emission and detection of light of any wavelength, intensity, and direction. In electronics, we aim to transcend conventional concepts through novel devices and quantum effects. We advance education and research in fields where we have achieved world-class results. This includes the creation of new materials and devices such as photonic crystals, wide-gap semiconductors, molecular nano-devices, and quantum condensate devices; innovative nano-processes using power devices, electrons, photons, and ions; and cutting-edge applications of superconductivity, electromagnetic field analysis, system control, and data science. Specific application areas include the construction of low-environmental-impact energy systems and biosensing highly integrated with machine learning. Through this program, we cultivate individuals who, by the time they obtain their doctorate, are independent, possess broad expertise, and are top-tier professionals capable of succeeding internationally.

X. Faculty Members and Research Descriptions

Faculty members	Research descriptions	Cate gory
Professor Susuki Senior Lecturer Nguyen Assist. Professor Mochiyama	Electrical and Information Systems (1) Theory of nonlinear and multi-degree-of-freedom dynamical systems with applications to data-driven engineering (2) Formal method-based control of complex dynamical systems (3) Analysis, control, and design of energy and mobility systems (4) Control applications, including robotics and best-effort motor drive	1st
Professor Yoshii Assoc. Professor Ito Assist. Professor Ueda, H.	Spatio-Temporal Sensing (1) Multimodal spatio-temporal signal processing (audio, images, and magnetic fields) (2) Probabilistic modeling with physical constraints and deep learning (3) Biological magnetic measurement using optical quantum magnetic sensors (4) Brain function imaging with MRI	2nd
Assoc. Professor Hisakado	Intelligent Circuit Design (1) Circuit systems including electromagnetics (2) Modeling of high-speed and high-frequency circuits, and system reliability (3) Circuit design using machine learning (4) Power electronics, interactive control, and power system diagnostics	3rd
Professor Asano† Assist. Professor Yoshida	Physical and Information Engineering (1) Development and application of high beam quality, high brightness semiconductor lasers using photonic crystals (2) Research on the functionalization of photonic crystal lasers (beam deflection control, short pulse generation, etc.) (3) Research on high-efficiency light sources and energy conversion using thermal radiation control (4) Research on flexible photon control using high-Q nano-resonators and ultra-micro optical circuits (5) Development of next-generation photonic crystals using wide-gap Semiconductors	4th
Professor Funato† Senior Lecturer Shojiki, Assist. Professor Ishii Assist. Professor Matsuda†	Advanced Optoelectronic Device Engineering (1) Research on the development of visible and ultraviolet light sources using nitride semiconductors (2) Research on the elucidation and control of optical properties of semiconductor nanoconfinement systems (3) Research on spectroscopic mapping technology with high temporal and spatial resolution (4) Research on the development and application of tailor-made light sources capable of arbitrary wavelength synthesis	5th

Professor Hagiwara Assoc. Professor Hosoe	Automatic Control Engineering (1) Analysis and design of digital control systems and periodic timevarying systems (2) Analysis and design of robust control systems (3) Analysis and control of systems with probabilistic dynamics (4) Experimental research on the application of modern control theory to mechanical and pneumatic systems	6th
Professor Sakamoto	Innovative Systems Theory (1) Application of system theory to biomedical measurement (2) Wave imaging and inverse problems (3) Biomedical signal processing (4) Human body radio wave sensing	7th
Professor Amemiya Assoc. Professor Sogabe	Applied Superconductivity (1) Electromagnetic phenomena in superconductors (2) Electromagnetic characteristics of superconducting magnets (3) Medical applications of superconductivity (4) Energy applications of superconductivity	8th
Professor Matsuo Assoc. Professor Mifune	Electromagnetic Energy Engineering (1) Development of model reduction methods for electrical and electronic devices (2) Multiphysics modeling of magnetic materials (3) Spatio-temporal computational electromagnetics and its applications (4) High-speed, high-precision electromagnetic field calculation technology	9th
Professor Ebihara Senior Lecturer Hsieh (Research Institute for Sustainable Humanosphere)	Space Radio Science Simulation (1) Research on space environment variations using computer simulations (2) Research on nonlinear plasma wave phenomena using computer simulations (3) Research on electromagnetic coupling between space and Earth	10th
Professor Kojima Assoc. Professor Kurita Assist. Professor Ueda, Y. (Research Institute for Sustainable Humanosphere)	Space Radio Engineering (1) Research on the plasma environment in space using scientific satellite observations (2) Research on the miniaturization of scientific satellite observation equipment (3) Research on the properties of nanobubble water for space applications	11th
Professor Shinohara Assoc. Professor Mitani (Research Institute for Sustainable Humanosphere)	Microwave Energy Transmission (1) Research on Space Solar Power Stations (SPS) (2) Research on wireless power transmission using microwaves (3) Research on the creation of new materials using microwaves	12th
Professor Taketsune Nakamura† Assoc. Professor Terao† (Endowed chair)	Advanced Electric Machinery Engineering for Sustaining Global Environment (1) Research on advanced electrical machinery centered on rotating machines (2) Research on transportation equipment (3) Research on utilization technologies for renewable energy (4) Research on superconducting equipment	13th
Professor Yonezawa Assoc. Professor Kakeya Assoc. Professor Gotoh Assist. Professor Ikeda	Frontier Electronic Functional Engineering (1) Research on new material responses and functionalities of superconductors and magnetic materials (Superconductivity Group) (2) Development of next-generation measurement technologies for new material functionalities (Superconductivity Group) (3) Josephson effect and electronic applications of high-temperature superconductors (Superconductivity Group) (4) Terahertz time-domain spectroscopy of macroscopic quantum states (Superconductivity Group) (5) Development of extreme environment-resistant ultra-high vacuum devices and novel micro-mass analysis technologies (Vacuum Electronics Group)	14th

Professor Shiraishi Assoc. Professor Puebla Assoc. Professor Ohshima	Condensed-Matter Physical Electronics (1) Research on semiconductor quantum spintronics (2) Research on pure spin current physical properties (3) Research on novel solid-state quantum properties using topological insulators/superconductors, Weyl ferromagnets, etc. (4) Creation of new functional devices and quantum hybrid systems based on the above research, and their development into quantum technology	15th
Professor Takeuchi Assoc. Professor Okamoto Assist. Professor Mukai	Photonic Quantum Information (1) Research on the realization of optical quantum computers, quantum simulators, and integrated optical quantum circuits (2) Research on the realization of ultra-small optical devices for applications in optical quantum information and related fields (3) Research on the generation and control of various quantum entangled states of photons (4) Research on new high-sensitivity, high-resolution optical measurement techniques using quantum light	16th
Professor Kimoto Assoc. Professor Kaneko Assist. Professor Mikami	Semiconductor Science and Engineering (1) Research on electron transport and device applications of low-dimensional semiconductor nanostructures (2) Fundamental research on resistive change non-volatile memory (3) Wide-bandgap semiconductor silicon carbide (SiC) power devices and high-temperature operation integrated circuits	17th
Assoc. Professor Kobayashi	Electronic Material Science and Engineering (1) Development of novel physical property measurement methods using scanning probe microscopy (2) Evaluation of nanoscale structure and physical properties of electronic materials (3) Development of organic thin-film devices and research on their optical and electronic properties (4) Measurement of the structure and function of biomolecules for the construction of biodevices and biosensors	18th
Assoc. Professor Sugiyama Senior Lecturer Nakanishi	Quantum Optical Engineering (1) Control of terahertz and microwave waves using electromagnetic metamaterials (2) Theoretical proposal of novel physical phenomena enabled by metamaterials (3) Development of measurement techniques for terahertz waves	19th
Professor Menaka Assoc. Professor Inoue (Photonics and Electronics Science and Engineering Center)	Nano-Process Engineering (1) Research on the advancement of nano process technology (2) Development and evaluation of nano structures for thermal control (3) Analysis, fabrication, and evaluation of photonic nano structure lasers (4) Electromagnetic field simulation in nano structures	20th

[†]Program-specific faculty members