SYLLABUS

2011

[C] Interdisciplinary Engineering Course Program (5yr Course)

Kyoto University, Graduate School of Engineering

[C] Interdisciplinary Engineering Course Program (5yr Course)

Laboratory of Applied Mechanics	
10W602 10W602	

10W603 10W603	1
10E001 Special Topics in Transport Phenomena	2
10W023 Internship DL	3
10W021 Internship DS	4
10W019 Internship M	5
10C601 Applied Mathematics for Electrical Engineering	6
10G047 Applied Mechanics	7
10W025 Seminar on Applied Mechanics A	8
10W027 Seminar on Applied Mechanics B	9
10V039 Advanced Experiment and Exercise in Applied Mechanics I, II	10
10V037 Advanced Experiment and Exercise in Applied Mechanics I, II	11
10C034 Nuclear Energy Conversion and Reactor Engineering	12
10C038 Physics of Fusion Plasma	13
10G057 Engineering Ethics and Management of Technology	14
10C076 Fundamentals of Magnetohydrodynamics	15
10C072 Introduction to Advanced Nuclear Engineering	16
10F010 Bridge Engineering	17
10G055 Crystallography of Metals	18
10W017 Structural Testing Technology	19
10F227 Structural Dynamics	20
10C037 Multiphase Flow Engineering and Its Application	21
10G401 Jet Engine Engineering	22
10R419 Seminar on Systems and Control	23
10Q807 Theory for Design Systems Engineering	24
10V003 Biomechanics	25
10R013 Nonlinear Physics in Fusion Plasmas	26
693513 693513	27
10G045 10G045	28
10V029 Seminar of Complex Mechanical Engineering,C	29
10G205 Microsystem Engineering	30
10G203 Micro Process and Material Engineering	31
10G025 Mechanical Functional Device Engineering	32
10G041 Advanced Finite Element Methods	33
10B407 Robotics	34
10C612 Space Radio Engineering	35
10G001 Applied Numerical Methods	36
10W005 Advanced Exercise in Applied Mechanics A	37
10W007 Advanced Exercise in Applied Mechanics B	38
10W009 Advanced Exercise in Applied Mechanics C	39

10W011 Advanced Exercise in Applied Mechanics D	40
10W013 Advanced Exercise in Applied Mechanics E	41
10W015 Advanced Exercise in Applied Mechanics F	42
10B440 Environmental Fluid Dynamics	43
10G007 Introduction to Advanced Fluid Dynamics	44
693510 693510	45
10M226 Meteorology I	46
10M227 Meteorology II	47
693518 693518	48
10Q610 Seminar: Dynamics of Atomic Systems	49
10G003 Solid Mechanics, Adv.	50
10G021 Engineering Optics and Spectroscopy	51
10F009 Structural Design	52
10F067 Structural Stability	53
10G409 Aerospace Systems and Control	54
10R410 Seminar on Aerospace systems	55
10C430 Advanced Flight Dynamics of Aerospace Vehicle	56
10G411 Fluid Dynamics for Aeronautics and Astronautics	57
10V405 Seminar on Fluid Dynamics for Aeronautics and Astronutics	58
10B631 High Energy Radiation Effects in Solid	59
10Q607 Materials Strength at Elevated Temperatures	60
10V407 Seminar on Optimum System Design Engineering	61
10G403 Optimum System Design Engineering	62
10W001 Infrastructural Structure Engineering	63
10G023 Vibration and Noise Control	64
10K004 New Engineering Materials, Adv.	65
10G405 Propulsion Engineering, Adv.	66
693410 693410	67
10V203 Simulation Engineering of Living Body	68
10G214 precision measurement and machining	69
10G011 Design and Manufacturing Engineering	70
10B418 Strength of Advanced Materials	71
10K013 Advanced Mechanical Engineering	72
10B634 Advanced Experimental Techniques and Analysis in Engineering Physics	73
10V007 Neutron Science Seminor 1	74
10V008 Neutron Science Seminar II	75
10B628 Physics of Neutron Scattering	76
10B828 High Precision Engineering	77
10V401 Seminar on Engineering Science of Ionized Gases	78
10G013 Dynamic Systems Control Theory	79
10G230 Dynamics of Solids and Structures	80
10G029 Patent Seminar	81
653316 653316	82
10V409 Thermal Engineering Seminar	83

10G039 Transport Phenomena	84
10B622 Thermophysics for Thermal Engineering	85
10G005 Thermal Science and Engineering	86
653322 653322	87
10G017 Fracture Mechanics	88
693320 693320	89
10V201 Introduction to the Design and Implementation of Micro-Systems	90
10V025 Seminar of Complex Mechanical Engineering,A	91
10V027 Seminar of Complex Mechanical Engineering,B	92
10V031 Seminar of Complex Mechanical Engineering,D	93
10V033 Seminar of Complex Mechanical Engineering,E	94
10V035 Seminar of Complex Mechanical Engineering,F	95
10G211 Solid State Physics 1	96
10V205 Solid State Physics 2	97
10G019 Molecular Fluid Dynamics	98
10V010 Seminar on Molecular Gas Dynamics	99
10G408 Hydrodynamic Stability Theory	100
10V411 10V411	101
10Q408 Quantum Theory of Chemical Physics	102
10B619 Quantum Theory of Condensed Matter	103
10G009 Quantum Condensed Matter Physics	104
10B617 Quantum Theory of Molecular Physics	105
693431 693431	106
10F003 Continuum Mechanics	107
10Q402 Turbulence Dynamics	108
10D450 Biomolecular Dynamics	109
10C621 Applied Hybrid System Engineering	110
10G209 Multi physics Numerical Analysis	111
693321 693321	112
Laboratory of Evolutionarily Sustainable Infrastructure Engineering	
10F081 Infrastructure Creation Engineering	113
10W201 Developmental and Sustainable Infrastructure Engineering Seminar A	114
10W203 Developmental and Sustainable Infrastructure Engineering Seminar B	115
10W001 Infrastructural Structure Engineering	116
10F065 Hydraulic Engineering for Infrastructure Development and Management	117
10F057 Principles of Geotechnics	118
10W207 Infrastrucuture Planning	119
10A402 Resources Development Systems	120
10F439 Environmental Risk Analysis	121
10G403 Optimum System Design Engineering	122
10W209 Developmental and Sustainable Infrastructure Internship A	123
10W211 Developmental and Sustainable Infrastructure Internship B	124
10W215 Developmental and Sustainable Infrastructure Engineering Seminar II	125

10F003 Continuum Mechanics	126
10F067 Structural Stability	127
10F068 Material and Structural System & Management	128
10F011 Computational Fluid Dynamics	129
10F227 Structural Dynamics	130
10F261 Earthquake Engineering/Lifeline Engineering	131
10F263 Seismic Engineering Exercise	132
10F075 Hydraulics & Turbulence Mechanics	133
10F077 River basin management of flood and sediment	134
10F019 River Engineering and River Basin Management	135
10A040 Sediment Hydraulics	136
10F462 Coastal Wave Dynamics	137
10A216 Hydrology	138
10A222 Water Resources Systems	139
10F267 Hydro-Meteorologically Based Disaster Prevention	140
10F441 Water Quality Engineering	141
10F100 Applied Hydrology	142
10F103 Case Studies Harmonizing Disaster Management and Environment Conservation	143
10F025 Geomechanics	144
10K016 Computational Geotechnics	145
10F237 Management of Geotechnical Infrastructures	146
10F405 Fundamental Geofront Engineering	147
10F407 Environmental Design in Geo-front Engineering	148
10F203 Public Finance	149
10F207 Urban Environmental Policy	150
10F213 City Logistics	151
10F215 Intelligent Transportation Systems	152
10F219 Quantitative Methods for Behavioral Analysis	153
10F223 Risk Management Theory	154
10A806 Advanced Geoinformatics	155
10A808 Civic and Landscape Design	156
10K008 Computational Mechanics and Simulation	157
10F069 Modelling of Geology	158
10F071 Applied Elasticity for Rock Mechanics	159
10F073 Fundamental Theories in Geophysical Exploration	160
10F039 Time Series Analysis	161
10A405 Environmental Geosphere Engineering	162
10F086 Energy System Management	163
10F234 Water Sanitary Engineering	164
10F415 Ecomaterial and Environment-friendly Structures	165
10F454 Systems Approach on Sound Material Cycles Society	166
10A622 Geohydro Environment Engineering. Adv.	167
10F446 Atmospheric and Global Environmental Engineering, Adv.	168
10A626 Advanced Environmental Health	169

10A632 Urban Metabolism Engineering	170
10A643 Environmental Microbiology, Adv.	171
10F456 New Environmental Engineering I, Advanced	172
10F458 New Environmental Engineering II, Advanced	173
10F461 Nuclear Environmental Engineering, Adv.	174
10F468 Environmental Organic Micropollutants Analysis Lab.	175
10F470 Advanced Enivironmental Engineering Lab.	176
10F472 Seminer on Practical Issues in Urban and Environmental Enginering	177
10G039 Transport Phenomena	178
10G009 Quantum Condensed Matter Physics	179
10F112 Introduction to Sustainability/ Survivability Science	180
10D051 Frontiers in Modern Science & Technology	181
10D040 Exercise in Practical Scientific English	182
10K001 Introduction to Advanced Material Science and Technology	183
10K004 New Engineering Materials, Adv.	184
10W213 Developmental and Sustainable Infrastructure Engineering Seminar I	185
10F466 Basin Environmental Disaster Mitigation	186
10F464 Hydrologic Design and Management	187
10F269 Coastal and Urban Water Disasters Engineering	188
10F245 Open Channel Hydraulics	189
10F023 Numerical Methods in Geomechanics	190
Laboratory of Materials Engineering and Chemistry	
10W401 Science and Technology for Making Substances	191
10W403 Dimensional Control and Micro-Nano Systems	192
10W405 Molecular Function and Composite-Assembly Function	193
10W407 Physical Chemistry and Analytical Techniques of Complex Systems	194
10W409 Frontiers in the Field of Chemical Biology and Biological Chemistry	195
10W410 Nano Materials Science	196
10W412 Mechanics and Synthesis of Micro Machines II	197
10W416 Advances in Rechargeable Batteries	198
10W414 Recent advances in fuel cell sciences	199
10W418 Integrated Chemical Synthesis	200
10W420 Experimental Integrated Chemical Systems	201
10W422 Design of Green Chemical Processing	202
10W459 Experimental Integrated Chemical Systems	203
10W424 Environmental-friendly Technology for Sound Material Cycle	204
10W432 Laboratory and Exercise on Materials Engineering and Chemistry I	205
10W433 Laboratory and Exercise on Materials Engineering and Chemistry I I	206
10W434 Laboratory and Exercise on Materials Engineering and Chemistry III	207
10W435 Laboratory and Exercise on Materials Engineering and Chemistry IV	208
10W437 Advanced Seminar on Materials Engineering and Chemistry I	209
10W438 Advanced Seminar on Materials Engineering and Chemistry II	210
10W439 Advanced Seminar on Materials Engineering and Chemistry III	211

10W440 Advanced Seminar on Materials Engineering and Chemistry IV	212
10W441 Advanced Seminar on Materials Engineering and Chemistry V	213
10W442 Advanced Seminar on Materials Engineering and Chemistry VI	214
10W444 Internship I	215
10W445 Internship II	216
10W446 Internship I I I	217
10W447 Internship IV	218
10W448 Internship V	219
10W449 Internship VI	220
10K001 Introduction to Advanced Material Science and Technology	221
10K004 New Engineering Materials, Adv.	222
10i005 Business Japanease I	223
10i006 Business Japanease II	224
10C294 Integrated Molecular Science IV	225
10C296 Integrated Materials Science IV	226
10C273 Social Core Advanced Materials I	227
10C275 Social Core Advanced Materials I I	228
10W472 Materials Engineering and Chemistry I	229
10W473 Materials Engineering and Chemistry II	230
10W474 Materials Engineering and Chemistry III	231
10W475 Materials Engineering and Chemistry IV	232
10W476 Materials Engineering and Chemistry V	233
10W477 Materials Engineering and Chemistry VI	234
10W478 Materials Engineering and Chemistry VII	235
10W479 Materials Engineering and Chemistry VIII	236
10D043 Instrumental Analysis, Adv. I	237
10D046 Instrumental Analysis, Adv. II	238
10D040 Exercise in Practical Scientific English	239
10C283 International Student Seminar on Integrated Materials	240
10W463 Seminar on Materials Engineering and Chemistry I	241
10W464 Seminar on Materials Engineering and Chemistry II	242
10W465 Seminar on Materials Engineering and Chemistry	243
10W466 Seminar on Materials Engineering and Chemistry IV	244
10W467 Seminar on Materials Engineering and Chemistry V	245
10W468 Seminar on Materials Engineering and Chemistry VI	246
10W469 Seminar on Materials Engineering and Chemistry VII	247
10W470 Seminar on Materials Engineering and Chemistry VIII	248
10D051 Frontiers in Modern Science & Technology	249
Laboratory of Engineering for Life Science and Medicine	
10W649 Medical Physics, Radiation Safety and Administration	250
10W620 Radiation Measurement for Medicine	251
10W603 10W603	252
10E001 Special Topics in Transport Phenomena	253

10W692 Bio-Medical Engineering Internship D	254
10W691 Bio-Medical Engineering Internship M	255
10C082 Applied Neutron Engineering	256
10E019 Surface Control Engineering	257
10E022 Engineering for Chemical Materials Processing	258
10W606 Diagnostic Imaging	259
10C070 Introduction to Quantum Science	260
10C084 Nuclear Engineering, Adv.	261
10C068 Nuclear Engineering Application Experiments	262
10D051 Frontiers in Modern Science & Technology	263
10D649 Polymer Synthesis	264
10D007 Chemistry of Polymer Materials	265
10D651 Polymer Physical Properties	266
10D643 Polymer Solution Science	267
10C205 Thermodynamics for Materials Science, Adv. A	268
10D040 Exercise in Practical Scientific English	269
10K004 New Engineering Materials, Adv.	270
10W681 Experiments and Exercises on Bio-Medical Engineering, Adv. I	271
10W683 Experiments and Exercises on Bio-Medical Engineering, Adv. II	272
10W685 Seminar on Bio-Medical Engineering A	273
10W687 Seminar on Bio-Medical Engineering B	274
10W689 Seminar on Bio-Medical Engineering C	275
10W690 Seminar on Bio-Medical Engineering D	276
10W670 10W670	277
10W671 10W671	278
10D043 Instrumental Analysis, Adv. I	279
10D046 Instrumental Analysis, Adv. II	280
10D818 Advanced Organic Chemistry	281
10V003 Biomechanics	282
10E007 Chemical Reaction Engineering, Adv.	283
10E016 Fine Particle Technology, Adv.	284
10C078 Hybrid Advanced Accelerator Engineering	285
10E004 Separation Process Engineeering, Adv.	286
10C047 Radiation Medical Physics	287
10W618 10W618	288
10C017 Radiation Physics and Engineering	289
10G205 Microsystem Engineering	290
10G203 Micro Process and Material Engineering	291
10C234 Physics of Mesoscopic Materials	292
10G041 Advanced Finite Element Methods	293
10C074 Quantum Science	294
10W609 Clinical Oncology	295
10B407 Robotics	296
10C072 Introduction to Advanced Nuclear Engineering	297

10D638 Advanced Seminar on Polymer Industry	298
10W696 Human Anatomy	299
10W641 10W641	300
10K001 Introduction to Advanced Material Science and Technology	301
10V201 Introduction to the Design and Implementation of Micro-Systems	302
10R001 Quantum Beam Science, Adv.	303
10C018 Neutron Science	304
10D450 Biomolecular Dynamics	305
10D636 Polymer Design for Biomedical and Pharmaceutical Applications	306
10D610 Reactive Polymers	307
10D611 10D611	308
10D622 Physical Chemistry of Polymers	309
10D031 Chemistry of Biomaterials	310
10D216 Functional Solution Chemistry	311
10D815 Biorecognics	312
10D808 10D808	313
10W409 Frontiers in the Field of Chemical Biology and Biological Chemistry	314
10S202 Green and Sustainable Chemistry	315
10G209 Multi physics Numerical Analysis	316
10C046 Radiation Biology and Medicine	317
10D645 Polymer Functional Chemistry	318
10D607 Design of Polymerization Reactions	319
10D613 Polymer Structure and Function	320
10D616 Polymer Supermolecular Structure	321
10D625 Polymer Spectroscopy	322
10D628 Design of Polymer Materials	323
10D647 Polymer Controlled Synthesis	324
10D633 Biomaterials Science and Engineering	325
10D028 Polymer Physics and Function	326
10C206 Thermodynamics for Materials Science, Adv. B	327
10V426 Functionalized Nucleic Acids Chemistry	328
10D812 Molecular Biology	329
10D813 Bioorganic Chemistry	330
10D816 Biotechnology	331
10D448 Biomolecular Function Chemistry	332
10C031 Quantum Manipulation Technology	333
10W651 High Precision Radiation Therapy	334
10D413 Molecular Materials	335
10D207 Excited-State Hydrocarbon Chemistry	336
10G209 Multi physics Numerical Analysis	337
10D633 Biomaterials Science and Engineering	338
10C046 Radiation Biology and Medicine	339
10W651 High Precision Radiation Therapy	340
10D633 Biomaterials Science and Engineering	341

10V426 Functionalized Nucleic Acids Chemistry	342
10D812 Molecular Biology	343
10D813 Bioorganic Chemistry	344
10D816 Biotechnology	345
10D613 Polymer Structure and Function	346
10D616 Polymer Supermolecular Structure	347
10D628 Design of Polymer Materials	348
10D647 Polymer Controlled Synthesis	349
10D607 Design of Polymerization Reactions	350
10D645 Polymer Functional Chemistry	351
10D448 Biomolecular Function Chemistry	352
10D645 Polymer Functional Chemistry	353
10D607 Design of Polymerization Reactions	354
10D613 Polymer Structure and Function	355
10D616 Polymer Supermolecular Structure	356
10D625 Polymer Spectroscopy	357
10D628 Design of Polymer Materials	358
10D647 Polymer Controlled Synthesis	359
10D633 Biomaterials Science and Engineering	360
10D812 Molecular Biology	361
10D813 Bioorganic Chemistry	362
Laboratory of Human, Environment and Design	
10A216 Hydrology	363
10A222 Water Resources Systems	364
10A808 Civic and Landscape Design	365
10A832 Theory of Structural Materials, Adv.	366
10A845 Theory & Practice of Environmental Design Research	367
10A856 Dwelling Planning	368
10B013 Theory of Architectural Design, Adv.	369
10B014 Theory of Architectural and Environmental Planning 1	370
10B015 Theory of Architectural and Environmental Planning II	371
10B016 Theory of Architecture, Adv.	372
10B017 History of Architecture and Environmental Design	373
10B019 Building construction project management	374
10B024 Theory of Architecture and Environment Design, Adv.	375
10B027 Architectural Information Systems, Adv.	376
10B034 Applied Solid Mechanics	377
10B035 Design Theory of Architecture and Human Environment	378
10B036 History of Japanese Architecture	379
10B037 Design Mechanics for Building Structures	380
10B038 Theory of Cognition in Architecture and Human Environment	381
10B040 Advanced Structural Analysis	382
10B043 Concrete Structures, Advanced	383

10B046 Dynamic Response of Building Structures	384
10B052 Control for Structural Safety	385
10B054 Building Systems	386
10B222 Environmental Control Engineering, Adv.	387
10B226 Building Geoenvironment Engineering	388
10B231 High Performance Structural Systems Engineering	389
10B234 Steel Structures, Advanced	390
10B238 Environmental Wind Engineering	391
10B241 Urban Disaster Mitigation Engineering	392
10B257 Control Method in Built Environment	393
10B418 Strength of Advanced Materials	394
10D040 Exercise in Practical Scientific English	395
10D051 Frontiers in Modern Science & Technology	396
10F267 Hydro-Meteorologically Based Disaster Prevention	397
10F407 Environmental Design in Geo-front Engineering	398
10F431 Integration of Research and Architectural Design	399
10F433 Design of Acoustic Environment	400
10F435 Social Acoustics	401
10F437 Urban Fire Hazard Mitigation and Safety Planning	402
10G001 Applied Numerical Methods	403
10G003 Solid Mechanics, Adv.	404
10G005 Thermal Science and Engineering	405
10G011 Design and Manufacturing Engineering	406
10G013 Dynamic Systems Control Theory	407
10G023 Vibration and Noise Control	408
10G039 Transport Phenomena	409
10G403 Optimum System Design Engineering	410
10M035 Construction of Environment	411
10Q807 Theory for Design Systems Engineering	412
10W801 10W801	413
10W803 10W803	414
10W805 10W805	415
10W807 10W807	416
10W809 10W809	417
10W811 10W811	418
10W813 10W813	419
Laboratory of Interdisciplinary Photonics and Electronics	
10X001 Prospects of Interdisciplinary Photonics and Electronics	420
10X003 Advanced Experiments and Exercises in Interdisciplinary Photonics and Electronics	, 421
10X005 Advanced Experiments and Exercises in Interdisciplinary Photonics and Electronics	, 422
10X007 Advanced Seminar on Interdisciplinary Photonics and Electronics	423
10C825 Quantum Mechanics for Electronics Engineering	424
10C801 Charged Particle Beam Apparatus	425

10C807 Plasma Science and Engineering, Adv.	426
10C810 Semiconductor Engineering Adv.	427
10C813 Electronic Materials Adv.	428
10C816 Molecular Electronics	429
10C819 Surface Electronic Properties	430
10C822 Optical Properties and Engineering	431
10C828 Quantum Optoelectronics Devices	432
10C830 Quantum Measurement	433
10C851 Electrical Conduction in Condensed Matter	434
10C834 High Performance Thin Film Engineering	435
10E201 LSI devices	436
693631 Integrated Circuits Engineering, Advanced.	437
10C628 State Space Theory of Dynamical Systems	438
10C604 Applied Systems Theory	439
10C647 Electrical and Electromagnetic Circuits	440
10C610 Electromagnetic Theory, Adv.	441
10C613 Superconductivity Engineering	442
10C614 Biological Function Engineering	443
10C625 Theory of Electric Circuits, Adv.	444
10C631 Design of Control Systems	445
10C611 Computer Simulations of Electrodynamics	446
10C612 Space Radio Engineering	447
10C617 Applied Microwave Engineering	448
10C714 Spacio-Temporal Media Analysis	449
10C716 Visualized Simulation Technology	450
10G021 Engineering Optics and Spectroscopy	451
10C263 Physical Properties of Crystals Adv.	452
10C271 Magnetism and magnetic materials	453
10G203 Micro Process and Material Engineering	454
10C074 Quantum Science	455
10D422 Molecular Materials Science	456
10D007 Chemistry of Polymer Materials	457
10X011 Fundamentals of Quantum Optics	458
10X013 Digital Signal Processing, Advanced	459
693622 Digital Communication Engineering	460
693628 Information Network	461
10R804 Seminar on Creation of New Industries	462
10R807 Seminar on Advanced Electronic Materials	463
10X009 Recent Advances in Interdisciplinary Photonics and Electronics	464
10X015 Advanced Seminar in Interdisciplinary Photonics and Electronics ,	465
10X017 Advanced Seminar in Interdisciplinary Photonics and Electronics ,	466
10X019 Research Internship (M,D)	467
10X021 Research Internship (M,D)	468
10X023 Advanced Exercises on Interdisciplinary Photonics and Electronics I, II	469

10X025 Advanced Exercises on Interdisciplinary Photonics and Electronics I, II	470
10D051 Frontiers in Modern Science & Technology	471
10D040 Exercise in Practical Scientific English	472
10K001 Introduction to Advanced Material Science and Technology	473
10C601 Applied Mathematics for Electrical Engineering	474
10C829 Quantum Optics	475
10C621 Applied Hybrid System Engineering	476
10D413 Molecular Materials	477
10D613 Polymer Structure and Function	478

医工学基礎

[Code] 10W603 [Course Year] [Term] 1st term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Special Topics in Transport Phenomena

移動現象特論

[Code] 10E001 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 4th

[Location] A2-305 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] R.Yamamoto

[Course Description] Theoretical approaches on momentum, heat, and mass transports will be discussed. For example, problems of non-steady transport such as transient behavior, hydrodynamics of complex fluids such as polymeric liquids will be treated.

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	6	
	3	
	3	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Internship DL

インターンシップ DL (応用力学)

[Code] 10W023 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 6 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	unies	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Internship DS

インターンシップ DS(応用力学)

[Code] 10W021 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Internship M

インターンシップ M (応用力学)

[Code] 10W019 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	unies	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Applied Mathematics for Electrical Engineering

電気数学特論

[Code] 10C601 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 1st

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] T. Hikihara & S. Doi

[Course Description] In the class, fundamental mathematics is lectured for electrical engineering, electronics, system engineering, and material science. In particular, system theory, nonlinear dynamics, and particle dynamics in force field can be discussed with mathematical clear image.

[Grading] Students are requested to reply to report assignments. The grading is based on the evaluation of the reports.

[Course Goals] Professors expect students to model their system and analyze the models theoretically. Students will be requested to understand their system in principle mechanics and control them based on system theory.

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	3	
		Relationship between the previous classes and further will be explained. The
Introduction 2	1	introduction to nonlinear dynamics will be explained based on oscillation
		theory.
Hamiltonian	4	Manifestina and basis and time and the second section and the sectio
mechanics	4	Hamiltonian mechanics on linear symplectic space is lectured.
Manifold and vector	2	N. (C.11)
field	3	Manifold is discussed in nonlinear system with relation to vector filed analysis.

[Textbook]

【Textbook(supplemental)】S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag.

[Prerequisite(s)] Linear algebra

[Web Sites] https://www.t.kyoto-u.ac.jp/lecturenotes/gse/kueeng/10C601/syllabus

[Additional Information] Appropriate references will be shown in classes.

Applied Mechanics

応用力学

[Code] 10G047 [Course Year] Master 1st [Term] 1st term [Class day & Period] Wed 4th

[Location] Engineering Science Depts Bldg.-216 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	2	
	2	
	2	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Applied Mechanics A

応用力学セミナーA

[Code]10W025 [Course Year] [Term]1st term [Class day & Period] [Location] [Credits]2 [Restriction]

[Lecture Form(s)] Seminar [Language] Japanese [Instructor]

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	-	
	-	
	-	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Applied Mechanics B

応用力学セミナーB

[Code]10W027 [Course Year] [Term]2nd term [Class day & Period] [Location] [Credits]2 [Restriction]

[Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	-	
	-	
	-	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10V039

Advanced Experiment and Exercise in Applied Mechanics I, II

応用力学特別実験及び演習第二

[Code]10V039 [Course Year] [Term]1st+2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10V037

Advanced Experiment and Exercise in Applied Mechanics I, II

応用力学特別実験及び演習第一

[Code]10V037 [Course Year] [Term]1st+2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C034

Nuclear Energy Conversion and Reactor Engineering

核エネルギー変換工学

[Code] 10C034 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Physics of Fusion Plasma

核融合プラズマ工学

[Code] 10C038 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 4th

[Location] Bldg.No.1-Nuclear Engineering 2 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	2	
	2	
	1	
	2	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G057

Engineering Ethics and Management of Technology

技術者倫理と技術経営

[Code] 10G057 [Course Year] Master 1st [Term] 1st term [Class day & Period] Thu 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	9	
	5	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Fundamentals of Magnetohydrodynamics

基礎電磁流体力学

[Code] 10C076 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] Bldg.No.1-Nuclear Engineering 2 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] English Lecture [Language] English [Instructor] Tomoaki Kunugi, Atsushi Fukuyama

【Course Description】 This course provides fundamentals of magnetohydrodynamics which describes the dynamics of electrically conducting fluids, such as plasmas and liquid metals. The course covers the fundamental equations in magnetohydrodynamics, dynamics and heat transfer of magnetofluid in a magnetic field, equilibrium and stability of magnetized plasmas, as well as illustrative examples.

【Grading】 Attendance and two reports

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Liquid Metal MHD	7	
Plasma MHD	8	

【Textbook】 Handout of the presentation will be provided at the lecture

【Textbook(supplemental)】

[Prerequisite(s)] Fundamentals of fluid mechanics and electromagnetism

[Web Sites]

10C072

Introduction to Advanced Nuclear Engineering

基礎量子エネルギー工学

[Code] 10C072 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] Bldg.No.1-Nuclear Engineering 1 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	14	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Bridge Engineering

橋梁丁学

[Code] 10F010 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Mon 3rd [Location] C1-117 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Hiromichi Shirato, Kunitomo Sugiura, Tomoaki Utsunomiya, Tomomi Yagi

Course Description The subject matter of bridge engineering can be divided into two main parts, which are steel structure and wind loading/wind resistant structure. The aim of this course is to provide details of mechanical behaviors, maintenance and design of bridge structures. The former part of this course contains the static instability of steel structures and the problems of corrosion, fatigue, brittleness, weldability on steel bridges. In the latter part, the basics of wind engineering, bridge aerodynamics and wind-resistant design including current problems to be solved are provided are provided.

【Grading】 Assessment will be based on exam, reports and attendance.

[Course Goals]

Also, the basic knowledge for wind engineering and aerodynamic instabilities, which are necessary for the wind resistant design of bridges, will be acquired.

[Course Topics]

Theme	Class number of times	Description
		- Fundamental knowledge on steel structures
Introduction	1	- Types of steel structures
		- Future trend of steel structures
3.6 / 11 1 1 T T 1/1		- Construction of steel structures
Material behavior, Initial	1	- Residual stresses and initial deformations
imperfections and Damages		- Damages
		- Yield surfaces
Cture turin miletiem-lin		- Bauschinger effect
Stress-strain relationship,	1	- Hardening effect
Joints		- Welded joint
		- Bolted joint
		- S-N design curve
Fatigue fracture, fatigue life	1	- Fatigue crack growth, stress intensity factor
and fatigue design	1	- Miner's rule on damage accumulation
		- Repair of fatigue damage
Structural stability and design for buckling	1	- Structural instability and accident
		- Theory of Stability
		- Compressive members, etc.
		- Mechanism of corrosion
Corrosion and anti-corrosion	1	- Micro- and Macro- cells
of steel structures	1	- Anti-corrsion
		- Life-cycle costs
		- Natural winds due to Typhoon, Tornado and so on
Wind resistant design of	2	- Evaluation and estimation of strong winds
structures	2	- Wind resistant design methods
		- Various kinds of design codes
		$- Introduction \ of \ aerodynamic \ instabilities \ (ex.\ vortex-induced\ vibration,\ galloping,\ flutter,\ buffeting,$
Aerodynamic instabilities of	3	cable vibrations)
structures	3	- Mechanisms of aerodynamic instabilities
		- Evaluation methods and Countermeasures
Wind-induced disaster	1	- Accidents on structures due to strong winds
Tha madeca disaster		- Disaster prevention
Topics	1	Introduction of current topics on bridge engineering by a visiting lecturer

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge for construction materials, structural mechanics and fluid mechanics are required.

[Web Sites]

10G055

Crystallography of Metals

金属結晶学

[Code] 10G055 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 4th

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme Class number of times Description	
---	--

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Structural Testing Technology

構造工学実験法

[Code] 10W017 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	2	
	1	
	2	
	2	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Structural Dynamics

構造ダイナミクス

[Code] 10F227 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Igarashi, Furukawa

[Course Description] This course deals with dynamics of structural systems and related topics, to provide the theoretical basis to deal with the problems of vibration, safety under dynamic loads and health monitoring associated with infrastructures. The students will study the dynamic response, properties of natural modes and methods of eigenvalue analysis for multi-DOF systems. The topics on the numerical time integration schemes, probabilistic evaluation of structural response to random excitation, and dynamic response control techniques for structures are also studied.

【Grading】 Based on the results of a final examination, plus homework assignments

【Course Goals】(1) To aquire the knowledge on theories and principles of analysis of MDOF systems (2) Systematic understanding of frequency-domain structural response analysis

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Fudamental concepts, harmonic motion
Dynamics of Multi-Degree-Of-Free Systems	edom 2	Formulation of Eq. of Motion / Lagrange's method / Normal Modes / Modal Analysis / Modeling of System Damping
Frequency-Domain Analysis of System Response	1	Frequency Response Funcs. / Fourier Transform
Numerical Time Integration	2	Formulation / Stability and Accuracy Analysis of Integration
Random Vibration	6	Overview / Probability Theory / Sequence of i.i.d. Random Variables / Concept of Random Processes / Correlation Funcs. / White Noise / Stochastic Differential Eq. / Lyapunov Eq. / Response to White Noise Excitation / Covariance Matrix Approach / Correlation Funcs. of Random Response / Spectral Representation of Random Processes / Spectral Representation of Structural Response / Application
Structural Response Control	1	Active Control / Semi-Active Control

【Textbook】Not used; Class hand-outs are distributed when necessary.

【Textbook(supplemental)】

[Prerequisite(s)] Mechanical vibration (undergraduate level), Complex calculus (integration of analytic functions, Fourier transform, etc.), Probability theory, Linear algebra

[Web Sites] https://www.t.kyoto-u.ac.jp/lecturenotes/gse/dum/dum002/

Multiphase Flow Engineering and Its Application

混相流工学

[Code] 10C037 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 2nd [Location] Bldg.No.1-Nuclear Engineering 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] KUNUGI, Tomoaki, YOKOMINE, Takehiko

[Course Description] Reviewing of the fundamental definition and characteristics of multiphase flows, and to learn the governmental equations and some modelings of the constitutive equations and the current status of the multiphase flows. Moreover, to review and learn the fundamental definition and characteristics of particle flows, and to learn the numerical methods to track the particle laden flows and the particle measurement method.

[Grading] Present a summary of some papers regarding multiphase flows research by using a power point, and then answer several questions made by lecturers. The quality of your presentation and how deep understand your subject are the grading point.

[Course Goals] As for the multiphase flows, to learn its fluid dynamics behaviors, governing equations and numerical methods, and finally to discuss its applications to many engineering fields.

【Course Topics】

Theme	Class number of times	Description
What's the multiphase		
flows?	1	To review the definitions and fundamental characteristics of multiphase flows.
Governing equation of		
gas-liquid two phase	2	To learn the governing equation of gas-liquid two phase flows
flows		
Modeling of		
gas-liquid two phase	2	To learn modeling of gas-liquid two phase flows and its constitutive equations
flows		
Numerical methods	3	To learn the numerical methods to solve the single-phase and two-phase flows
Examples of		
gas-liquid two phase	1	To show some examples of gas-liquid two phase flow analysis
flow analysis		
Characteristics of	1	Review characteristics of particle flows
particle flows	1	Review characteristics of particle flows
		Explain variables and parameters subjected to interaction between particle and
Fundamental aspect of	1	particle and/or particle and flow. Moreover, momentum and heat exchange
particle flows	1	between phases, i.e., to explain One-way, Two-way and Four-way coupling
		numerical methods.
		Explain numerical method for thermofluid including static particles like a packed
Particle methods	2	bed. Moreover, numerical methods for macroscopic and microscopic particles such
		as Discrete Element Method.
Measurements of	2	Review several measuring methods of particle characteristics and thermofluid
particle characteristics	<i>L</i>	behaviors

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G401

Jet Engine Engineering

ジェットエンジン工学

[Code] 10G401 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 1st

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)]

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	4	
	3-4	
	3-4	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10R419

Seminar on Systems and Control

システム制御工学セミナー

[Code] 10R419 [Course Year] [Term] 1st term [Class day & Period] Tue 4th

[Location] Bldg.No.11-Aeronautics 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	12	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Theory for Design Systems Engineering

デザインシステム学

[Code] 10Q807 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Tue 3rd

[Location] Room 213, Butsurikei-Building [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Tetsuo Sawaragi and Hiroaki Nakanishi

[Course Description] The lecture focuses on the human design activity; designing artifacts (things, events and systems) based on human intuitions, and designing human-machine systems in which the relations between human and objects are of importance.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	3	
	3	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10V003

Biomechanics

バイオメカニクス

[Code] 10V003 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd

[Location] Engineering Science Depts Bldg.-830 [Credits] 2 [Restriction] [Lecture Form(s)]

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Nonlinear Physics in Fusion Plasmas

非線形プラズマ工学

[Code] 10R013 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	3	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

693513

ヒューマン・マシンシステム論

[Code] 693513 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

unics	Theme	Class number of times	Description
-------	-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G045

複雑系機械工学

[Code] 10G045 [Course Year] [Term] 2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar of Complex Mechanical Engineering,C

複雑系機械工学セミナー C

[Code] 10V029 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] Engineering Science Depts Bldg.-215 [Credits] [Restriction] [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10.12	Each group chooses an activity theme, and pursue the goal through discussion
	10-12	in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

[Additional Information] All activities should be done in English.

Microsystem Engineering

マイクロシステム工学

[Code] 10G205 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 3rd

[Location] Engineering Science Depts Bldg.-216 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] English [Instructor] O. Tabata, H. Kotera, I. Kannno, T. Tsuchiya

Course Description Microsystem covers not only technologies related to individual physical or chemical phenomenon in micro scale, but also complex phenomena which are eveolved from their interaction. In this course, the physics and chemistry in micro and nanoscale will be lectured in contrast to those in macro scale. The various kinds of application devices (ex. physical (pressure, flow, force) sensors, chemical sensors, biosensors, actuators (piezoelectric, electrostatic, and shape memory) and their system are discussed.

【Grading】 The evaluation will be based on the reports given in each lecture.

[Course Goals] Understand the theory of sensing and actuating in microsystem. Acquire basic knowledge to handle various kinds of phenomena in microscale.

[Course Topics]

Theme	Class number of times	Description
MEMS modeling	2	Multi-physics modeling in microscale.
		Electro-mechanical coupling analysis.
MEMS simulation	2	System level simulation in MEMS.
Electrostatic	2	Electrostatic sensors and actuators. Theory and application devices.
microsystem		
Piezoelectric	2	Piezoelectric sensors and actuators. Theory and application devices.
microsystem		
Physical sensors	3	Physical sensors as a fundamental application in microsystem. Accelerometer,
	3	vibrating gyroscope, pressure sensors.
Micro total analysys	2	Chemical analysis system and bio-sensing device using microsytem.
system		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

[Additional Information] The student of this class is strongly recommended to take a course 10V201 "Introduction to the Design and Implementation of Micro-Systems", which is a practice for designing microsystem. Those who wants to take this course, please contact one of the instructors as early as possible.

Micro Process and Material Engineering

マイクロプロセス・材料工学

[Code] 10G203 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location] Engineering Science Depts Bldg.-216 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese

[Instructor] H. Kotera, O. Tabata, K. Eriguchi, I. Kanno, T. Tsuchiya

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Semiconductor	3	
microfabrication	3	
Thin-film process	2	
and evaluation	3	
Silicon	2	
micromachining	3	
3D lithography	2	
Soft-micromachining	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Mechanical Functional Device Engineering

メカ機能デバイス工学

[Code] 10G025 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Wed 3rd

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	4	
	2	
	2	
	2	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G041

Advanced Finite Element Methods

有限要素法特論

[Code] 10G041 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)]

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	4	
	3	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10B407

Robotics

ロボティクス

[Code] 10B407 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	1	
	3	
	4	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Space Radio Engineering

宇宙電波工学

[Code] 10C612 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] N1 lecture room in the Faculty of engineering building No. 3, A1-131 in Katsura campus, Uji

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Hiroshi Yamakawa, Hirotsugu Kojima

[Course Description] The present lecture provides the guideline how the technology on the electronics and propulsion system is used for the development of spacecraft and space systems. Furthermore, in order to understand the environment in space, we also give a lecture on the space plasma physics.

【Grading】 attendance and reports

[Course Goals] Mastery of the way how we can make use of the knowledges of the physics and technology to the space engineering.

[Course Topics]

Theme	Class number of times	Description
Plasma		
physics/Magnetospheri	c 7	Plasma physics which are closely related to the magnetospheric physics
physics		
Space environment	3	The space environment in the view point of spacecraft desing such as thermal
Space environment	<u>J</u>	condition, plasmas, and charging.
Spacecraft systema		The spacecraft system and its technology related to power system,
and its related	4	
technology		communication system, EMC, and payload desings.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Plasma physics, Electromagnetics. Radio engineering, Electronics

[Web Sites]

10G001

Applied Numerical Methods

応用数値計算法

[Code] 10G001 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 1st

[Location] Engineering Science Depts Bldg.-313 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	3	
	2	
	2	
	2	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Exercise in Applied Mechanics A

応用力学特別演習 A

[Code] 10W005 [Course Year] Doctor 1st [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Exercise in Applied Mechanics B

応用力学特別演習 B

[Code] 10W007 [Course Year] Doctor 1st [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Exercise in Applied Mechanics C

応用力学特別演習C

[Code] 10W009 [Course Year] Doctor 2nd [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Exercise in Applied Mechanics D

応用力学特別演習 D

[Code] 10W011 [Course Year] Doctor 2nd [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Exercise in Applied Mechanics E

応用力学特別演習 E

[Code] 10W013 [Course Year] Doctor 3rd [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

	Theme	Class number of times	Description
--	-------	-----------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Exercise in Applied Mechanics F

応用力学特別演習 F

[Code] 10W015 [Course Year] Doctor 3rd [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10B440

Environmental Fluid Dynamics

環境流体力学

[Code] 10B440 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] Engineering Science Depts Bldg.-213 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	4	
	6	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Introduction to Advanced Fluid Dynamics

基盤流体力学

[Code] 10G007 [Course Year] Master 1st [Term] 1st term [Class day & Period] Tue 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

機械システム制御論

[Code] 693510 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-315 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Meteorology I

気象学

[Code] 10M226 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 2nd [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2 ~ 4	
	2 ~ 4	
	2 ~ 4	
	2 ~ 4	
	2 ~ 4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10M227

Meteorology II

気象学

[Code] 10M227 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	3 ~ 4	
	3 ~ 4	
	3 ~ 4	
	3 ~ 4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

693518

共生システム論

[Code] 693518 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 4th [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar: Dynamics of Atomic Systems

原子系の動力学セミナー

[Code] 10Q610 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 5th

[Location] Room 216 + Educational PC Room #1 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture + Exercise [Language] Japanese

[Instructor] M. Matsumoto, R. Matsumoto, T. Shimada

[Course Description] Particle simulations are the tool of analyzing microscopic phenomena, and widely used in various fields of engineering. After providing the basics of particle simulation methods through lectures and exercises, we show various practical applications in thermofluids, solid materials, and quantum systems.

【Grading】Reports

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
		- Numerical simulation of equations of motion
Basics of MD	4.5	- Model potentials
simulations	4-5	- Data analysis
		- Equilibrium vs. non-equilibrium
Application:		Toward Towar floids
Thermofluidal	2-3	- Lennard-Jones fluids
systems		- Interface, phase change, energy transport, etc.
Application: Solid	2.2	- Deformation and destruction
systems	2-3	- Other methods
Application:	2-3	- First principle MD
Quantum systems	2-3	- Mechanical and electronic properties on nanoscale

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Elementary Level of

Analytical mechanics, Quantum mechanics, Material science, Statistical physics, Numerical analysis

[Web Sites]

Solid Mechanics, Adv.

固体力学特論

[Code] 10G003 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	3	
	3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G021

Engineering Optics and Spectroscopy

光物理工学

[Code] 10G021 [Course Year] [Term] 2nd term [Class day & Period] Wed 1st

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	4-5	
	2	
	6	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Structural Design

構造デザイン

[Code] 10F009 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Tomoaki Utsunomiya, Yoshikazu Takahashi, Yoshiaki Kubota

Course Description This course provides the knowledge of the structural planning and design for civil infrastructures. Fundamentals of the reliability of structures based on the probability and statistics are given. Emphasis is placed on the reliability index and the calibration of partial safety factors in the LRFD design format. Furthermore, the structural morphology, aesthetics and case studies of structural design that satisfies "utilitas, firmitas and venustas" are given. Then we discuss what the holistic structural design should be.

[Grading] Assessed by term-end examination, reports and quizes

[Course Goals] To understand the structural planning and design for civil infrastructures.

To understand the reliability-based design of structures.

To deepen the understanding of aesthetics of structures.

[Course Topics]

Theme	Class number of times	Description
		Structural Planning of civil infrastructures is introduced. The concept, significance of
Structural Planning	2	planning, characteristics of civil infrastructures are discussed. Practical planning
		process of a bridge is explained.
		The excellent examples of modern structural design are introduced from the viewpoint
Modern Excellent	1	of the structural system and the urban design. Then the importance of integrated design
Designs	1	of urban infrastructure as a place of human activities and how the design should be are
		lectured.
		The bridge types, for example, girder, truss, and arch etc. that have been regarded
Structure and Form	2	individually, are lectured as an integrated holistic concept from the viewpoint of the
Structure and Form		acting forces to understand the structural continuity, symmetry and the systems.
		Furthermore, the methods of the operation of structural form are given.
Structural Design and		Design theory of civil infrastructures is introduced. The allowable stress design method
Performance-based	2	and the limit state design method are explained. The basic of earthquake resistant
	3	design is discussed based on the dynamic response of structures. Performance-based
Design		design is also introduced.
Random Variables and		Fundamentals of random variables, functions of random variables, probability of failure
Functions of Random	1	
Variables		and reliability index in their simplest forms are lectured.
Structural Safety	2	Limit states, probability of failure, FOSM reliability index, Hasofer-Lind reliability
Analysis	3	index, Monte Carlo method are lectured.
Dasign Codes	2	Code format as Load and Resistance Factors Design (LRFD) method, calibration of
Design Codes	2	partial safety factors based on the reliability method are given.

[Textbook] Reliability of Structures, A. S. Nowak & K. R. Collins, McGraw-Hill, 2000 (for T. Utsunomiya)

【Textbook(supplemental)】U.Baus, M.Schleich, "Footbridges", Birkhauser, 2008 (Japanese ver.: "Footbridges"(translated by Kubota, et al.), 鹿島出版会, 2011)

久保田善明,『橋のディテール図鑑』, 鹿島出版会, 2010

Other books will be given in the lectures as necessary.

[Prerequisite(s)] Fundamental knowledge on Probability and Statistics, and Structural Mechanics

[Web Sites] https://www.t.kyoto-u.ac.jp/lecturenotes

[Additional Information] Structural planning and design will be given by Y. Takahashi, Excellent designs and structure & forms by Y. Kubota, and Structural reliability analysis by T. Utsunomiya.

Structural Stability

構造安定論

[Code] 10F067 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Mon 2nd

[Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Shirato, H. and Sugiura, K.

[Course Description] Discussed in the class are stability/instability of large structural systems and improvement of their safety and performance. The aim of this course is to provide details of structural stability under static and dynamic loading, and technical issues to improve the safety of structures. In addition, typical examples in the practice in structural design are also provided.

【Grading】 Assessment will be based on exam, reports and attendance.

[Course Goals] The basic knowledge for structural stability under static and dynamic loading, which are necessary for the structural design of bridges, will be acquired.

[Course Topics]

Theme	Class number of times	Description
		Stability of Structures and Failures
		Basis of Structural Stability
Electic Stability		Elastic Buckling of Coulmns
Elastic Stability	7	Elastic Buckling of Beams & Frames
under Static Loading		Elastic Buckling of Plates
		Elasto-plastic Buckling
		Buckling Analysis
		Introduction of Wind-induced Vibration
		Nonlinear Response due to Wind and Its Stability Discriminant: Part 1
Structural Stability		Nonlinear Response due to Wind and Its Stability Discriminant: Part 2
under Dynamic	7	Nonlinear Response due to Wind and Its Stability Discriminant: Part 3
Loading		Nonlinear Response due to Wind and Its Stability Discriminant: Part 4
		Wind-induced Response Analysis of Long Span Bridges: Flutter Analysis
		Wind-induced Response Analysis of Long Span Bridges:Buffeting Analysis
Achievement Check	1	Summary and Achievement Check

【Textbook】 not specified

【Textbook(supplemental)】Introduced in class if necessary

[Prerequisite(s)] Basic knowledge for structural mechanics, continuum mechanics and structural analysis are required.

[Web Sites]

10G409

Aerospace Systems and Control

航空宇宙システム制御工学

[Code] 10G409 [Course Year] [Term] 2nd term [Class day & Period] Fri 2nd

[Location] Bldg.No.11-Aeronautics 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	3	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10R410

Seminar on Aerospace systems

航空宇宙機システムセミナー

[Code] 10R410 [Course Year] [Term] 2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	12	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C430

Advanced Flight Dynamics of Aerospace Vehicle

航空宇宙機力学特論

[Code] 10C430 [Course Year] [Term] 1st term [Class day & Period] Mon 4th

[Location] Bldg.No.11-Aeronautics 3 [Credits] [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	6	
	4	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G411

Fluid Dynamics for Aeronautics and Astronautics

航空宇宙流体力学

[Code] 10G411 [Course Year] [Term] 1st term [Class day & Period] Tue 1st

[Location] Bldg.No.11-Aeronautics 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	3	
	3	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10V405

Seminar on Fluid Dynamics for Aeronautics and Astronutics

航空宇宙流体力学セミナー

[Code] 10V405 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Wed 5th

[Location] Bldg.No.11-Aeronautics 3 [Credits] 2 [Restriction] [Lecture Form(s)] Seminar

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme Class number of times	Description
-----------------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10B631

High Energy Radiation Effects in Solid

高エネルギー材料工学

[Code] 10B631 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	14	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Materials Strength at Elevated Temperatures

高温強度論

[Code] 10Q607 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 1st

[Location] Engineering Science Depts Bldg.-213 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1 - 2	
	2 - 3	
	2 - 3	
	1 - 2	
	1 - 2	
	0 - 1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Optimum System Design Engineering

最適システム設計工学セミナー

[Code] 10V407 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme Class number of times Description	
---	--

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G403

Optimum System Design Engineering

最適システム設計論

[Code] 10G403 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 2nd

[Location] Engineering Science Depts Bldg.-101 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	3	
	3	
	5	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Infrastructural Structure Engineering

社会基盤構造工学

[Code] 10W001 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor]

【Course Description】 Structural engineering problems related to planning, design, construction and maintenance of the infrastructures are discussed. Topics concerning structural engineering and management are widelly taken up including latest advanced knowledge and technology, future view and/or international topics. Special lectures by extramural lecturers are carried out if necessary.

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	2	
	5	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Vibration and Noise Control

振動騒音制御

[Code] 10G023 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Mon 1st

[Location] Engineering Science Depts Bldg.-213 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hiroshi MATSUHISA, Hideo UTSUNO

[Course Description] Vibration and noise control of machines and structures are explained. Passive, active and semi-active vibration controls explained.

【Grading】 Examination

[Course Goals] Understand the basic theories of vibration and sound control and be able to apply them to the actual problem.

[Course Topics]

Theme	Class number of times	Description
Passive vibration	2	
control	2	
Semi-active vibration	2	
control	2	
Active vibration	2	
control	2	
Modal Analysis	1	
Theory of sound	3	
Propagation of sound	2	
in outdoor field	2	
Indoor sound	1	
Technology of noise	1	
reduction		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10K004

New Engineering Materials, Adv.

新工業素材特論

[Code] 10K004 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 5th

[Location] (Katsura)A1-131 (Yoshida)Lecture Room3,Reseach Bldg.No.4 [Credits] 2 [Restriction]

[Lecture Form(s)] Relay Lecture [Language] English [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	Composite Materials: Smart, Lightweight and Strong Materials (HOJO)
	1	Innovations in High Performance Steels for Bridge Construction (SUGIURA)
	1	Materials in Micro Electro Mechanical Systems (MEMS) (TSUCHIYA)
	1	High Temperature Superconductivity and Its Application to
	1	Electronics(SUZUKI)
	1	Sustainability Issues(SHIMIZU)
	1	Material Properties of Fiber Reinforced Cementitious Composites and
	1	Applicability to Structures (KANEKO)
	1	Structural biochemistry of proteins (SHIRAKAWA)
	2	Semiconductor Materials and Devices (KIMOTO)
	1	Separation Analysis in Micro- and Nano-scale (OTSUKA)
	4	Polymer Synthesis beyond the 21st Century:Precision Polymerizations and
	1	Novel Polymeric Materials (SAWAMOTO)
	1	Inorganic New Materials (EGUCHI)

【Textbook】

【Textbook(supplemental)】 Class handouts

[Prerequisite(s)]

[Web Sites]

10G405

Propulsion Engineering, Adv.

推進工学特論

[Code] 10G405 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 3rd

[Location] Bldg.No.11-Aeronautics 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	2	
	3	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

数理解析特論

[Code] 693410 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Simulation Engineering of Living Body

生体シミュレーション工学

[Code] 10V203 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Wed 2nd

[Location] Engineering Science Depts Bldg.-215 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme Class number of times	Description
-----------------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

precision measurement and machining

-精密計測加工学

[Code] 10G214 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Tue 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	3	
	2	
	1	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G011

Design and Manufacturing Engineering

設計生産論

[Code] 10G011 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] Engineering Science Depts Bldg.-315 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Strength of Advanced Materials

先進材料強度論

[Code] 10B418 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	3	
	3	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Mechanical Engineering

先端機械システム学通論

[Code] 10K013 [Course Year] Master and Doctor Course [Term] 2nd term

[Class day & Period] Tue 5th and Thu 4th [Location] Engineering Science Depts Bldg.-213 or a teacher's office

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10B634

Advanced Experimental Techniques and Analysis in Engineering Physics 先端物理工学実験法

[Code] 10B634 [Course Year] Master and Doctor Course [Term] (intensively; in summer vacation)

[Class day & Period] [Location] Research Reactor Institute [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Exercise [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Neutron Science Seminor 1

中性子材料工学セミナー

[Code] 10V007 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] Research Reactor Institute [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme Class number of times Description	
---	--

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Neutron Science Seminar II

中性子材料工学セミナー

[Code] 10V008 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10B628

Physics of Neutron Scattering

中性子物理工学

[Code] 10B628 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 4th

[Location] Engineering Science Depts Bldg.-312 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	13	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

High Precision Engineering

超精密工学

[Code] 10B828 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd

[Location] Engineering Science Depts Bldg.-216 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese+Englihs [Instructor] Ari Ide-Ektessabi

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description	
Introduction	1	Introduction to High Precision Analysis Using Synchrotron Radiations	
High precision	2	Synchrotron Radiation and X-ray Fluorescence Spectroscopy	
Measurement	2		
High precision	2	Micro Imaging and Quantitative XRF micro Analysis	
Measurement	3		
High precision	4	F' Ct	
Measurement	4	Fine Structure Spectroscopy	
High precision	5	Fine Structure Spectroscopy	
Measurement		The Structure Spectroscopy	
High precision	6	Synchrotron Radiation Measurement	
Measurement		Synchrotron Radiation Measurement	
Applications in	7	Elemental Images of Single Neurons by Using SR-XRF I	
bio-nano technology			
Applications in	8	Elemental Images of Single Neurons by Using SR-XRF II	
bio-nano technology			
Applications in	9	Elemental Imaging of Mouse ES Cells(Application)	
bio-nano technology		Elemental imaging of Mouse E3 Cens(Application)	
Applications in	10	Application of Synchrotron Radiation in the Investigation of process of	
bio-nano technology		neuronal differentiation	
Applications in	11	Chemical State Imaging for Investigations of Neurodegenerative Disorders	
bio-nano technology		(Parkinsonism-Dementia Complex)	
Applications in	12	Chemical State Imaging for Investigations of Neurodegenerative Disorders:	
bio-nano technology	12	Chemical State of Iron in Parkinsonism Dementia Complex (PDC)	
Applications in	13	Comparison with other techniques	
bio-nano technology		Companson with other techniques	
Applications in	14	Comparison with other techniques	
bio-nano technology		Comparison with other techniques	

[Textbook]

【Textbook(supplemental)】 Application of Synchrotron Radiation, Arid Ide-Ektessabi, Sp ringer 2007

[Prerequisite(s)]

[Web Sites] http://ocw.kyoto-u.ac.jp/graduate-school-of-engineering-jp/ultra-high-precision-analysis/schedule

Seminar on Engineering Science of Ionized Gases

電離気体工学セミナー

[Code] 10V401 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Mon 3rd

[Location] Bldg.No.11-Aeronautics 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	13	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G013

Dynamic Systems Control Theory

動的システム制御論

[Code] 10G013 [Course Year] [Term] 1st term [Class day & Period] Tue 2nd

[Location] Engineering Science Depts Bldg.-315 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	5	
	5	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Dynamics of Solids and Structures

動的固体力学

[Code] 10G230 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 3rd

[Location] Engineering Science Depts Bldg.-213 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Shiro BIWA

【Course Description】 Fundamental principles for dynamic deformations of solids and structures are examined. In particular, basic characteristics of elastic wave motion in solid media are emphasized, together with the influence of anisotropy, viscocity and nonlinearity. Technological applications of elastic waves such as ultrasonic nondestructive evaluation are also introduced.

[Grading] Grading will be based on the attendance, homework reports and the final examination (possibly replaced by reports).

[Course Goals] This course aims to establish the understanding of basic characteristics of dynamic deformations and elastic waves in solid media, as well as to learn about technological applications of ultrasound in a variety of fields extending from micro- to macro-scales. Particular emphasis is put on the mathematical aspects of the physical phenomena involved.

[Course Topics]

Theme	Class number of times	Description
Basics of wave		One-dimensional wave equation; D'Alembert's solution; Harmonic waves;
	2	Spectral analysis; Waves in structural members; Dispersion; Phase and group
propagation		velocities.
Fundamentals of	3	Expressions of stress and strain; Conservation laws; Hooke's law; Hamilton's
elastodynamics		principle, Love's theory for longitudinal waves in a bar.
Waves in isotropic	1	Voigt notation of Hooke's law; Navier's equations; Longitudinal and transverse
elastic media	1	waves; Propagation of plane wave.
Waves in anisotropic	1	Stiffness matrix; Propagation of plane wave; Christoffel's equation;
elastic media		Propagation and polarization directions.
Reflection and	2	Reflection and transmission of normal incident waves; Snell's law; Mode
transmission	2	conversion; Reflection and refraction of oblique incident waves.
Guided elastic waves	2	Bulk waves and guided waves; Rayleigh wave; Love wave; Lamb wave.
Elastic waves in real	2	Effect of viscocity; Effect of nonlinearity; Effect of inhomogeneity; Scattering;
media	2	Composite materials.
Application of elastic	1	Generation and detection of ultrasound; Application to materials evaluation;
waves	1	Application to various monitoring techniques.

[Textbook] No textbooks are assigned. The lecture is mainly given in a blackboard style. Print-outs are handed in when needed.

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge of mechanics of materials (solid mechanics, continuum mechanics) is expected.

[Web Sites]

[Additional Information] The time units and weights for each item on the above list are subject to possible changes.

10G029

Patent Seminar

特許セミナー

[Code] 10G029 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)]

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	3	
	2	
	2	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

653316

熱機関学

[Code] 653316 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 3rd [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	7	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Thermal Engineering Seminar

熱工学セミナー

[Code] 10V409 [Course Year] [Term] 1st term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Transport Phenomena

熱物質移動論

[Code] 10G039 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Nakabe, Kazuyoshi, Tatsumi, Kazuya

Course Description 1 The important learning objective of this class is to understand the fundamental mechanisms of momentum, heat, and mass transfer phenomena, the knowledge of which will be markedly required for the thermal energy control technologies to further practice conservations of natural resources and energies for sustainable development. Heat and mass transfer processes consisting of conduction and forced/natural convection will be highlighted in detail, referring to the similarity characteristics of flow velocity, fluid temperature, and species concentration. Some topics on Reynolds stress, turbulent heat flux, and phase change will be introduced, expanding to their numerical models, together with some recent trends of high-tech heat and energy devices.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Surrounding		
Examples of	1	
Transport	1	
Phenomena		
Governing Equations		
and	3 ~ 4	
Non-Dimensional	3 ~ 4	
Parameters		
Boundary layer flows	2 ~ 3	
External and Internal	1 ~ 2	
Flows	1 ~ 2	
Turbulent	2 ~ 3	
Phenomena		
Topics of Flow and		
Heat Transfer	2 ~ 3	
Mechanism		
	1	

[Textbook]

【Textbook(supplemental)】 Example Transport Phenomena (Bird, R.B. et al.)

[Prerequisite(s)]

[Web Sites]

Thermophysics for Thermal Engineering

熱物性論

[Code] 10B622 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] Engineering Science Depts Bldg.-314 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	3	
	2-3	
	2	
	2	
	2-3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Thermal Science and Engineering

熱物理工学

[Code] 10G005 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] Engineering Science Depts Bldg.-315 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] H. Yoshida & M. Matsumoto

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
(M) Brownian	1	
motion	1	
(M) Transport		
phenomena and	1	
correlation functions		
(M) Spectral analysis	2	
and fractal analysis	<u> </u>	
(M) Stochastic		
process and its	2-3	
application		
(Y) Entropy and free	1	
energy: revisit	1	
(Y) Science of		
atmosphere and	3	
ocean		
(Y) Hydrogen energy	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Thermodynamics, Statistical physics, Heat transfer engineering, Numerical analysis etc.

[Web Sites]

燃焼理工学

[Code] 653322 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 1st [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

	Theme	Class number of times	Description
--	-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Fracture Mechanics

破壊力学

[Code] 10G017 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 1st

[Location] Engineering Science Depts Bldg.-312 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Toru Ikeda

[Course Description] The basics of the fracture mechanics will be lectured.

Elastic problem, Airy's stress function, Stress function with complex number, Stress function of a crack, Stress field around a crack tip, Stress intensity factors, Energy release rate, J-integral, Cohesive model, Engineering applications of the fracture mechanics, Fatigue crack extension, Elastic plastic fracture mechanics, Interfacial fracture mechanics etc.

[Grading] Mini-reports at every lectures and the final report will be evaluated.

[Course Goals] The objective of this lecture is to master the basic knowledge of the fracture mechanics, and to be able to discuss about the fracture mechanics at the conferences for the fracture mechanics.

[Course Topics]

Theme Class number of times Description

【Textbook】 The teacher provide articles for this lecture.

【Textbook(supplemental)】T. L. Anderson, Fracture Mechanics (Fundamentals and Applications) Second Edition, CRC Press Inc., ISBN 0-8493-4260-0, 1995

[Prerequisite(s)] The traditional material strength and the linear elastic mechanics should be learned before taking this lecture.

[Web Sites]

693320

非線形力学特論 A

[Code] 693320 [Course Year] [Term] [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Introduction to the Design and Implementation of Micro-Systems

微小電気機械システム創製学

[Code] 10V201 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-216 [Credits] 2

[Restriction] Take class 10G205 "Microsystem Engineering" [Lecture Form(s)] Lecture and Pactice

[Language] English [Instructor] O. Tabata, H. Kotera, T. Tsuchiya, I. Kanno

Course Description This is a joint lecture with Hong Kong University of Science and Technology (HKUST). A team consists of two students from each University work together to fullfill the assignment (design a microsystem) through paper survey, analysis, design, and presentation. A student can acquire not only the basic knowledge of a microsystem, but also comprehensive ability of English such as technical knowledge in English, skill for team work, and communication.

【Grading 】Presentation, Assignments, and Achievement

[Course Goals] Acquire the knowledge and skill to design and analyze a microsystem.

[Course Topics]

Theme	Class number of times	Description
Tutorial on		Master CAD program for microsystem design and analysis which will be
microsystem CAD	1	
software		utilized to accomplish an assignment.
Lecture and Task	1	Learn basic knowledge necessary to design a microsystem/MEMS(Micro
Introduction	1	Electromechical Systems) utilizing microfabrication technology.
Design and analysis	3	Analyze and design a microsystem by communicating with a team member of
work		HKUST.
Presentation I	1	The designed device and its analyzed results is presented in detail by team in
riesemanon i		English.
Evatuation of device	1	Evaluate the fabricated microsystem.
Presentation II	1	The measured results and comparison between the analyzed results of the
Presentation II		fabricated microsystem is presented by team in English.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

[Additional Information] The student of this class is required to take the course 10G205 "Microsystem Engineering", which provide the knowledge about the theory of sensing and actuating in microsystem. Those who wants to take this course have to take training course for CAD in advance. For more detail, please contact one of the instructors as early as possible.

Seminar of Complex Mechanical Engineering,A

複雑系機械工学セミナーA

[Code] 10V025 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] Engineering Science Depts Bldg.-215 [Credits] [Restriction] [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar of Complex Mechanical Engineering,B

複雑系機械工学セミナー B

[Code] 10V027 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] Engineering Science Depts Bldg.-215 [Credits] [Restriction] [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda

【Course Description】 This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar of Complex Mechanical Engineering,D

複雑系機械工学セミナー D

[Code] 10V031 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] Engineering Science Depts Bldg.-215 [Credits] [Restriction] [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
	10-12	in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar of Complex Mechanical Engineering,E

複雑系機械工学セミナー E

[Code] 10V033 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] Engineering Science Depts Bldg.-215 [Credits] [Restriction] [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda

【Course Description】 This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar of Complex Mechanical Engineering,F

複雑系機械工学セミナー F

[Code] 10V035 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] Engineering Science Depts Bldg.-215 [Credits] [Restriction] [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Solid State Physics 1

物性物理学 1

[Code] 10G211 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Wed 1st

[Location] Engineering Science Depts Bldg.-214 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)]

[Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	1-2	
	1	
	1	
	1 -2	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1-2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10V205

Solid State Physics 2

物性物理学2

[Code] 10V205 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] Engineering Science Depts Bldg.-310 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)]

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	5	
	5	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G019

Molecular Fluid Dynamics

分子流体力学

[Code] 10G019 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Tue 1st [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	5	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10V010

Seminar on Molecular Gas Dynamics

分子流体力学セミナー

[Code] 10V010 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Wed 3rd

[Location] Bldg.No.11-Aeronautics 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme Class number of times Description	Theme	Class number of	Description
---	-------	-----------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Hydrodynamic Stability Theory

流れの安定性理論

[Code] 10G408 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] Bldg.No.11-Aeronautics 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	5	
	5	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10V411

流体数理学セミナー

[Code] 10V411 [Course Year] [Term] 1st term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Quantum Theory of Chemical Physics

量子化学物理学特論

[Code] 10Q408 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	4	
	4	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10B619

Quantum Theory of Condensed Matter

量子物性学

[Code] 10B619 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	3	
	3	
	6	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Quantum Condensed Matter Physics

量子物性物理学

[Code] 10G009 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 1st

[Location] Engineering Science Depts Bldg.-313 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	2	
	2	
	2	

[Textbook]

 $\begin{tabular}{ll} Textbook(supplemental) \begin{tabular}{ll} Tex$

[Prerequisite(s)]

[Web Sites]

Quantum Theory of Molecular Physics

量子分子物理学特論

[Code] 10B617 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-213 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	5	
	5	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

693431

力学系理論特論

[Code] 693431 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 1st [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Continuum Mechanics

連続体力学

[Code] 10F003 [Course Year] Master 1st [Term] 1st term [Class day & Period] Mon 2nd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Kunitomo Sugiura, Tomomi Yagi

[Course Description] Continuum mechanics is a unified basis for solid mechanics and fluid mechanics. The aims of this course are to introduce the continuum mechanics from their basics to the some forms of constitutive law and also to provide students with mathematical way of understanding the continuum mechanics. This course contains the fundamentals of vector and tensor calculus, the basic equations of continuum mechanics, the tensor expressions of elastic problems and further applications.

【Grading】 Assessment will be based on exam, report and attendance.

[Course Goals] Fundamental theorems on structural mechanics and design will be learned, and ability to judge the proprieties of each computational structural analysis will be acquired.

【Course Topics】

Theme	Class number of times	Description
Introductions	1	
Matrices and tensors	1	
differential and		
integral calculus of	1	
tensors		
Kinematics	1	- Material derivative
Deformation and	2	- Strain tensors
strain	2	- Compatibility conditions
Stress and equilibrium	1	
equation	1	
Conservation law and	1	
governing equation	1	
Constitutive equation	1	
of idealized material	1	
Elastic-plastic		
behavior and		
constitutive equation	1	
of construction		
materials		
Boundary value	1	
problem	1	
Variational principle	1	
Various kinds of	2	
numerical analyses	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge for structural mechanics, soil mechanics and fluid mechanics are required.

[Web Sites]

10Q402

Turbulence Dynamics

乱流力学

[Code] 10Q402 [Course Year] [Term] 2nd term [Class day & Period] Tue 3rd

[Location] Engineering Science Depts Bldg.-213 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hanazaki

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	4	
	2	
	2	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10D450

Biomolecular Dynamics

生体分子動力学

[Code] 10D450 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 3rd

[Location] Engineering Science Depts Bldg.-213 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Applied Hybrid System Engineering

応用ハイブリッドシステム工学

[Code] 10C621 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 1st

[Location] A1-001 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Takashi Hikihara, Shinji Doi, Yoshihiko Susuki, Syunichi Azuma

[Course Description] In the class, we will focus on hybrid systems consisting of continuous and discrete dynamics. Modeling, analysis, and control theory are lectured.

[Grading] Reports for each topics are evaluated. The reports without attending the class are not accepted.

[Course Goals] The comprehension to hybrid systems and applications of the theory are aimed in the class.

【Course Topics】

Theme	Class number of times	Description
Fundamentals of	4	Modeling of hybrid system, consisting of continuous and discrete dynamics, is
Hybrid system	4	lectured based on hybrid automaton. Some examples are shown.
Fundamentals of perturbation method and asymptotic expansion	3	Perturbation theory and asymptotic expansion method are lectured. In addition, analytical and geometrical perturbation methods are lectured for understanding global dynamics of system.
Application of hybrid system theory - I	3	The application to power system is lectured. After the explanation of fundamentals of power system, safety, modeling, problem setting, and simulation method are focused.
Analysis and design of dynamic quantizers	2	System with quantizer is lectured. The analysis and design of the system is the main topics of the lecture.
Application of hybrid system theory - II	2	The application to communication system is picked up. The packet transfer in the network is discussed based on the hybrid system theory.

【Textbook】Prints are distributed.

【Textbook(supplemental)】 In the class, appropriate textbooks are indicated.

[Prerequisite(s)] Knowledge of mathematics and control theory at under graduate school.

[Web Sites]

[Additional Information] Attending class is substantial to submit reports.

10G209

Multi physics Numerical Analysis

マルチフィジクス数値解析力学

[Code] 10G209 [Course Year] Master 2nd [Term] 2nd term [Class day & Period] Wed 1st

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	2	
	5	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

693321

非線形力学特論 B

[Code] 693321 [Course Year] [Term] 2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Infrastructure Creation Engineering

社会基盤工学創生

[Code] 10F081 [Course Year] [Term] 1st term [Class day & Period] Thu 4th [Location] C1-192

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Developmental and Sustainable Infrastructure Engineering Seminar A

発展的持続性社会基盤工学セミナー A

[Code] 10W201 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Developmental and Sustainable Infrastructure Engineering Seminar B

発展的持続性社会基盤工学セミナー B

[Code] 10W203 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Infrastructural Structure Engineering

社会基盤構造工学

[Code] 10W001 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor]

【Course Description】 Structural engineering problems related to planning, design, construction and maintenance of the infrastructures are discussed. Topics concerning structural engineering and management are widelly taken up including latest advanced knowledge and technology, future view and/or international topics. Special lectures by extramural lecturers are carried out if necessary.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	2	
	5	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Hydraulic Engineering for Infrastructure Development and Management 水域社会基盤学

[Code] 10F065 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Nezu Iehisa, Shiiba Michiharu, Hosoda Takashi, Gotoh Hitoshi, Tachikawa Yasuto, Kisihida Kiyoshi, Harada Eiji, Sanjou Michio and Kim Sunmin

Course Description This lecture picks up various water-related problems and provides their explanation and solution methodology related to hydrodynamic and hydrological infrastructure improvements, maintenance, disaster prevention against flood and damage of water environment, interweaving several leading-edge cases in the real world. Turbulent flow and CFD, sediment transport system and design/planning of hydraulic structure are described on the basis of the integrated management of river-and-coast systems with sediment control and these relationship with infrastructure improvement. Perspective from the viewpoint of public environmental infrastructure on water environment is presented.

【Grading 】 Grading is based on students activities in lectures and reports.

[Course Goals] Students learn about case-based practical solutions against various problems related to hydraulic engineering, and students acquire academic preparation of how to approach to public environmental infrastructure on water area.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The purpose and constitution of the lecture, the method of the scholastic evaluation are explained.
Turbulence phenomena in open-channel flows	3	Several problems and exciting topics related to turbulence phenomena in open-channel flows are discussed with advanced practical examples.
River basin management	3	Introduction of flood disasters during a few decades in the world, flood control planning in Japan, Economic evaluation and analysis of people 's awareness to river improvement projects with dam construction.
Beach erosion	3	Several problems and their solution methodology against sediment transport process in coastal zone are explained. Advanced approaches for sediment control are overviewed.
Rainfall-runoff prediction and hydrologic design	3	Water resources issues related to rainfall-runoff prediction and hydrologic design are discussed with advanced practical examples.

【Textbook】Non

【Textbook(supplemental)】Non

[Prerequisite(s)] hydraulics, fluid mechanics, river engineering, coastal engineering, hydrology, etc.

[Web Sites] Non

Principles of Geotechnics

地盤工学原論

[Code] 10F057 [Course Year] [Term] 2nd term [Class day & Period] Thu 1st [Location] C1-173

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	3	
	6	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Infrastrucuture Planning

社会基盤計画学

[Code] 10W207 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 5th

[Location]C1-173 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Seminar [Language]Japanese

[Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10A402

Resources Development Systems

資源開発システム工学

[Code] 10A402 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	6	
	4	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Environmental Risk Analysis

環境リスク学

[Code] 10F439 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th

[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	2	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G403

Optimum System Design Engineering

最適システム設計論

[Code] 10G403 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 2nd

[Location] Engineering Science Depts Bldg.-101 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	3	
	3	
	5	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Developmental and Sustainable Infrastructure Internship A

発展的持続性社会基盤工学 ORT・インターンシップ A

[Code] 10W209 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Developmental and Sustainable Infrastructure Internship B

発展的持続性社会基盤工学 ORT・インターンシップ B

[Code] 10W211 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description		Theme	times	Description
---	--	-------	-------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Developmental and Sustainable Infrastructure Engineering Seminar II

発展的持続性社会基盤工学演習 II

[Code] 10W215 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Continuum Mechanics

連続体力学

[Code] 10F003 [Course Year] Master 1st [Term] 1st term [Class day & Period] Mon 2nd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Kunitomo Sugiura, Tomomi Yagi

[Course Description] Continuum mechanics is a unified basis for solid mechanics and fluid mechanics. The aims of this course are to introduce the continuum mechanics from their basics to the some forms of constitutive law and also to provide students with mathematical way of understanding the continuum mechanics. This course contains the fundamentals of vector and tensor calculus, the basic equations of continuum mechanics, the tensor expressions of elastic problems and further applications.

【Grading】 Assessment will be based on exam, report and attendance.

[Course Goals] Fundamental theorems on structural mechanics and design will be learned, and ability to judge the proprieties of each computational structural analysis will be acquired.

[Course Topics]

Theme	Class number of times	Description
Introductions	1	
Matrices and tensors	1	
differential and		
integral calculus of	1	
tensors		
Kinematics	1	- Material derivative
Deformation and	2	- Strain tensors
strain	2	- Compatibility conditions
Stress and equilibrium	1	
equation	1	
Conservation law and	1	
governing equation	1	
Constitutive equation	1	
of idealized material	1	
Elastic-plastic		
behavior and		
constitutive equation	1	
of construction		
materials		
Boundary value	1	
problem	1	
Variational principle	1	
Various kinds of	2	
numerical analyses	<u> </u>	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge for structural mechanics, soil mechanics and fluid mechanics are required.

[Web Sites]

Structural Stability

構造安定論

[Code] 10F067 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Mon 2nd

[Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Shirato, H. and Sugiura, K.

[Course Description] Discussed in the class are stability/instability of large structural systems and improvement of their safety and performance. The aim of this course is to provide details of structural stability under static and dynamic loading, and technical issues to improve the safety of structures. In addition, typical examples in the practice in structural design are also provided.

【Grading】 Assessment will be based on exam, reports and attendance.

[Course Goals] The basic knowledge for structural stability under static and dynamic loading, which are necessary for the structural design of bridges, will be acquired.

【Course Topics】

Theme	Class number of times	Description
		Stability of Structures and Failures
		Basis of Structural Stability
Electic Stability		Elastic Buckling of Coulmns
Elastic Stability	7	Elastic Buckling of Beams & Frames
under Static Loading		Elastic Buckling of Plates
		Elasto-plastic Buckling
		Buckling Analysis
		Introduction of Wind-induced Vibration
		Nonlinear Response due to Wind and Its Stability Discriminant: Part 1
Structural Stability		Nonlinear Response due to Wind and Its Stability Discriminant: Part 2
under Dynamic	7	Nonlinear Response due to Wind and Its Stability Discriminant: Part 3
Loading		Nonlinear Response due to Wind and Its Stability Discriminant: Part 4
		Wind-induced Response Analysis of Long Span Bridges: Flutter Analysis
		Wind-induced Response Analysis of Long Span Bridges:Buffeting Analysis
Achievement Check	1	Summary and Achievement Check

【Textbook】 not specified

【Textbook(supplemental)】Introduced in class if necessary

[Prerequisite(s)] Basic knowledge for structural mechanics, continuum mechanics and structural analysis are required.

[Web Sites]

Material and Structural System & Management

材料・構造マネジメント論

[Code] 10F068 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English [Instructor] Toyoaki Miyagawa, Hirotaka Kawano, Atsushi Hattori, Takashi Yamamoto [Course Description] Microscopic structures of various construction materials are introduced. Theoretical and experimental examination on their effects on various engineering properties are explained. With major view on steel and concrete, their engineering properties are introduced to discuss influences of the properties on mechanical and durability performances of concrete structures subjected to steel corrosion and alkali-aggregate reaction. In addition, management of infrastructures are lectured with the software aspects required in economy, environment, education as well as with maintenance based on hardware techniques.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
1. Properties and		
performances of	2	
concrete, materials	2	
and structures		
2. Outline of		
maintenance of	2	
structures		
3. Maintenance of		
structures -	2	
deterioration		
predictions,		
evaluation and		
judgement		
4. Maintenance of		
structures - remedial	2	
actions - repair and		
strengthening		
5. Presentations and	3	
discussions		
6. Structures	3	
Management		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Computational Fluid Dynamics

数值流体力学

[Code] 10F011 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 4th

[Location] [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	6	
	6	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Structural Dynamics

構造ダイナミクス

[Code] 10F227 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Igarashi, Furukawa

【Course Description】 This course deals with dynamics of structural systems and related topics, to provide the theoretical basis to deal with the problems of vibration, safety under dynamic loads and health monitoring associated with infrastructures. The students will study the dynamic response, properties of natural modes and methods of eigenvalue analysis for multi-DOF systems. The topics on the numerical time integration schemes, probabilistic evaluation of structural response to random excitation, and dynamic response control techniques for structures are also studied.

【Grading】 Based on the results of a final examination, plus homework assignments

【Course Goals】(1) To aquire the knowledge on theories and principles of analysis of MDOF systems (2) Systematic understanding of frequency-domain structural response analysis

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Fudamental concepts, harmonic motion
Dynamics of Multi-Degree-Of-Freedom 2 Systems		Formulation of Eq. of Motion / Lagrange's method / Normal Modes / Modal Analysis / Modeling of System Damping
Frequency-Domain Analysis of System Response	1	Frequency Response Funcs. / Fourier Transform
Numerical Time Integration	2	Formulation / Stability and Accuracy Analysis of Integration
Random Vibration 6		Overview / Probability Theory / Sequence of i.i.d. Random Variables / Concept of Random Processes / Correlation Funcs. / White Noise / Stochastic Differential Eq. / Lyapunov Eq. / Response to White Noise Excitation / Covariance Matrix Approach / Correlation Funcs. of Random Response / Spectral Representation of Random Processes / Spectral Representation of Structural Response / Application
Structural Response Control	1	Active Control / Semi-Active Control

【Textbook】Not used; Class hand-outs are distributed when necessary.

【Textbook(supplemental)】

[Prerequisite(s)] Mechanical vibration (undergraduate level), Complex calculus (integration of analytic functions, Fourier transform, etc.), Probability theory, Linear algebra

[Web Sites] https://www.t.kyoto-u.ac.jp/lecturenotes/gse/dum/dum002/

Earthquake Engineering/Lifeline Engineering

地震・ライフライン工学

[Code] 10F261 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 4th[Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Kiyono, Koike, Igarashi

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	1	
	1	
	1	
Principles of seismic	2	
design of structures	2	
Seismic performance		
of concrete and steel	1	
structures		
Seismic isolation and	1	
structural control	1	
Seismic retrofit and		
rehabilitation of	1	
structures		
	1	
	2	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seismic Engineering Exercise

サイスミックシミュレーション

[Code] 10F263 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 4th [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture and Exercise [Language] Japanese [Instructor] Sawada, Takahashi

【Course Description】 This course provides the knowledge of simulation methods for earthquake engineering. Small groups of students are exercised in the prediction of ground motion generated by a specified seismic fault and the response analysis of structure selected by themselves considering soil-structure interaction.

[Grading] Based on the performance during the course (including homework) and the results of presentation and reports.

【Course Goals】 At the end of this course, students will be required to have a good understanding of: - Prediction of ground motion generated by a specified seismic fault - Dynamic response analysis of structures and foundation (linear/nonlinear)

[Course Topics]

Theme	Class number of times	Description
Frequency domain	1	Basics of Fourier transformation is introduced.
analysis	1	basics of Pourier transformation is introduced.
Modeling of		
structure - soil	1	Equation of motion of SR model is introduced and the integration method of
system and time	1	the equation in time domain is explained.
domain analysis		
Exercise of linear		Small around of students are evenised in electic modeling of structures and
seismic response	2	Small groups of students are exercised in elastic modeling of structures and
analysis		linear response analysis in time domain and frequency domain.
Prediction of ground		
motion by empirical	3	Empirical Green's function method is introduced to predict large earthquakes
Green's function	3	based on observed small earthquakes.
method		
Seismic analysis	2	Seismic analysis method of layered half-space based on equivalent
method of soil	<u> </u>	linearization method is introduced.
Nonlinear seismic		Nonlinear modeline of atmostyres and the integration and iterative mothed of
analysis method of	2	Nonlinear modeling of structures and the integration and iterative methods of
structures		the nonlinear equation of motion in time domain are introduced.
Exercise of nonlinear		Small groups of students are exercised in the prediction of ground motion
seismic response	3	generated by a specified seismic fault and the nonlinear response analysis of
analysis		structures and foundation.

【Textbook】 Not used; Class hand-outs are distributed when necessary.

【Textbook(supplemental)】

[Prerequisite(s)] Earthquake Engineering/Lifeline Engineering (10F261), Structural Dynamics (10F227)

[Web Sites]

Hydraulics & Turbulence Mechanics

水理乱流力学

[Code] 10F075 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd

[Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

【Course Description】

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	14	

[Textbook]

[Textbook(supplemental)] Nezu, I. and Nakagawa, H.: Turbulence in Open-Channel Flows, Balkema,

[Prerequisite(s)]

[Web Sites]

River basin management of flood and sediment

流域治水砂防学

[Code] 10F077 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 1st

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] (DPRI) Nakagawa, H., (DPRI) Sumi, T., (DPRI) Takebayashi, H. and (DPRI) Kawaike, K.

Course Description In a river basin, various kinds of disasters such as debris flow, land slide, flood inundation, storm surge, and etc. sometimes happen from the origin to the mouth. This lecture presents occurrence examples, mechanisms, theory and methods of prediction and prevention/mitigation methods against those disasters. Also this lecture mentions comprehensive management in a sediment routing system focusing on sediment management strategy in dam reservoirs.

【Grading 】 Grading is based on 2 reports out of 4 topics and attendance.

[Course Goals] The goals of the class are to understand phenomena within a river basin and to have wide knowledge of problems of flood and sediment disasters and countermeasures against them.

[Course Topics]

Theme	Class number of times	Description
About Sabo Works	4	About Sabo works, sediment disasters, countermeasures against sediment
	•	disasters, Sabo projects.
About Reservoir		Reservoir sediment management focusing on reservoir sustainability and
Sediment	3	comprehensive management in a sediment routing system is overviewed
Management		including worldwide perspective and Japanese advanced case studies.
About basin-wide		About the one dimensional bed deformation analysis and the sediment runoff
110000000000000000000000000000000000000	3	model are introduced. Furthermore, some examples of the application of those
sediment routing		models are introduced.
About basin-wide	4	Flood disasters and countermeasures against them are overviewed along the
flood management	4	history of flood management in Japan.

[Textbook] No designation. Printed materials regarding the contents of this class are distributed in class.

【Textbook(supplemental)】Instructed in class

[Prerequisite(s)] Fundamental knowledge of Hydraulics and river engineering

[Web Sites]

River Engineering and River Basin Management

河川マネジメント工学

[Code] 10F019 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hosoda, Kishida

Course Description I It is important to consider about rivers comprehensively in view of the various aspects based on natural science and engineering. The fundamental knowledge to consider rivers and make the plans of river basins is explained with the following contents: various view points to consider rivers, long term environmental changes of rivers and its main factors, river flows and river channel processes, ecological system of rivers and lakes, flood disasters, integrated river basin planning(flood defence, environmental improvement planning, sediment transport system), functions of dam reservoir and management

【Grading 】 reports, attendance

[Course Goals] to learn the fundamental knowledge and grounding to consider rivers from the various points of view such as natural science, engineering and social science.

Course	T:	٦
Course	Lonics	1

Theme	Class number of times	Description	
Various view points		Various viewpoints and river basins, Various rivers on the earth, Formation	
on rivers and river	1	processes of river basins, long term environmental changes of rivers and its main	
basins		factors	
Ecological system in	1 ~ 2	Fundamental knowledge on river eco-system	
rivers	1 ~ 2	Fundamental knowledge on river eco-system	
Application of			
computatinal methods	2	Numerical analysis of the environmental change in Lake Biwa, Flood flows and	
to environmental	2	river channel processes	
problems			
Recent flood disasters		Characteristics of recent flood disasters, River law, Fundamental river management	
& Integrated river	2	plan, River improvement plan, Procedures of flood defense planning, Flood	
basin planning		invasion analysis and hazard map	
Groundwater and its	2	Simulation technology of groundwater, Geo environmental issues, Reservoir	
related field		Engineering, Contaminant Transport Processes	
Sustainable	2	Needs of dam development and history of dam construction	
development of dam		needs of dain development and history of dain construction	
Water quality of	1	Environmental fluid behavior on reservoir, Water quality and its maintenance of	
reservoir	1	reservoir	
Economic evaluation		Evaluation of people's consciousness for river improvement works by means of	
of environmental	1	CVM, Conjoint Analysis, etc.	
improvement projects		CVM, Conjoint Analysis, etc.	
Dam structure and	1	Dam structure foundation grouting and maintanance	
maintenace	1	Dam structure, foundation, grouting, and maintenance	
Special Lecture	1-2	Expert engineer and/or office on the river Engineering and river basin management	
Special Lecture	1-4	will be invited.	

【Textbook】Printed materials regarding the contents of this class are distributed in class.

[Textbook(supplemental)]

[Prerequisite(s)] Fundamental knowledge of Hydraulics, Hydrology and Ecology

[Web Sites]

[Additional Information] Students can contact with professors by visiting their rooms and sending e-mail.

10A040

Sediment Hydraulics

流砂水理学

[Code] 10A040 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 2nd [Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hitoshi Gotoh and Eiji Harada

Course Description Natural flows in river and coast are movable bed phenomena with the interaction of flow and sediment. At a river and a coast, a current and a wave activate a sediment transport and bring the topographical change of a bed such as sedimentation or erosion. This lecture provides an outline about the basics of sediment (or movable bed) hydraulics, and detail of the computational mechanics of sediment transport, which has been developed on the basis of dynamics of flow and sediment by introducing a multiphase flow model and a granular material model. Furthermore, about sediment and water-environment relationship, some of frontier technologies, such as an artificial flood, removal works of dam sedimentation, coastal protection works, and sand upwelling work for covering contaminated sludge on flow bottom etc., are mentioned.

【Grading】 Grading is based on student 's activities in lectures and final reports.

【Course Goals】 Students understand the basics of sediment hydraulics and outline of advanced models for computational sediment hydraulics, such as multiphase flow model and granular material model. Students understand the present conditions of sediment control works.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The purpose and constitution of the lecture, the method of the scholastic evaluation are explained.
Basics of sediment hydraulics	4	Physical characteristic of a movable bed and a non-equilibrium sediment transport process and its description are explained. Furthermore, the prediction technique of topographical change due to current and waves is outlined.
Computational mechanics of sediment transport: The state of the art	7	Essential parts of numerical models of the movable bed phenomena, which has been developed by introducing dynamic models such as a granular material model to describe a collision of sediment particles and a multiphase flow model to describe a fluid-sediment interaction, are described. In comparison with the conventional movable bed computation, the points on which has been improved to enhance the applicability of the models are concretely mentioned. Some frontier studies of sediment transport mechanics are also introduced.
Planning and management of movable bed flows	1	The concept of new Japanese Seacoast Law is explained. New works of coastal protection with consideration of an environmental aspect (including improvement of habitat of coastal creatures) are mentioned with focusing physics behind them.

【Textbook】 Hitoshi Gotoh: Computational Mechanics of Sediment Transport, Morikita Shuppan Co., Ltd., p.223, 2004 (in Japanese).

【Textbook(supplemental)】Non

[Prerequisite(s)] Undergraduate-level Hydraulics or Hydrodynamics is required. Because a commentary easy as possible is kept in mind by lectures, students without these prerequisite are welcomed.

[Web Sites] Non

Coastal Wave Dynamics

海岸波動論

[Code] 10F462 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Hitoshi Gotoh, Eiji Harada, Khayyer Abbas and Kazuya Oki

【Course Description】 Wave motion, which is the main driving force in coastal zone, is explained focusing on wave transformation theory and computational fluid dynamics, and design for coastal structures of their engineering applications is illustrated. As for the computational fluid dynamics for waves, methodology of free-surface wave based on the Navier-Stokes equation, which has been significantly developed in recent years, is explained in detail.

【Grading 】 Grading is based on usual students activities in lectures and reports.

[Course Goals] Goal of this course is a detailed understanding of fundamental of wave transformation theory and computational fluid dynamics related to wave motion, and is also acquiring a design concept for coastal structures as their engineering applications.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The purpose and constitution of the lecture the method of the scholastic
Illifoduction	1	evaluation are explained.
Conservation laws of	1-4	Fundamentals of fluid mechanics, liner / non-liner wave theories and
fluid	1-4	numerical mathematics are explained.
Modeling of surf		Several methodologies against free-surface wave including breaking waves
Modeling of surf	1-7	(i.e. VOF, MPS, SPH) are illustrated. Especially advanced approaches of MPS
zone dynamics		and SPH are explained in detail.
Introduction of	1	Daynolds averaging models and large addy simulation are outlined
turbulence models	1	Reynolds averaging models and large eddy simulation are outlined.
Modeling of rock	1-2	Method for tracking of armor blocks under high waves using Distinct Element
mound dynamics	1-2	Method is described.

【Textbook】Non

【Textbook(supplemental)】Non

[Prerequisite(s)] Non. It is desiarable to have knowledge about hydraulics, fluid mechanics.

[Web Sites]

[Additional Information] If there are any questions, please send e-mail to the staff.

10A216

Hydrology

水文学

[Code] 10A216 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Michiharu SHIIBA and Yasuto TACHIKAWA

[Course Description] Physical mechanisms of the hydrologic cycle are described from the engineering viewpoint. The rainfall-runoff modeling and its prediction method are emphasized. Physical hydrological processes explored are surface flow, saturated-unsaturated subsurface flow, groundwater flow, streamflow routing, and evapotranspiration. Physical mechanism of each hydrological process and its numerical modeling method are explained, and the basic equations and numerical simulation methods are provided. Then, distributed hydrological modeling which incorporate various hydrological processes and a lumping method of distributed hydrological model are explained.

【Grading 】 Examination and report

[Course Goals] The goals of the class are to understand the physical mechanism of hydrological processes, their basic equations, and numerical simulation methods.

_			_
•	C	Topics	1
L,	Course	LODICS	

Theme	Class number of times	Description	
Introduction	1	The hydrologic cycle and the hydrological processes are explained.	
		The physical process of the surface flow and its numerical modeling method are	
Surfaceflow	2	described. The basic equations of the surface flow and the numerical simulation	
		methods are explained.	
		The physical process of the saturated-unsaturated subsurface flow and its	
Saturated-unsaturated	2	numerical modeling method are described. The basic equations of the	
subsurface flow	2	saturated-unsaturated subsurface flow and the numerical simulation methods are	
		explained.	
		The physical process of the groundwater flow and its numerical modeling method	
Groundwater flow	2	are described. The basic equations of the groundwater flow and the numerical	
		simulation methods are explained.	
		The physical process of the streamflow routing and its numerical modeling method	
Streamflow routing	2	are described. The basic equations of the streamflow routing and the numerical	
		simulation methods are explained.	
		The physical process of the evapotranspiration and its numerical modeling method	
Evapotranspiration	2	are described. The basic equations of the evapotranspiration and the numerical	
		simulation methods are explained.	
Channel network and	1	Numerical representations of channel networks and catchments are explained.	
watershed modeling	1	Numerical representations of channel networks and catchinents are explained.	
Distributed	1	A physically-based distributed hydrological model is described, which is	
hydrological model	1	constructed with numerical representations of channel networks and catchments.	
Lumping of flow,		Lumping methods of a distributed hydrological model are described, which include	
parameter and	1	lumping of flow, parameter and watershed model.	
watershed model		rumping of flow, parameter and watersned moder.	

【Textbook】 Handouts are distributed at each class.

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge of hydraulics and hydrology

[Web Sites] http://hywr.kuciv.kyoto-u.ac.jp/lecture/lecture.html

10A222

Water Resources Systems

水資源システム論

[Code] 10A222 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	1	
	1	
	2	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Hydro-Meteorologically Based Disaster Prevention

水文気象防災学

[Code] 10F267 [Course Year] Master 1st [Term] 1st term [Class day & Period] Mon 4th

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	1	
	2	
	2	
	2	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Water Quality Engineering

水環境工学

[Code] 10F441 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Hiroshi TSUNO, Hiroaki TANAKA, Fumitake NISHIMURA

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	4	
	5	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Applied Hydrology

応用水文学

[Code] 10F100 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 4th

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Tohiharu Kojiri, Tomoharu Hori, Tetsuya Sumi, Yoshitaka Kido, Yasuhiro Takemon, Kenji Tanaka

Course Description Applied and integrated approach to the problems closely related to the water circulation system, such as floods, droughts, water contamination, ecological change, and social change is introduced mainly from the hydrological viewpoint with reference to water quantity, quality, ecological and socio-economic aspects. In the course, several actual water problems are taken up and solving process of each problem which comprises of problem-identification and formulation, impact assessment, countermeasures design and performance evaluation is learned through the lectures 'description and also investigation and discussion among the students.

[Grading] Grading is based on student activities in lectures, presentation and reports

[Course Goals] To obtain fundamental Knowledge and skills to perform problem definition, survey amd countermeasure design on problems about water use, water hazard mitigation and water environment.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Target fields and characteristcis of Hydrology and Applied Hydrology
Modeling of hydrologic cycle process	2	Modelking of hydrologic processes and relation to human society
Assessment of climate change effects	2	Impact of global warming and climate change on hydrologic cycle and water use environment
Water resources system	2	interaction between water resources and socio-economic systems, distributed flood risk assesment and countermeasures design from hhuman security viewpoint
Reservoir system and its sustainability	2	Asset management of dam reservoirs for their sustainability, Basinwide sedimant management and reservoir operation
Ground water system	2	Basin scale water quiality analysis, Modeling of ground water system
Ecosystem management	2	Habitat structure assessment for stream ecosystem
Presentation	1	
Report	1	

[Textbook] Printed materials on the contents of this class are distributed in class.

【Textbook(supplemental)】None

[Prerequisite(s)] Elementary knowledge of hydrology and water resources engineering.

[Web Sites]

Case Studies Harmonizing Disaster Management and Environment

Conservation

環境防災生存科学

[Code] 10F103 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English [Instructor] K. TAKARA(DPRI), H. NAKAGAWA(DPRI), E. NAKAKITA(DPRI), H. MASE(DPRI), N. MORI(DPRI), Y. YAMASHIKI(DPRI)

[Course Description] Environmental impacts by infrastructure for disaster prevention and mitigation are discussed. Introducing various examples of natural disasters, degradation of the environment, and harmonizing disaster management and environmental conservation in the world, this classroom carries on a dialogue about effective measures for reducing negative environmental impacts and serious disasters.

[Grading] Considering both the number of attendances and the score of final test at the end of the semester.

[Course Goals] Conservation of the environment and prevention/mitigation of natural disasters, which are very important for human's survivability, often conflict with each other. This course introduces various examples. Students will learn many examples harmonizing these two issues, and shall consider technical and social countermeasures fitting to the regional characteristics.

[Course Topics]

Theme	Class number of times	Description	
Introduction	1	Introduction	
Disaster due to heavy			
rainfall utilization of	3	Discotor due to heavy reinfall utilization of weather rader and clobal climate change	
weather radar and	3	Disaster due to heavy rainfall utilization of weather radar and global climate change	
global climate change			
Flood disaster			
prevention and the	2	Flood disaster prevention and the environment	
environment			
River environment and	2	Divor environment and disseter management	
disaster management		River environment and disaster management	
The environment of			
closed water areas /	2.	The environment of closed water areas / Atmosphere-ocean climate interaction	
Atmosphere-ocean	2	The environment of closed water areas / Atmosphere-ocean chimate interaction	
climate interaction			
Coastal disasters due to			
tsunamis and storm	2	Coastal disasters due to tsunamis and storm surges	
surges			
Projection of climate			
and coastal	2	Projection of climate and coastal environmental change	
environmental change			

[Textbook] No particular textbook for this course. Necessary documents and literature introduction are provided in the class room from time to time.

【Textbook(supplemental)】 Some literature would be introduced by professors.

[Prerequisite(s)] No special knowledge and techniques are necessary, but requires reading, writing and discussing in English in the class.

[Web Sites]

[Additional Information] Contact Prof. Takara at <takara.kaoru.7v@kyoto-u.ac.jp> if you have any query.

Geomechanics

地盤力学

[Code] 10F025 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10K016

Computational Geotechnics

計算地盤工学

[Code] 10K016 [Course Year] [Term] 2nd term [Class day & Period] Fri 2nd [Location] C1-172

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] English [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	4	
	2	
	1	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Management of Geotechnical Infrastructures

ジオマネジメント工学

[Code] 10F237 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 4th

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Ohtsu, Kishida, Shiotani

[Course Description] Advanced monitoring and management techniques not only during construction stage but maintenance stage in geo- or rock-infrastructures are lectured systematically.

Grading Attendance(10%), Report(30%), Examination(60%)

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Guidance	1	Guidance
		Introduction of Geo-Asset Management
Geotechnical survey	5	Introduction of geotechnical survey, Geophysical exploration, Inversion
Geolecinical survey	3	technique, Practical works of field measurements
Probability theory	4	B/C on project, Project risk management, Basic of probability theory,
		Introduction of contract and Int'l construction project
Innovative		Applications of goo and rook manitoring. Advanced NDT Applications of
monitoring	4	Applications of geo and rock monitoring, Advanced NDT, Applications of
techniques		cutting-edge fields

【Textbook】 Hiroyasu Ohtsu, Project Management, Corona Publishing, 2010. (in Japanese)

【Textbook(supplemental)】C. Chapman and S. Ward, Project Risk Management, John Wiley & Sons, 1997.

R. Flanagan and G. Norman, Risk Management and Construction, Blackwell Science

V.M. Malhotra & N.J. Carino, CRC Handbook on Nondestructive Testing of Concrete, CRC Press, 1989.

[Prerequisite(s)]

[Web Sites]

[Additional Information] Additional information is available by visiting the following professors. Appointment shall be made in advance by e-mail.

Ohtsu@toshi.kuciv.kyoto-u.ac.jp

kishida.kiyoshi.3r@kyoto-u.ac.jp

shiotani.tomoki.2v@kyoto-u.ac.jp

Fundamental Geofront Engineering

ジオフロント工学原論

[Code] 10F405 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] S.Nishiyama, T.Koyama, K.Ando, T.Takemoto

[Course Description] This lecture aims to learn a practical knowledge associated with mechanical and hydraulic problems in rock masses to realize environment-friendly development of underground space through exercise in modelling and analytical study of rock mass.

[Grading] Problem sets will be given almost every week and due one week later in class. You can work together but must turn in your own solutions.

[Course Goals] This course is designed to give students knowledge and understanding to recognise and apply the fundamental techniques used in engineering rock mechanics for the analysis of underground engineered structures.

[Course Topics]

Theme	Class number of times	Description
Introduction to rock mechanics and rock engineering	1	Introduction to common geophysical investigation methods and field investigation methodology.
Rock mass behaviour around excavations	1	How to apply popular failure criteria to determine the strength of both intact rock and discontinuities. How to assess the geometry of discontinuous rock masses using customary measures and techniques
Rock strength and rock mass classification	2	Rock construction techniques for rock foundation works and also for construction of rock caverns and tunnels. Proposals for support of strength and running of construction works in rocks based on conceptual engineering geological models, assessment of the Q-value and of the mechanical characteristics of the rock mass.
Underground excavations in discontinuous and stratified rock	2	Basic rock geology emphasizing characteristics of rocks, in particular structural features and the importance of discontinuities in rock construction works.
Computer methods in rock mechanics and rock engineering:	2	Introduction to computer programmes for underground space design, rock mechanics, and environmental control.
Hydrogeology and groundwater flow in geotechnical	2	The influence of the groundwater conditions on the characteristics of the rock mass, in particular concerning strength and stability but also rock construction technique and environmental consequences.
Risk assessment and risk management	1	Risk assessment processes in rock engineering and management principles with respect to the environment.

【Textbook】 Handout will be distributed.

【Textbook(supplemental)】References are indicated in the handout.

[Prerequisite(s)] Undergraduate courses in geology, geotechnical engineering, and soil mechanics.

[Web Sites]

Environmental Design in Geo-front Engineering

ジオフロント環境デザイン

[Code] 10F407 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] S.Nishiyama, T.Koyama, Y.Ijiri, M.Wada

[Course Description] Practical projects of geo-risk management, advanced measurement method and groundwater environmental-assessment system associaeted with utilization and environmental conservation of underground space are introduced and explained in this lecture.

【Grading】 Problem sets will be given almost every week and due one week later in class.

You can work together but turn in your own solutions.

[Course Goals] This course is intended to give students a basic understanding of the theoretical and empirical principles of underground space development.

This course will provide the analytical background for students to understand the design principles used in disposal of radioactive Waste project and subsurface CO2 disposal project.

[Course Topics]

Theme	Class number of times	Description
Introduction to		
underground	1	Introduction to rock mechanics and rock engineering.
development		
Rock mechanics for		Eundamental definitions, historical underground development, underground
underground	1	Fundamental definitions, historical underground development, underground
development		development art and engineering.
Construction of		Influence of rock strength on excavation, influence of undeground space size,
underground	3	ground support drilling and blasting, mechanism of rock breakage, tunnelling
structures		progress with drill and blast excavation.
Hydraulic		Geologic formation as aquifers, , groundwater flow in unsaturated zones and
engineering in	4	fractured media, hydro-geologic investigation, 3-D general flow equations and
underground	4	
development		advection diffusion equation, groundwater modeling, etc.
Geo-risk engineering	2	Risk identification, risk qualification analysis, risk response, and topics in risk
		engineering.
Examples of		
underground	2	Study on underground-space use and construction case studies.
development projects		

[Textbook] Handout will be distributed.

【Textbook(supplemental)】References are indicated in the handout.

[Prerequisite(s)] Undergraduate courses in geology, geotechnical engineering, and soil mechanics.

[Web Sites]

Public Finance

公共財政論

[Code] 10F203 [Course Year] Master 1st [Term] 1st term [Class day & Period] Mon 3rd

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Kobayashi, Matsushima

【Course Description】 The concept of public finance will be taught based upon the framework of Macro economics.

【Grading】Final Exam: 60-70%

Mid-term Exam and Attendance: 30-40%

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
GNP and Social	2	
Accounting	2	
AD-AS Model	3	
IS-LM Model	2	
Monetary Policies	2	
International	2	
Economics	2	
Economic Growth	2	
Model	2	

[Textbook]

[Textbook(supplemental)] Dornbusch et al., Macroeconomics 10th edition, Mcgrow-hill, 2008

[Prerequisite(s)] Basic Microeconomics

[Web Sites] will be notified in the first class.

Urban Environmental Policy

都市社会環境論

[Code] 10F207 [Course Year] Master 1st [Term] 1st term [Class day & Period] Mon 2nd

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Dai Nakagawa and Ryoji Matsunaka

[Course Description] This lecture aims to learn urban environmental policy and its fundamental theory and methodology to solve social and environmental problems that occur in urban area as well as to understand the structure of these problems.

【Grading 】 evaluation by commitment, tests, reports and examination

[Course Goals] to understand the structure of social and environmental problems in urban area and urban environmental policy, its fundamental theory and methodology to solve the problems

[Course Topics]

Theme	Class number of times	Description
Outline	1	
Structure of urban	2	Expansion of urban areas, Increase of Environmental impact, Making compact
problems	3	cities
Basic theory of		
transportation and	2	Downtown activation, Road space re-allocation, Pedestrianisation
environment		
Road traffic and	2	Characteristics of traffic modes, Light Rail Transit, Bus Rapid Transit,
Public transportation	2	Mobility Management
Fundamental theory		
for measurements of	3	Utility, Equivalent Surplus, Compensating Surplus
environmental values		
Methodology to		Troval Cost Method Hadonia Approach Contingent Volunties Method
measure	3	Travel Cost Method, Hedonic Approach, Contingent Valuation Method,
environmental values		Conjoint Analysis

【Textbook】No textbook

【Textbook(supplemental)】

[Prerequisite(s)] basic knowledge of public economics is required

[Web Sites]

City Logistics

シティロジスティクス

[Code] 10F213 [Course Year] Master 1st [Term] 1st term [Class day & Period] Wed 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Intelligent Transportation Systems

交通情報工学

[Code] 10F215 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] N. Uno and T. Yamada

Course Description 1 This class provides you with the outlines of engineering methodology with information and communication technology as its core element for improving the safety, efficiency and reliability of traffic and transportation systems and reducing the environmental burden. Concretely, we discuss the applicability of countermeasures, such as Travel Demand Management, modal-mix in transportation systems, traffic safety improvement schemes for relieving contemporary problems in traffic and transportation systems, in addition to brief introduction of innovative approaches to collect high-quality of real-time traffic data. Moreover, the methodology for policy evaluation and the related basic theory are explained.

[Grading] Final report: 50-60%, Mid-term report: 30-40% and Attendance: 10%

[Course Goals] Goal of this class is to cultivate basic and critical abilities of students for implementing effective traffic and transportation management using ITS (Intelligent Transportation System).

【Course Topics】

Theme	Class number of times	Description
Basics for		
Transportation	1	
Network Analysis		
Estimation of OD		
Traffic Volume using	1	
Observed Link Traffic	1	
Counts		
Analytical Approaches		
Based on	3	
Transportation	3	
Network Equilibrium		
Outlines of ITS	1	
Traffic Management		
for Enhancing	2	
Efficiency		
Innovative Approaches		
for Data Collection	1	
Using ICT		
Application of ITS for		
Enhancing Traffic	1	
safety		
Travel Demand		
Management and	2	
Congestion Charging		
Application of Traffic	2	
Simulation		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Quantitative Methods for Behavioral Analysis

人間行動学

[Code] 10F219 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 5th

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	1	
	1	
	1	
	3	
	1	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Risk Management Theory

リスクマネジメント論

[Code] 10F223 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Wed 3rd

[Location] C1-173 [Credits] 2 [Restriction] [Lecture Form(s)] [Language] English [Instructor]

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	2	
	6	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10A806

Advanced Geoinformatics

空間情報論

[Code] 10A806 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 2nd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture & Exercise [Language] Japanese [Instructor] Masayuki Tamura, Junichi Susaki

[Course Description] Geoinformatics is the science and technologies dealing with spatially distributed data acquired with remote sensing, digital photogrammetry, global positioning system, etc, to address the problems in natural phenomena or human activities. This lecture particularly focuses on satellite remote sensing and explains the theory and the technologies for analyzing environmental changes or disaster effects. A free software "MultiSpec" is used in exercises to learn the basic techniques of image processing. [Grading] Grading is based on the achievements in home works given in every lesson.

[Course Goals] To understand the basic theory and to acquire the basic techniques of satellite remote sensing for observation and analysis of environmental changes and disaster effects.

[Course Topics]

Theme	Class number of times	Description
T . 1 . 2		1. Introduction to remote sensing
Introduction	1	2. Applications in environmental and disaster prevention fields
		1. Classification of electromagnetic waves
Classification of electromagnetic	1	2. Basic terms on electromagnetic radiation
waves and satellite sensors	1	3. Theory of electromagnetic radiation from objects
		4. Classification of satellite sensors by observation wavelengths
		1. Reflection and scattering of electromagnetic waves by earth surfaces
Interaction of electromagnetic	1	1.1 Bidirectional reflectance distribution function
waves with earth surfaces	1	1.2 Bidirectional reflectance factor
		2. Spectral reflectance properties of earth surfaces and objects
		1. Absorption and scattering of electromagnetic waves by atmospheric particles
Atmospheric effects on satellite	1	2. Atmospheric radiative transfer of electromagnetic waves
observations	1	3. Atmospheric effects on satellite observations
		4. Correction of atmospheric effects
		Principles of visible and reflective infrared sensors
Optical sensors	1	2. Examples of visible and reflective infrared sensors
		3. Applications of reflective infrared sensors
	1	1. Principles of thermal infrared sensors
		2. Measurements of surface temperature by satellite sensors
Thermal infrared sensors		3. Examples of thermal infrared sensors
		4. Applications of thermal infrared sensors
		Image processing procedure
Image processing 1 (Image		2. Image enhancement
correction)	1	3. Image correction
		4. Correction of geometrical distortion
		1. What is image classification?
Image processing 2 (Image	1	2. Theory of image classification
classification)	1	3. Classification rules
		4. Image classification procedure
		1. Microwave
		2. Microwave sensors
		3. Real Aperture Radar (RAR)
Microwave sensors	2	4. Synthetic Aperture Radar (SAR)
		5. Interferometric SAR
		6. Differential Interferometric SAR
Laser data		Statistical processing of point clouds
	2	2. Three-dimensional modeling using terrestrial laser data
		3. Three-dimensional modeling using airborne laser data
		1. Edge extraction
Image processing 3	1	2. Segmentation
<i>U</i> 1 · · · · · · · · · · · · · · · · · ·		3. Three-dimensional modeling with laser data

[Textbook]

【Textbook(supplemental)】 • W. G. Rees 著,Physical Principles of Remote Sensing 2nd ed., Cambridge University Press

- J. A. Richards 著, Remote Sensing Digital Image Analysis: An Introduction, Springer-Verlag
- 日本リモートセンシング研究会編,図解リモートセンシング,日本測量協会
- Fundamentals of Remote Sensing: A Tutorial by the Canada Center for Remote Sensing (http://ccrs.nrcan.gc.ca/resource/tutor/fundam/indexe.php)

【Prerequisite(s)】 Basic knowledge in computer information processing

[Web Sites]

10A808

Civic and Landscape Design

景観デザイン論

[Code] 10A808 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	2	
	2	
	2	
	1	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Computational Mechanics and Simulation

計算力学及びシミュレーション

[Code] 10K008
 [Course Year] Master and Doctor Course
 [Term] 1st term
 [Class day & Period] Tue 2nd
 [Location] C1-173
 [Credits] 2
 [Restriction] No Restriction
 [Lecture Form(s)] Lecture and Exercises
 [Language] English
 [Instructor] Shirato, Gotoh, Murata, Liang

Course Description The process to obtain numerical solutions for various problems in computational mechanics. Descretization and some solvinng technique for initial/boundary value problems is to be introduced by the FEM, FDM, VM and PM with programming exercises. Statistical mechanics, molecular dynamics, Monte Carlo method and Multiple scale model will be shortly introduced in order to understand the basic theory of molecular dynamics simulation. Their application to engineering problems are to be also given by showing some up-to-date examples. As one of the dynamic response analysis of engineering structures, evaluation method of Wind-induced response is to be introduced with practical expmaples. Current technology of the particle method by is to be explained on the violent flow phenomena with free surface. The prticular subjects in PM such as mometum conservation and convection of pressure disturbance by numerical instability, etc. will be inntroduced. This course will be given in English.

【Grading】 Achievement is evaluated by submitted reports to each topic.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Solving boundary		
value problem by	4	
FEM		
		Homogenization method with FEM will be lectured in this item. It is used for
Homogenization	4	obtaining the equivalent homogenized material constants of an anisotropic
technique and FEM	4	composit material to be analyzed. The method to obtain homogenized elastic
		coefficient tensor will be especially focused on.
Molecular dynamics		
simulation		
Random vibration		
analysis of		Theories onn frequency and spectrum analysis, linear system, potential flow,
enngineering	2	unsteady airfoil, random vibration and extreme value will be digested which
structures in		are the basis of the above-mentioned response analysis.
turbulent flow		
Free surface flow analysis by particle method	4	Current technology of the particle method by is to be explained on the violent flow phenomena with free surface. The prticular subjects in PM such as
		mometum conservation and convection of pressure disturbance by numerical instability, etc. will be inntroduced.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Modelling of Geology

数理地質学

[Code] 10F069 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] C1-173 [Credits] 2

[Restriction] should have unit(s) of an introductory lecture on earth science (i.e. Introduction to Earth Science) and/or earth resources engineering

[Lecture Form(s)] Leture, excercises, field excursions [Language] Japanese or English (change every year)

[Instructor] Yasuhiro YAMADA

Course Description 1 This lecture is on modelling of a geology phenomenon which becomes indispensable when carrying out underground-resources development. First of all, the lecture tells that geologic phenomena are complicated as a fundamental posture and mathematical analysis is possible only a part of them. Then, a various analysis techniques and the analysis example are explained with the basic theory for simplifying the natural phenomena to construct geologic models. Then, field excursions are carried out to see relation between topography and local geology. During the excursions, students learn the conditions and assumptions which are needed to model complicated phenomena in which two or more factors involve. The phenomenon in which modelling is possible is limited to a few part.

[Grading] Based on the reports on the lectures and field excursions.

[Course Goals] Students understand the scope of this lecture, the complexity of natural phenomena and our limited knowledge on them, and can explain the contents to others.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Theme, lecture / excursion schedule, evaluation etc
modelling theory	2	basic theory on geologic modelling
methods and		methods of geologic modelling and examples are explained with exercises.
examples	6	
excursion 1	4	excursion to NE Kyoto basin to see the relation between topography and
		geology, in term of an active fault
excursion 2	2	excursion to SW Kyoto basin to see the relation between topography and
		geology, in term of a relatively inactive fault

【Textbook】 no textbook. appropriate articles will be provided.

[Textbook(supplemental)] appropriate books will be informed, this may include ones on geologic modelling.

[Prerequisite(s)] basic knowledge on earth science, including skills to read geologic and geography maps, required.

[Web Sites]

[Additional Information] this lecture includes field excursions, the dates will be determined during the first class, thus all applicants have to attend this class.

Applied Elasticity for Rock Mechanics

応用弾性学

[Code] 10F071 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	1	
	8	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Fundamental Theories in Geophysical Exploration

物理探査の基礎数理

[Code] 10F073 [Course Year] Master 1st [Term] 1st term [Class day & Period] Fri 3rd [Location] C1-117

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Hitosih Mikada, Tada-nori Goto

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	3	
	3	
	3	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Time Series Analysis

時系列解析

[Code] 10F039 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 4th

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	3	
	1	
	2	
	2	
	1	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10A405

Environmental Geosphere Engineering

地殼環境工学

[Code] 10A405 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Energy System Management

エネルギー基盤マネジメント工学

[Code] 10F086 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 2nd [Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Katsuaki Koike

Course Description Securance and development harmonious with natural environments of the mineral and fossil energey resources, and utilization of storage function of geologic strata have become important issues for consructing ssustainable society. This subject introduces comprehensively the present situation of uses of mineral and energy resources, crust structure and dynamics, economic geology for the genesis and geologic envisonments of deposits, physical and chemical exploration methods of marine deposits, mathematical geology for reserve assessment, engineering geology for resource development and geological repository, and problems and promisingness of natural energy such as geothermal, solar, wind, and tide.

【Grading】Integrated evaluation by attendance to the classes and report grades

[Course Goals] To find out directionality about the technologies required for constructing sustainable society by yourself with full understandings of genetic mecanism, biased distribution, and the present situation of demand and supply of the mineral and energy resources.

【Course Topics】

Theme	Class number of times	Description
Introduction of mineral	1	Classification of minerals used for resources, recent trend on social demand of mineral resources,
resources	1	industrial uses of each mineral, and sustainability.
Introduction of Energy	1	Classification of energy sources, recent trend on social demand of energy, physical characteristics
resources	1	of each energy resources, and sustainability.
Physical and chemical	1	Inner structure of the Earth, geodynamics, geologic composition, temperature structure, rock
properties of crust	1	physics, and chemical composition of crust.
Economic goology (1)	1	Classification of ore deposits, distribution of each type of ore deposit, generation mechanism of
Economic geology (1)	1	deposit.
Economic goology (2)	1	General structure and distribution of fuel deposits (coal, petroleum, and natural gas), generation
Economic geology (2)	1	mechanism of deposits, and geological process of formation.
		Physical and chemical exploration technologies for natural resources in terrestrial area.
Resource exploration (1)	1	Representative methods are remote sensing, electric sounding, electromagnetic survey, and seismic
		prospecting.
December and antion (2)		Introduction of marine natural resources such as methane hydrate, cobalt-rich crust, and
Resource exploration (2)	1	manganese nodule, and exploration technologies for the deposits in sea area.
Assessment of ore		Fundamentals of goodstatistics, various apply for anotial completion atmost up, anotial modeling by
reserves and reservoir	1	Fundamentals of geostatistics, variography for spatial correlation structure, spatial modeling by
characterization		kriging, geostatistical simulation, integration of hard and soft data, and feasibility study
December development (1)		Development and management technologies of energy resources related to coal, petroleum, and
Resource development (1)	1	natural gas.
Resource development (2)	1	Characteristics of natural energy related to geothermal, solar, wind, and tide, assessment of natural
Resource development (2)	1	energy resources, and development and management technologies of resources.
December development (2)	1	Development of uranium deposits, mechanism and characteristics of nuclear power generation,
Resource development (3)	1	and management technologies of nuclear power.
	1	Groundwater, long-term stability assessment of rock mass, chemical reaction of rocks with
Engineering geology (1)	1	groundwater, and hydraulic properties of rocks at multi-scales.
Engineering coaless (2)	1	Fundamentals of deep geological repository for high-level nuclear waste, CCS (carbon dioxide
Engineering geology (2)	1	capture and storage), and underground storage of petroleum and gas.
Constain ability	1	Co-existence of natural resource development with environment, low-carbon society, and
Sustainability	1	problems for human sustainability.

【Textbook】Printed materials on the class contents are distributed before each class.

【Textbook(supplemental)】 References on each topic will be instructed in classes.

[Prerequisite(s)] Elementary knowledge of engineering, mathematics, physics, and geology.

[Web Sites]

Water Sanitary Engineering

水質衛生工学

[Code] 10F234 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd

[Location]C1-192 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	5	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Ecomaterial and Environment-friendly Structures

環境材料設計学

[Code] 10F415 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st

[Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Hirotaka Kawano, Atsushi HATTORI

[Course Description] Lecture on outline of impact of construction materials to environment and influence on materials and structures from environment. Discuss how to use materials sustainably. Keywords are concrete, steel, composite materials, CO2, durability, recycle and reuse, life-cycle assessment.

Grading Attendance(%), Report(%), Presentation(%)

【Course Goals】 To understand the limit of resources and effect of material use to environment. and to understand the basic theory to make environmental-friendly infrastructures from the view point of materials use.

[Course Topics]

Theme	Class number of times	Description
Guidance	1	Object of the Course, Grading and Goals
product of materials		
and impact to	1	Product of cement, steel, concrete CO2 product and its influence
environment		
recycle and reuse of	3	Recycle and reuse of steel, metals, concrete, asphalt, plastics Technology
materials		development of construction materials
deterioration of	1	Mechanism of deterioration of concrete structures: carbonation, salt attack,
concrete structures	1	alkali-aggregate reaction Maintenance and retrofit methods
deterioration of steel	1	Mechanism of deterioration of steel structures: corrosion, fatigue Maintenance
structures	1	and retrofit methods
deterioration of	1	Mechanism of deterioration of composite structures: Maintenance and retrofit
composite structures		methods
life-cycle assessment	1	Life-cycle assessment of structures considering initial cost as well as
of structures	1	maintenance cost
topics and discussion	2	Recent topics on construction materials and discussion
presentation by		
students and	4	Presentation by students on the individual topics Discussion on the topics
discussion		

[Textbook] No set text

【Textbook(supplemental)】Instructed in class

[Prerequisite(s)] Basic knowledge of construction materials, concrete engineering

[Web Sites]

[Additional Information] Questions and discusions are welcome

Systems Approach on Sound Material Cycles Society

循環型社会システム論

[Code] 10F454 [Course Year] [Term] 1st term [Class day & Period] Mon 3rd [Location] C1-192

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Shinichi Sakai, Yasuhiro Hirai

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	4	
	2	
	4	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Geohydro Environment Engineering. Adv.

地圏環境工学特論

[Code] 10A622 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 1st

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Atmospheric and Global Environmental Engineering, Adv.

大気・地球環境工学特論

[Code] 10F446 [Course Year] Master 1st [Term] 1st term [Class day & Period] Wed 2nd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】Yuzuru MATSUOKA, Gakuji KURATA

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme Class number of times Description	Theme	Class number of	Description
---	-------	-----------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10A626

Advanced Environmental Health

環境衛生学特論

[Code] 10A626 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 3rd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor],

【Course Description】

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	2	
	9	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10A632

Urban Metabolism Engineering

都市代謝工学

[Code] 10A632 [Course Year] Master 1st [Term] 1st term [Class day & Period] Tue 3rd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	5	
	4	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Environmental Microbiology, Adv.

環境微生物学特論

[Code] 10A643 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 1st

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Hiroshi TSUNO, Hiroaki TANAKA, Fumitake NISHIMURA, Naoyuki YAMASHITA

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	2	
	2	
	1	
	2	
	1	
	1	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

New Environmental Engineering I, Advanced

新環境工学特論 I

[Code] 10F456 [Course Year] [Term] 1st term [Class day & Period] Mon 5th

[Location] Reserch Bldg.No.5-Lecture Room(2nd floor)/C1-171 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Relay Lecture [Language] English [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

New Environmental Engineering II, Advanced

新環境工学特論 II

[Code] 10F458 [Course Year] [Term] 2nd term [Class day & Period] Mon 5th [Location] Reserch Bldg.No.5-Lecture Room(2nd floor)/C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Prof. Matsuoka, Prof. Shimidzu, Associate Prof. Takaoka, Associate Prof. Kurata, Prof. Fujii

Course Description This course provides various kinds of engineering issues related to atmospheric environment and solid wastes management in English, which cover fundamental knowledge, the latest technologies and regional application examples. These lectures, English presentations by students, and discussions enhance English capability and internationality of students. The course is conducted in simultaneous distance-learning from Kyoto University, or from remote lecture stations in University of Malaya, and Tsinghua University. For the distance-learning, a hybrid system is used, which consists of prerecorded lecture VIDEO, VCS (Video conference system) and SS (slide sharing system). The students are requested to give a short presentation in English in the end of the lecture course. This course may improve students 'English skill and international senses through these lectures, presentations, and discussions.

【Grading】 Evaluate by class attendance, Q&A and presentation.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
Global warming and Low carbon society	1	Global warming and Low carbon society (Matsuoka)	
Science of Air Pollution:	1	Science of Air Pollution: Health Impacts (Prof. Nik, University of Malaya)	
Health Impacts			
Atmospheric diffusion and	1	Atmospheric diffusion and modeling (Prof. S Wang, Tsinghua University)	
modeling			
Air Pollution, Its Historical			
Perspective from Asian	1	Air Pollution, Its Historical Perspective from Asian Countries (I), China (Prof. Hao, Tsinghua University)	
Countries (I),China			
Air Pollution, Its Historical		Air Pollution, Its Historical Perspective from Asian Countries (II), Malaysia (Prof. Nik, University of	
Perspective from Asian	1	Malaya)	
Countries (II), Malaysia		malaya)	
Air Pollution, Its Historical			
Perspective from Asian	1	Air Pollution, Its Historical Perspective from Asian Countries (III), Japan (Kurata)	
Countries (III), Japan			
Student Presentations	1	Conduct Deconstration (Discussions I (-11))	
/Discussions I	1	Student Presentations / Discussions I (all)	
Solid Waste Management	1	Solid Waste Management (Takaoka)	
Introduction to Municipal			
Solid Waste (MSW)	1	Introduction to Municipal Solid Waste (MSW) Management(Prof. Agamuthu, University of Malaya)	
Management			
Solid Waste Management,			
Case Study in China	1	Solid Waste Management, Case Study in China (Prof. Wang, Tsinghua University)	
Solid Waste Management,			
Case Study in Japan	1	Solid Waste Management, Case Study in Japan (Takaoka)	
Solid Waste Management,			
Case Study in Malaysia	1	Solid Waste Management, Case Study in Malaysia (Prof. Agamuthu, University of Malaya)	
Student Presentations /Discussions II	1	Student Presentations /Discussions II (all)	

【Textbook】 Class handouts

【Textbook(supplemental)】Introduce in the lecture classes

[Prerequisite(s)]

[Web Sites]

[Additional Information] Either of this course or "New Environmental Engineering I, advanced" can be dealt as "Asian Environmental Enigneering". PowerPoint slides are main teaching materials in the lectures, and their hard copies are distributed to the students. In addition, a list of technical terms and difficult English words is given to the students with their explanation and Japanese translation.

Nuclear Environmental Engineering, Adv.

原子力環境工学

[Code] 10F461 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] Japanese [Instructor],,,

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Environmental Organic Micropollutants Analysis Lab.

環境微量分析演習

[Code] 10F468 [Course Year] Master and Doctor Course [Term] Intensive course (27th-29th Sep.)

【Class day & Period】 9:00 am- 6:00 pm

[Location] Seminer Room, Research Center for Environmental Quality Management [Credits] 2

[Restriction] around 10 students [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor] Shimizu, Yoshihisa, Matsuda, Tomonari

[Course Description] This 3 days intensive course, limited to around 10 people, will be held in Research Center for Environmental Quality Management in Otsu City. This course includes both lecture and experiments about analytical strategies of environmental micropollutants.

[Grading] Reports and attendance

[Course Goals] Understand about principle and practical techniques of chromatography. Understand about principle of several bioassays.

【Course Topics】

Theme	Class number of times	Description
HPLC -How to	3	Learn about principle and practice of HPLC separation. How do you choose
separate it-	3	columns, solvents and detectors? How to improve peak separation?
Fractionation and		
Purification by using	3	Learn about practical techniques of fractionation and purification using HPLC.
HPLC		
		Learn about principle and practice of LC/MS/MS analysis. Understand about 3
LC/MS/MS	5	different scan modes, full scan, daughter scan and MRM. How to make an
		analytical method in a refined way for substances of your interest.
		Lecture about several bioassays which are used for evaluation of
Bioassays	4	environmental toxicity, and discuss about how to identify toxic compounds in
		environment by using HPLC in combination with bioassays.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

[Additional Information] This intensive course is useful especially for students who usually use or intend to use HPLC and LC/MS/MS for their research.

Advanced Enivironmental Engineering Lab.

環境工学先端実験演習

[Code] 10F470 [Course Year] Master 1st [Term] 2nd term [Class day & Period] [Location] C1-173

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	4	
	3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminer on Practical Issues in Urban and Environmental Enginering 環境工学実践セミナー

[Code] 10F472 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] Fri 4th

[Location]C1-192 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Seminar [Language]Japanese

[Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G039

Transport Phenomena

熱物質移動論

[Code] 10G039 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Nakabe, Kazuyoshi, Tatsumi, Kazuya

Course Description 1 The important learning objective of this class is to understand the fundamental mechanisms of momentum, heat, and mass transfer phenomena, the knowledge of which will be markedly required for the thermal energy control technologies to further practice conservations of natural resources and energies for sustainable development. Heat and mass transfer processes consisting of conduction and forced/natural convection will be highlighted in detail, referring to the similarity characteristics of flow velocity, fluid temperature, and species concentration. Some topics on Reynolds stress, turbulent heat flux, and phase change will be introduced, expanding to their numerical models, together with some recent trends of high-tech heat and energy devices.

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Surrounding		
Examples of	1	
Transport	1	
Phenomena		
Governing Equations		
and	3 ~ 4	
Non-Dimensional	3 ~ 4	
Parameters		
Boundary layer flows	2 ~ 3	
External and Internal	1 ~ 2	
Flows	1 ~ 2	
Turbulent	2 ~ 3	
Phenomena		
Topics of Flow and		
Heat Transfer	2 ~ 3	
Mechanism		
	1	

[Textbook]

【Textbook(supplemental)】 Example Transport Phenomena (Bird, R.B. et al.)

[Prerequisite(s)]

[Web Sites]

10G009

Quantum Condensed Matter Physics

量子物性物理学

[Code] 10G009 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 1st

[Location] Engineering Science Depts Bldg.-313 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Introduction to Sustainability/ Survivability Science

生存科学概論

[Code] 10F112 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 1st [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] K. Takara (DPRI), H. Ishikawa (DPRI), B. He (DPRI), T. Hosoda (Engineering) and S. Yoden (Science) [Course Description] There are many threats for human beings on the earth: medicine/infectious diseases, food, population, energy, water, environment and natural hazards and disasters. This class gives how to cope with these for human beings and societies. If we realized sustainable society, there are still catastrophes that we have to face. This class considers how to survive such catastrophic situations. Especially focused on are frequent and amplified extreme weather due to climatic change (or global warming) and subsequent severe disasters, water and environmental problems. Concepts and technologies for these problems are introduced, discussing the future perspectives of our society, science and technology based on various aspects and examples of climate, culture and ways of life in the world.

[Grading] Students will be evaluated by the number of attendance and a final written examination.

Course Goals 1 Any graduate students in various disciplines can join this class. Mixture of different graduate students from different disciplines gives good discussions in the classroom in which global issues will be introduced and discussed by the teachers and students together. This is a graduate school level lecture class including presentations by students.

【Course Topics】

Theme	Class number of times	Description	
Introduct	1	The framework of sustainability/survivability science is given to understand its	
ion	1	significance.	
		Introducing how to cope with various examples of threats that human beings are	
Examples	2	facing: medicine/infectious diseases, food, population, energy, water, environment	
		and natural hazards and disasters.	
Global warming and	3	A theory of global warming, technical countermeasures of mitigation and political	
mitigation	3	situation in the world are given.	
Extreme weather and	2	Recent water-related disasters and water problems due to extreme weather are	
its prediction	2	introduced.	
Adoptation	2	Examples and ideas of adaptation in the world are considered to cope with	
Adaptation	3	water-related disasters that are occurring more frequent and getting bigger.	
Discussions	3	Giving students an opportunity to express their own ideas, teachers and students	
		discuss his/her ideas.	
Summary	1	Conclude this series of lectures.	

【Textbook 】 No textbook specified. Handouts will be distributed if necessary.

【Textbook(supplemental)】Relevant literature would be introduced.

[Prerequisite(s)] The class is given in English with some Japanese language supplement for technical/special words. No background knowledge is necessary. Reading, writing and discussing in English is requirement.

[Web Sites] This lecture is related to a Global COE Program "Sustainability/survivability science for a resilient society adaptable to extreme weather conditions" (GCOE-ARS) for a period of 2009 to 2013. See also http://ars.gcoe.kyoto-u.ac.jp/ for further information.

[Additional Information] This class, which is given as graduate school-level lectures, can be taken by any graduate students from different disciplines including natural science, social science and humanity. Mixture of graduate students from different disciplines encourages exciting and interesting discussions by them to discuss global environmental issues with several professors and PDs.

10D051

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 5th

[Location] Katsura Hall [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	14	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10D040

Exercise in Practical Scientific English

実践的科学英語演習「留学ノススメ」

[Code] 10D040 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar [Language] English [Instructor] Kenji Wada. etc

【Course Description】 This course is designed to develop high-level communication and presentation skills in English required for top level scientific and industrial career prospects.

[Grading] Attendance 60%, midterm reports 20%, final report 20%. The final report must be submitted by the deadline date.

[Course Goals] This course is designed to develop high-level communication and presentation skills in English required for top level scientific and industrial career prospects.

[Course Topics]

Theme	Class number of times	Description	
Introduction	1	Course Guidance, etc.	
		Definition of technical writing 3C in technical writing Weaknesses of Japanese	
Exercise-1	1	writers Good examples and bad examples	
Exercise-2	1	Punctuation Presentation skills 1 -organization	
E	1	Organizing your thoughts for the title and abstract Presentation skills 2 ?Visual	
Exercise-3	1	aspects	
Exercise-4	1	Presenting the background of your research Presentation skills 3 ?Oral Aspects	
Exercise-5	1	Describing how you did your research Presentation skills 4 ?Physical Aspects	
Exercise-6	1	Presenting what you observed Presentation Practice	
Exercise-7	1	Placing your findings in the field Presentation Practice	
Exercise-8	1	Expressing thanks and listing references Presentation practice	
Exercise-9	1	Writing your proposal Presentation practice	
Exercise-10	1	Presentation practice Reviews & Feedbacks Evaluation	
Wrap-up lecture	1~2	Current situation of studying abraod, etc.	

[Textbook] No textbook is required.

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites] http://www.ehcc.kyoto-u.ac.jp/alc/ (needs passwords).

[Additional Information] For details, contact Dr. Wada (wadaken@scl.kyoto-u.ac.jp).

10K001

Introduction to Advanced Material Science and Technology

先端マテリアルサイエンス通論

【Code】10K001

[Course Year] Special Auditors, Special research Students, Graduate School Students (inc. International Course Students)

【Term 】1st term

[Class day & Period] Starting from April 15, the lecture will be held from 2:45 p.m. to 4:15 p.m. on Friday afternoon but some lectures are from 4:30 p.m.

[Location] Distance lectures are held between Lecture Room 1 in Engineering Bld. 8 at Yoshida campus and Seminar Room 131 in Bld. A1 at Katsura campus. Attend either of them at your convenience.

[Credits] 2 [Restriction] [Lecture Form(s)] Relay Lecture [Language] English [Instructor]

【Course Description】 The various technologies used in the field of material science serve as bases for so-called "high technologies", and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

【Grading】 In order to obtain two credits, students must attend at least ten lectures, and at least five of the submitted reports must be evaluated as "passed" by each lecturer. Each report should be submitted to the lecturer within two weeks after his/her lecture. NOTE: Reports are NOT acceptable from those who do not attend the lecture.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook] None

[Textbook(supplemental)]

[Prerequisite(s)]

[Web Sites]

10K004

New Engineering Materials, Adv.

新工業素材特論

[Code] 10K004 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 5th

[Location] (Katsura)A1-131 (Yoshida)Lecture Room3,Reseach Bldg.No.4 [Credits] 2 [Restriction]

[Lecture Form(s)] Relay Lecture [Language] English [Instructor]

【Course Description】

[Grading]

【Course Goals】

【Course Topics】

Class number of times	Description	
2	Composite Materials: Smart, Lightweight and Strong Materials (HOJO)	
1	Innovations in High Performance Steels for Bridge Construction (SUGIURA)	
1	Materials in Micro Electro Mechanical Systems (MEMS) (TSUCHIYA)	
1	High Temperature Superconductivity and Its Application to	
1	Electronics(SUZUKI)	
1	Sustainability Issues(SHIMIZU)	
1	Material Properties of Fiber Reinforced Cementitious Composites and	
	Applicability to Structures (KANEKO)	
1	Structural biochemistry of proteins (SHIRAKAWA)	
2	Semiconductor Materials and Devices (KIMOTO)	
1	Separation Analysis in Micro- and Nano-scale (OTSUKA)	
4	Polymer Synthesis beyond the 21st Century:Precision Polymerizations and	
1	Novel Polymeric Materials (SAWAMOTO)	
1	Inorganic New Materials (EGUCHI)	
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

【Textbook】

【Textbook(supplemental)】 Class handouts

[Prerequisite(s)]

[Web Sites]

Developmental and Sustainable Infrastructure Engineering Seminar I

発展的持続性社会基盤工学演習

[Code] 10W213 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Basin Environmental Disaster Mitigation

流域環境防災学

[Code] 10F466 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	3	
	3	
	3	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Hydrologic Design and Management

水工計画学

[Code] 10F464 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 3rd [Location] C1-173

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Michiharu SHIIBA, Yasuto TACHIKAWA and Sunmin KIM

Course Description Methods for hydrologic design and real-time rainfall-runoff predictions are described. The frequency analysis of hydrologic extreme values and the time series analysis of hydrologic variables are described, and then the methods to set the external force for the hydrologic design are explained. Next, a physically based hydrologic model which includes the process of human activities for the hydrologic cycle is described. In addition, the predictive uncertainty for the hydrologic simulation is introduced. A flood control planning and water resources management with the use of innovative hydrologic simulation tools is described. Then, the climate change and the relation to the hydrologic design are discussed. A real-time rainfall runoff prediction method with the use of Kalman filter theory is described.

【Grading】 Examination and report

[Course Goals] The class aims to understand the statistical analysis and time serried analysis of hydrologic variables to set the external force of hydrologic designs, applications of hydrologic simulations for hydrologic designs, and real-time rainfall and runoff prediction methods for water resources management.

[Course Topics]

Theme	Class number of times	Description	
Introduction	0.5	The aim of the class is introduced. The flood control planning and water resources	
Introduction	0.5	planning are introduced.	
Frequency analysis and	1.5	The frequency analysis of hydrologic extreme values is described. The methods to set	
hydrologic design	1.5	the external force for the hydrologic design are explained.	
Time series analysis		The time series analysis of hydrologic variables is described. The methods to develop	
and hydrologic design	3	time series models, time serried data generation methods, spatiotemporal variation of	
and flydrologic design		hydrologic variables and a random field model, disaggregation methods are explained.	
Hydrologic modeling		A physically based hydrologic model which includes the process of human activities for	
and modeling system	1	the hydrologic cycle is described. A hydrologic modeling system which helps to	
and modering system		develop complicated hydrologic simulation models is also described.	
	1	Hydrologic predictive uncertainty is explained, which is inevitable and comes from	
Hydrologic predictive		model structure uncertainty, parameter identification uncertainty and model input	
uncertainty		uncertainty. Especially, the relation between spatiotemporal scales of hydrologic	
uncertainty		modeling and model parameter values is described, and then the linkage between the	
		relation and the hydrologic predictive uncertainties is discussed.	
Flood prediction and		A physically-based distributed hydrologic model which incorporates dam reservoir	
•	1	operation is introduced. Evaluation of the effect of flood control facilities and more	
hydrologic design		effective dam reservoir operation are discussed.	
Climate change and	2	Data analysis of the latest GCM simulation is presented and the possible changes of	
hydrologic design	2	hydrologic extremes and hydrologic design are discussed.	
Real-time rainfall	4	A real-time rainfall runoff prediction method with the use of Kalman filter theory is	
runoff prediction	4	described.	

【Textbook】 Non. Handouts are distributed at each class.

[Textbook(supplemental)]

[Prerequisite(s)] Basic knowledge of hydrology, probability and statistics

【Web Sites】 http://hywr.kuciv.kyoto-u.ac.jp/lecture/lecture.html

Coastal and Urban Water Disasters Engineering

沿岸・都市防災工学

[Code] 10F269 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] C1-192 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	3	
	1	
	1	
	1	
	1	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Open Channel Hydraulics

開水路の水理学

[Code] 10F245 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] HOSODA, Takashi

【Course Description】 Fundamental theory of Open Channel Hydraulics used in River Engineering and Urban Fluid Engineering Fields are lectured, showing various applications in Hydraulic Engineering Field. The contents include the following items: Application of singular point theory to water surface profile analysis, Derivation of 2 -D depth averaged model, 1-D analysis of unsteady open channel flows, Plane 2-D analysis of steady high velocity flows, Plance 2-D analysis of unsteady flows, Higher order theory, etc.

【Grading 】Regular examination

【Course Goals】 to understand the grounds of Open Channel Hydraulics and to learn how to apply Open Channel Hydraulics to practical problems in hydraulic engineering field.

[Course Topics]

Theme	Class number of times	Description	
Guidance	1	The outline of this class is introduced by overviewing the whole framework of Open Channel Hydraulics with various computational results.	
Derivation of 2-D depth averaged model	1	Derivation procesures of plane 2-D depth averaged model are expalined in detail	
Application of singular point theory to water surface profile analysis	1		
1-D analysis of unsteady open channel flows	3	Fundamental characteristics of 1-D unsteady open channel flows, Method of Characteristics, Dam break flow, Computational methods	
Plane 2-D analysis of steady high velocity flows	1	Characteristics of steady plane 2-D flow are explained based on the method of characteristics.	
Plance 2-D analysis of unsteady flows	3	Propagation of characteristic furface, shear layer instability, application of a generalized curvilinear coordinate to river flow computation, application of a moving coordinate system, etc.	
Higher order theory	3	Boussinesq equation with the effect of vertical acceleration, full/partially full pressurized flow onserved in sewer network, trafic flow analysis by means of dynamic wave model	

【Textbook】 Printed materials on the contents of this class are distributed in class.

【Textbook(supplemental)】

[Prerequisite(s)] Elementary knowledge of fluid dyanamics and hydraulics

[Web Sites]

[Additional Information] Students can contact with Hosoda by sending e-mail to hosoda.takashi.4 w@kyoto-u.ac.jp This class is not open in 2011.

Numerical Methods in Geomechanics

地盤数値解析法

[Code] 10F023 [Course Year] [Term] 1st term [Class day & Period] Thu 1st [Location] C1-117

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	6	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Science and Technology for Making Substances

モノつくりの科学と技術

[Code] 10W401 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location] A2-308 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	1	
	3	
	2	
	1	
	1	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Dimensional Control and Micro-Nano Systems

ディメンジョンの制御とナノ・マイクロ化学

[Code] 10W403 [Course Year] 1st year - 5th year [Term] [Class day & Period] [Location] A2-302

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Molecular Function and Composite-Assembly Function

分子機能と複合・集積機能

[Code] 10W405 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 1st

[Location] A2-302 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] Japanese

[Instructor]

H.Imahori, S.Kimura, T.Kakiuchi, Y.Tsuji, A.Toshimitsu, K.Tanaka, H.Kaji, T.Sato, K.Akagi, S.Ito, K.Matsuda

[Course Description] Principles and their examples of revealing molecular function will be described based on molecular design. We also focus on guidelines of molecular design and their representative examples to achieve function of molecular composites and assemblies.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	2	
	2	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Physical Chemistry and Analytical Techniques of Complex Systems

複合系の物理化学と解析技術

[Code] 10W407 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 5th

[Location] A2-304 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] Japanese

[Instructor]

K.Tanaka, T.Takigawa, S.Shibata, T.Tanaka. H.Watanabe. H.Hasegawa, T.Yoshizaki, F.Tanaka, T.Kanaya, R.Yamamoto, M.Miyahar

【Course Description】 This course focuses on fundamentals of physical chemistry for a quantitative understanding of structure, reaction, and properties of matters in complex systems. Analytical techniques including theoretical, numerical, and experimental approaches for clarification of the phenomena in complex systems are also introduced.

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Frontiers in the Field of Chemical Biology and Biological Chemistry

化学から生物へ 生物から化学へ

[Code] 10W409 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 5th

[Location] A2-302 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] Japanese

[Instructor] S.Nishimoto, M.Shirakawa, Y.Tabata, H.Iwata, I.Hamachi, Y.Mori, M.Umeda, H.Atomi

【Course Description】 In the cutting-edge of reseach fields, chemistry and biologi are being closely related each other. In this class, progress in such interdisciplinary areas and topics including natural products, biophysics, bioimaging, baimaterials, strucural biology, chemical biology, molecular physiology and others, are briefly explained and discussed.

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of	Description
	times	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Nano Materials Science

ナノマテリアルサイエンス

[Code] 10W410 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location] Integrated Research Bldg.-102 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	12	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Mechanics and Synthesis of Micro Machines II

機械とマイクロ機能創製

[Code] 10W412 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advances in Rechargeable Batteries

先端二次電池

[Code] 10W416 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location] A2-303 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2 回	
	3 回	
	3 🛽	
	3 回	
	3 回	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Recent advances in fuel cell sciences

先端燃料電池

[Code] 10W414 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] A2-303 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] Japanese [Instructor] K.Eguchi, T.Abe, M.Kawase, T.Matsui, T.Shishido

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Integrated Chemical Synthesis

集積合成化学

[Code] 10W418 [Course Year] Master and Doctor Course [Term] [Class day & Period] intesive course

[Location] A2-302 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Jun-ichi Yoshida

Course Description \textcal{\textcal{\textcal{I}}} Usually, organic synthesis has been performed by stepwise formation of the individual bonds in the target molecule. However, it would be much more efficient if one could form several bonds in one sequence without isolating the intermediates. Therefore, conventional step-by-step synthesis is being supplemented with integrated synthesis which combines multiple components in a single-operation in one pot or in a flow system. This course, which focus on space integration of reactions using flow microreactors, provides an outline of the concept of reaction integration in flow microreactors and some recent examples.

[Grading] examination

[Course Goals] To understand characteristic feaxtures of flow microreactor reactions and to get ability to design integrated synthesis using flow microreactors.

[Course Topics]

Theme	Class number of times	Description	
introduction	1	brief introduction ot flow microreactor synthesis	
residence time and	2	principle of reaction control by taking advantage of flow microreactors such as	
mixing	2	precise residence time control and fast mixing	
	4	some examples of control of reactions such as reactions invovling short-live	
control of reactions	4	reactive intermediates and competitive consecutive reactions	
	4	various examples of organic reactions such as stochiometric reactions,	
organic reactions	4	catalytic reactions, photochemical reactions, and electrochemical reactions	
polymerization	2	principles and examples of polymerization reactions using flow microreactors	
industrial	2	some evenue of industrial annihilations of flow misuspector averthesis	
applications	2	some examples of industrial applications of flow microreactor synthesis	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Experimental Integrated Chemical Systems

集積化学プロセス

[Code] 10W420 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-302 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 J.Yoshida,S.Hasebe,K.Mae

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	2	
	4	
	3	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Design of Green Chemical Processing

グリーンケミストリー&グリーンプロセッシングの設計

[Code] 10W422 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location] A2-303 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Experimental Integrated Chemical Systems

集積化学システム

[Code] 10W459 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor] J. Yoshida, S. Hasebe, K. Mae

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	4	
	4	
	4	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Environmental-friendly Technology for Sound Material Cycle

環境資源循環技術

[Code] 10W424 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 3rd

[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] H.Tssuno, K.Miura, F.Nishimura, M.Takaoka, H.Nakagawa

Course Description I Global warming, ecosystem crisis, and depletion of natural resources are of great concern today. To solve these problems, we have to build the sustainable society where low carbon dioxide emission, low environmental burdens, and the reduction of wastes by recycling are realized. It is possible to utilize municipal wastes, wastewaters, and unused biomass as resources instead of the natural resources used at present. Recycling-oriented technologies that enable sustainable utilization of those wastes and the concept to develop those technologies are introduced.

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	5-6	
	4-5	
	4-5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Laboratory and Exercise on Materials Engineering and Chemistry I

物質機能・変換科学特別実験及演習

[Code] 10W432 [Course Year] Master 1st [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Laboratory and Exercise on Materials Engineering and Chemistry I I

物質機能・変換科学特別実験及演習

[Code] 10W433 [Course Year] Master 1st [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
•		

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Laboratory and Exercise on Materials Engineering and Chemistry III

物質機能・変換科学特別実験及演習

[Code] 10W434 [Course Year] Master 2nd [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Laboratory and Exercise on Materials Engineering and Chemistry IV

物質機能・変換科学特別実験及演習

[Code] 10W435 [Course Year] Master 2nd [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Seminar on Materials Engineering and Chemistry I

物質機能・変換科学特別セミナー

[Code] 10W437 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Seminar on Materials Engineering and Chemistry II

物質機能・変換科学特別セミナー

[Code] 10W438 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 1 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Seminar on Materials Engineering and Chemistry III

物質機能・変換科学特別セミナー

[Code] 10W439 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Seminar on Materials Engineering and Chemistry IV

物質機能・変換科学特別セミナー

[Code] 10W440 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Seminar on Materials Engineering and Chemistry V

物質機能・変換科学特別セミナー

[Code] 10W441 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Seminar on Materials Engineering and Chemistry VI

物質機能・変換科学特別セミナー

[Code] 10W442 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

InternshipI

物質機能・変換科学インターンシップ

[Code] 10W444 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Internship II

物質機能・変換科学インターンシップ

[Code] 10W445 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Internship I I I

物質機能・変換科学インターンシップ

[Code] 10W446 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Internship IV

物質機能・変換科学インターンシップ

[Code] 10W447 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] English [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Internship V

物質機能・変換科学インターンシップ

[Code] 10W448 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] English [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Internship VI

物質機能・変換科学インターンシップ

[Code] 10W449 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] English [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10K001

Introduction to Advanced Material Science and Technology

先端マテリアルサイエンス通論

【Code】10K001

[Course Year] Special Auditors, Special research Students, Graduate School Students (inc. International Course Students)

【Term 】1st term

[Class day & Period] Starting from April 15, the lecture will be held from 2:45 p.m. to 4:15 p.m. on Friday afternoon but some lectures are from 4:30 p.m.

[Location] Distance lectures are held between Lecture Room 1 in Engineering Bld. 8 at Yoshida campus and Seminar Room 131 in Bld. A1 at Katsura campus. Attend either of them at your convenience.

[Credits] 2 [Restriction] [Lecture Form(s)] Relay Lecture [Language] English [Instructor]

(Course Description) The various technologies used in the field of material science serve as bases for so-called "high technologies", and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

【Grading】 In order to obtain two credits, students must attend at least ten lectures, and at least five of the submitted reports must be evaluated as "passed" by each lecturer. Each report should be submitted to the lecturer within two weeks after his/her lecture. NOTE: Reports are NOT acceptable from those who do not attend the lecture.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook] None

[Textbook(supplemental)]

[Prerequisite(s)]

[Web Sites]

10K004

New Engineering Materials, Adv.

新工業素材特論

[Code] 10K004 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 5th

[Location] (Katsura)A1-131 (Yoshida)Lecture Room3,Reseach Bldg.No.4 [Credits] 2 [Restriction]

[Lecture Form(s)] Relay Lecture [Language] English [Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Class number of times	Description
2	Composite Materials: Smart, Lightweight and Strong Materials (HOJO)
1	Innovations in High Performance Steels for Bridge Construction (SUGIURA)
1	Materials in Micro Electro Mechanical Systems (MEMS) (TSUCHIYA)
1	High Temperature Superconductivity and Its Application to
1	Electronics(SUZUKI)
1	Sustainability Issues(SHIMIZU)
1	Material Properties of Fiber Reinforced Cementitious Composites and
1	Applicability to Structures (KANEKO)
1	Structural biochemistry of proteins (SHIRAKAWA)
2	Semiconductor Materials and Devices (KIMOTO)
1	Separation Analysis in Micro- and Nano-scale (OTSUKA)
1	Polymer Synthesis beyond the 21st Century:Precision Polymerizations and
1	Novel Polymeric Materials (SAWAMOTO)
1	Inorganic New Materials (EGUCHI)
	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

【Textbook】

【Textbook(supplemental)】 Class handouts

[Prerequisite(s)]

[Web Sites]

10i005

Business Japanease I

ビジネス日本語講座

[Code] 10i005 [Course Year] Master and Doctor Course [Term] 2nd term

[Class day & Period] Thu 2nd - 3rd [Location] Seminar Room A at Cluster B 3rd fl., Katsura campus

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Lect. Kurihara

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10i006

Business Japanease II

ビジネス日本語講座 II

[Code] 10i006 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] Thu 2nd - 3rd [Location] Seminar Room A at Cluster B 3rd fl., Katsura campus

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Lect. Kurihara

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C294

Integrated Molecular Science IV

統合物質科学

[Code] 10C294 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] Faculty of Science Bldg.No.6 Room402 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Relay Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	unics	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C296

Integrated Materials Science IV

統合材料科学

[Code] 10C296 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 3rd

[Location] A2-306 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme Class number of times Description	
---	--

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Social Core Advanced Materials I

社会基盤材料特論

[Code] 10C273 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 4th

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C275

Social Core Advanced Materials I I

社会基盤材料特論

[Code] 10C275 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 4th

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
·	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Materials Engineering and Chemistry I

物質機能・変換科学特論

[Code] 10W472 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Materials Engineering and Chemistry II

物質機能・変換科学特論

[Code] 10W473 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Materials Engineering and Chemistry III

物質機能・変換科学特論

[Code] 10W474 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Materials Engineering and Chemistry IV

物質機能・変換科学特論

[Code] 10W475 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Materials Engineering and Chemistry V

物質機能・変換科学特論

[Code] 10W476 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Materials Engineering and Chemistry VI

物質機能・変換科学特論

[Code] 10W477 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Materials Engineering and Chemistry VII

物質機能・変換科学特論

[Code] 10W478 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	-

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Materials Engineering and Chemistry VIII

物質機能・変換科学特論

[Code] 10W479 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Instrumental Analysis, Adv. I

先端科学機器分析及び実習 I

[Code] 10D043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-304 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10D046

Instrumental Analysis, Adv. II

先端科学機器分析及び実習 II

[Code] 10D046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] A2-304 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10D040

Exercise in Practical Scientific English

実践的科学英語演習「留学ノススメ」

[Code] 10D040 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar [Language] English [Instructor] Kenji Wada. etc

【Course Description】 This course is designed to develop high-level communication and presentation skills in English required for top level scientific and industrial career prospects.

[Grading] Attendance 60%, midterm reports 20%, final report 20%. The final report must be submitted by the deadline date.

[Course Goals] This course is designed to develop high-level communication and presentation skills in English required for top level scientific and industrial career prospects.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Course Guidance, etc.
F ' 1	1	Definition of technical writing 3C in technical writing Weaknesses of Japanese
Exercise-1	1	writers Good examples and bad examples
Exercise-2	1	Punctuation Presentation skills 1 -organization
		Organizing your thoughts for the title and abstract Presentation skills 2 ?Visual
Exercise-3	1	aspects
Exercise-4	1	Presenting the background of your research Presentation skills 3 ?Oral Aspects
Exercise-5	1	Describing how you did your research Presentation skills 4 ?Physical Aspects
Exercise-6	1	Presenting what you observed Presentation Practice
Exercise-7	1	Placing your findings in the field Presentation Practice
Exercise-8	1	Expressing thanks and listing references Presentation practice
Exercise-9	1	Writing your proposal Presentation practice
Exercise-10	1	Presentation practice Reviews & Feedbacks Evaluation
Wrap-up lecture	1~2	Current situation of studying abraod, etc.

[Textbook] No textbook is required.

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites] http://www.ehcc.kyoto-u.ac.jp/alc/ (needs passwords).

[Additional Information] For details, contact Dr. Wada (wadaken@scl.kyoto-u.ac.jp).

International Student Seminar on Integrated Materials

統合物質科学学生国際セミナー

[Code] 10C283 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Intensive Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Materials Engineering and Chemistry I

物質機能・変換科学セミナーⅠ

[Code] 10W463 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location] Katsura Campus [Credits] 1 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	unics	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Materials Engineering and Chemistry II

物質機能・変換科学セミナー II

[Code] 10W464 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location] Katsura Campus [Credits] 1 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Materials Engineering and Chemistry

物質機能・変換科学セミナー

[Code] 10W465 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] Katsura Campus [Credits] 1 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

times	Theme Class number of times	Description
-------	-----------------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Materials Engineering and Chemistry IV

物質機能・変換科学セミナー

[Code] 10W466 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] Katsura Campus [Credits]1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Materials Engineering and Chemistry V

物質機能・変換科学セミナー V

[Code] 10W467 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location] Yoshida Campus [Credits] 1 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Materials Engineering and Chemistry VI

物質機能・変換科学セミナー VI

[Code] 10W468 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location] Yoshida Campus [Credits] 1 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme Class number of times Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Materials Engineering and Chemistry VII

物質機能・変換科学セミナー

[Code] 10W469 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] Yoshida Campus [Credits] 1 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Materials Engineering and Chemistry VIII

物質機能・変換科学セミナー

[Code] 10W470 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] Yoshida Campus [Credits] 1 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 5th

[Location] Katsura Hall [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	14	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Medical Physics, Radiation Safety and Administration

医学物理学・放射線安全管理学

[Code] 10W649 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor],,,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Radiation Measurement for Medicine

医学放射線計測学

[Code] 10W620 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 4th

[Location] Bldg.No.1-Nuclear Engineering Sminar Room 1 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hidetsugu Tsuchida, Yoshinori Sakurai

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1 ~ 2	
	1 ~ 2	
	1	
	1	
	1 ~ 2	
	1 ~ 2	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

医工学基礎

[Code] 10W603 [Course Year] [Term] 1st term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description			
	Theme	ciass named of	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10E001

Special Topics in Transport Phenomena

移動現象特論

[Code] 10E001 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 4th

[Location] A2-305 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] R.Yamamoto

[Course Description] Theoretical approaches on momentum, heat, and mass transports will be discussed. For example, problems of non-steady transport such as transient behavior, hydrodynamics of complex fluids such as polymeric liquids will be treated.

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	6	
	3	
	3	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Bio-Medical Engineering Internship D

インターンシップD(生命・医工)

[Code] 10W692 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Bio-Medical Engineering Internship M

インターンシップ M (生命・医工)

[Code] 10W691 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Applied Neutron Engineering

応用中性子工学

[Code] 10C082 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] Bldg.No.1-Nuclear Engineering 2 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10E019

Surface Control Engineering

界面制御工学

[Code] 10E019 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] A2-305 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

【Instructor】M.Miyahara

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	3	
	4	
	2	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10E022

Engineering for Chemical Materials Processing

化学材料プロセス工学

[Code] 10E022 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd

[Location] A2-302 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] M.Ohshima, S.Nagamine

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	3	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Diagnostic Imaging

画像診断学

[Code] 10W606 [Course Year] [Term] 2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Introduction to Quantum Science

基礎量子科学

[Code] 10C070 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] Bldg.No.1-Nuclear Engineering 2 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	9	
	2	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Nuclear Engineering, Adv.

原子核工学最前線

[Code] 10C084 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 3rd

[Location] Bldg.No.1-Nuclear Engineering 2 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme Class number of times Description	
---	--

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Nuclear Engineering Application Experiments

原子力工学応用実験

[Code] 10C068 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] Research Reactor Institute [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise

[Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 5th

[Location] Katsura Hall [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	14	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Synthesis

高分子合成

[Code] 10D649 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] A2-307 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Chemistry of Polymer Materials

高分子材料化学

[Code] 10D007 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] A2-302 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	4	
	3	
	7	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Physical Properties

高分子物性

[Code] 10D651 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] A2-307 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	3	
	3	
	4	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Solution Science

高分子溶液学

[Code] 10D643 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] A2-307 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	3	
	3	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Thermodynamics for Materials Science, Adv. A

材料熱力学特論A

[Code] 10C205 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
Thermodynamics	2	
and Elasticity	2	
Generalization of		
thermodynamic	3	
potneitals		
Basic of	2	
micromechanics	<i></i>	
Basic of statistical	1	
thermodyanamics	1	
Statistical physics of	3	
lattice		
Landau's		
phenomenology for	2	
phase transtision		
Basic science of	1	
glasses	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Exercise in Practical Scientific English

実践的科学英語演習「留学ノススメ」

[Code] 10D040 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar [Language] English [Instructor] Kenji Wada. etc

[Course Description] This course is designed to develop high-level communication and presentation skills in English required for top level scientific and industrial career prospects.

[Grading] Attendance 60%, midterm reports 20%, final report 20%. The final report must be submitted by the deadline date.

[Course Goals] This course is designed to develop high-level communication and presentation skills in English required for top level scientific and industrial career prospects.

【Course Topics】

Theme	Class number of times	Description	
Introduction	1	Course Guidance, etc.	
		Definition of technical writing 3C in technical writing Weaknesses of Japanese	
Exercise-1	1	writers Good examples and bad examples	
Exercise-2	1	Punctuation Presentation skills 1 -organization	
E	1	Organizing your thoughts for the title and abstract Presentation skills 2 ?Visual	
Exercise-3		aspects	
Exercise-4	1	Presenting the background of your research Presentation skills 3 ?Oral Aspects	
Exercise-5	1	Describing how you did your research Presentation skills 4 ?Physical Aspects	
Exercise-6	1	Presenting what you observed Presentation Practice	
Exercise-7	1	Placing your findings in the field Presentation Practice	
Exercise-8	1	Expressing thanks and listing references Presentation practice	
Exercise-9	1	Writing your proposal Presentation practice	
Exercise-10	1	Presentation practice Reviews & Feedbacks Evaluation	
Wrap-up lecture	1~2	Current situation of studying abraod, etc.	

[Textbook] No textbook is required.

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites] http://www.ehcc.kyoto-u.ac.jp/alc/ (needs passwords).

[Additional Information] For details, contact Dr. Wada (wadaken@scl.kyoto-u.ac.jp).

10K004

New Engineering Materials, Adv.

新工業素材特論

[Code] 10K004 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 5th

[Location] (Katsura)A1-131 (Yoshida)Lecture Room3,Reseach Bldg.No.4 [Credits] 2 [Restriction]

[Lecture Form(s)] Relay Lecture [Language] English [Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	Composite Materials: Smart, Lightweight and Strong Materials (HOJO)
	1	Innovations in High Performance Steels for Bridge Construction (SUGIURA)
	1	Materials in Micro Electro Mechanical Systems (MEMS) (TSUCHIYA)
	1	High Temperature Superconductivity and Its Application to
	1	Electronics(SUZUKI)
	1	Sustainability Issues(SHIMIZU)
	-	Material Properties of Fiber Reinforced Cementitious Composites and
	1	Applicability to Structures (KANEKO)
	1	Structural biochemistry of proteins (SHIRAKAWA)
	2	Semiconductor Materials and Devices (KIMOTO)
	1	Separation Analysis in Micro- and Nano-scale (OTSUKA)
		Polymer Synthesis beyond the 21st Century:Precision Polymerizations and
	1	Novel Polymeric Materials (SAWAMOTO)
	1	Inorganic New Materials (EGUCHI)

【Textbook】

【Textbook(supplemental)】 Class handouts

[Prerequisite(s)]

[Web Sites]

Experiments and Exercises on Bio-Medical Engineering, Adv. I

生命・医工分野特別実験および演習第一

[Code] 10W681 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Experiments and Exercises on Bio-Medical Engineering, Adv. II

生命・医工分野特別実験および演習第二

[Code] 10W683 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of	Description
-----------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Bio-Medical Engineering A

生命・医工分野特別セミナー A

[Code] 10W685 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Bio-Medical Engineering B

生命・医工分野特別セミナー B

[Code] 10W687 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Bio-Medical Engineering C

生命・医工分野特別セミナー C

[Code] 10W689 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Seminar on Bio-Medical Engineering D

生命・医工分野特別セミナー D

[Code] 10W690 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

生命医工分野セミナーA(修士)

[Code] 10W670 [Course Year] [Term] 1st term [Class day & Period] [Location] [Credits] 2 [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

生命医工分野セミナーB(修士)

[Code] 10W671 [Course Year] [Term] 2nd term [Class day & Period] [Location] [Credits] 2 [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Instrumental Analysis, Adv. I

先端科学機器分析及び実習 I

[Code] 10D043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-304 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Instrumental Analysis, Adv. II

先端科学機器分析及び実習 II

[Code] 10D046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] A2-304 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Organic Chemistry

先端有機化学

[Code] 10D818 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 1st

[Location] A2-306 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme Class number of times Description	Theme	Class number of	Description
---	-------	-----------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10V003

Biomechanics

バイオメカニクス

[Code] 10V003 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd

[Location] Engineering Science Depts Bldg.-830 [Credits] 2 [Restriction] [Lecture Form(s)]

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Chemical Reaction Engineering, Adv.

反応工学特論

[Code] 10E007 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd [Location] A2-305 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Miura, Kawase

【Course Description】 Kinetic analysis of gas-solid-catalyst reaction and gas-solid reaction

Operation and design of reactors for gas-solid-catalyst and gas-solid reactions

Industrial reactors including fixed had fluiding had graving had given had given had graving had

Industrial reactors including fixed bed, fluidized bed, moving bed, simulated moving bed, and stirred tank types

[Grading] Based on the result of examination at the end of term and the results of quizzes and reports imposed every week

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Gas-solid reaction I.		
Industrial gas-solid	2	As examples of industrial gas-solid reactions, the pyrolysis (carbonization) and
reactions		gasification of coal as well as reactors for these reactions are explained.
Gas-solid reaction II.		Kinetic measurement and analysis of complicated reactions, particularly coal
Kinetic analysis of	3	pyrolysis, are explained from the first-order reaction model to the distributed
gas-solid reaction		activation energy model (DAEM).
Gas-solid reaction		Concepts and derivation of the reaction models including the grain model and
III. Models of	2	the random-pore model are explained. Application of the models to coal
gas-solid reactions		gasification is overviewed.
Gas-solid-catalyst		Commencial cotalizate and industrial accordid cotalizat recetions are
reaction I.	2	Commercial catalysts and industrial gas-solid-catalyst reactions are
Effectiveness factor		overviewed. The generalized effectiveness factor and the selectivity affected
and selectivity		by mass transfer are explained.
Gas-solid-catalyst		Industrial catalytic reactors including fixed-bed and fluidized-bed reactors are
reaction II. Industrial	2	overviewed. Design and operation of these reactors including thermal stability
catalytic reactors		are explained.
Gas-solid-catalyst		
reaction III.		Deactivation mechanisms of solid catalysts are overviewed. The deactivation
Deactivation and	3	and consequent change in selectivity are explained in terms of the decay
regeneration of		function and specific activity.
catalyst		

【Textbook】Prints are distributed.

【Textbook(supplemental)】

[Prerequisite(s)] Needs knowledge of chemical reaction engineering including heterogeneous reactions.

[Web Sites]

10E016

Fine Particle Technology, Adv.

微粒子工学特論

[Code] 10E016 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] A2-302 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Shuji Matsusaka

【Course Description】 Analyses of particle behavior in gases, Particle handling operations, and measurement methods are lectured. Also, particle charging that affect particle behavior in gases are theoretically explained. Furthermore, the control of the particle charging and its applications are lectured.

【Grading】 Examination

【Course Goals】 Understand the analysis and modeling of dynamic behavior of particles. Furthermore develop the ability to apply the knowledge for particle handling and processing.

[Course Topics]

Theme	Class number of times	Description
Particle properties	3	Mathematical description of particle diameter distribution, properties of fine
and measurements		particles, and their measurement methods are explained.
Particle adhesion and	3	Measurement methods for adhesion forces of particles and dynamical analysis
dynamical analysis		method for particle collision and elastic deformation are lectured.
		Temporal and spatial distribution of deposition and reentrainment of fine
Behavior of particles	4	particles in gas-solid flow are explained using physical models and probability
in airflow	4	theory. In addition, complicated reentrainment phenomena during particle
		collision are discussed.
Doutials showing and		Concept of particle charging and quantitative analysis methods of charging
Particle charging and control	3	process are explained; also, charge distribution of particles is analyzed.
		Furthermore, new methods to control particle charge are introduced.
Particle sampling	1	Sampling of fine particles and statistical evaluation methods are explained.

【Textbook】Lecture notes

【Textbook(supplemental)】 K. Okuyama, H. Masuda and S. Morooka: Biryuushi Kougaku — Fine particle technology, Ohmsha, Tokyo (1992)

[Prerequisite(s)] Basic knowledge on powder technology in bachelor course

[Web Sites]

10C078

Hybrid Advanced Accelerator Engineering

複合加速器工学

[Code] 10C078 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 3rd

[Location] Bldg.No.1-Nuclear Engineering 2 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	3	
	1	
	2	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10E004

Separation Process Engineeering, Adv.

分離操作特論

[Code] 10E004 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] A2-305 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】H.Tamon, N.Sano

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	1	
	1	
	2	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Radiation Medical Physics

放射線医学物理学

[Code] 10C047 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 3rd

[Location] Bldg.No.1-Nuclear Engineering Sminar Room 1 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Yoshinori Sakurai, Tooru Kobayashi, Hiroki Tanaka

Course Description Medical physics is the general term for the physics and technology which are supporting radiation diagnosis and therapy, and particle therapy. As it covers many different fields, the important subjects are "promotion for the advance of radiation therapy" and "quality assurance for radiation therapy". The scope of this course is to learn the fundamental knowledge for radiation medical physics. Especially, the focus is put on the understanding for (1) the bases of physics, biology and so on for radiation, (2) the physics for the radiations applied to diagnosis, (3) the characteristics of radiations and particle beams applied to therapy, and (4) the radiation protection, quality assurance and so on for radiation diagnosis and therapy.

【Grading】 Attendance and reports

[Course Goals] To learn the fundamental knowledge of medical physics, mainly for radiation physics in diagnosis and therapy

[Course Topics]

Theme	Class number of times	Description
Fundamental physics	2	
for radiation	2	
Radiation biology	1	
Radiation		
measurement and	2	
evaluation		
Physics in radiation	3	
diagnosis	3	
Physics in radiation	4	
therapy	4	
Quality assurance		
and standard	1	
dosimetry		
Radiation protection	1	

【Textbook】 Not specified. Handouts will be given for each topic.

【Textbook(supplemental)】F.M.Khan, "The Physics of Radiation Therapy: Mechanisms, Diagnosis, and Management" (Lippincott Williams & Wilkins, Baltimore, 2003)

[Prerequisite(s)] It is recommended to attend the course, "Radiation Measurement for Medicine", concurrently.

[Web Sites]

[Additional Information] According to the lecture frequency in the said year, some of the topics can be omitted or new topics can be added.

放射線治療計画・計測学実習

[Code] 10W618 [Course Year] [Term] 1st+2nd term [Class day & Period] [Location] [Credits] 2

[Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

TD1	G1	
Theme	Class number of	Description
	times	r · · ·

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C017

Radiation Physics and Engineering

放射線物理工学

[Code] 10C017 [Course Year] Master 1st [Term] 1st term [Class day & Period] Mon 1st

[Location] Bldg.No.1-Nuclear Engineering 2 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G205

Microsystem Engineering

マイクロシステム工学

[Code] 10G205 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 3rd

[Location] Engineering Science Depts Bldg.-216 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] English [Instructor] O. Tabata, H. Kotera, I. Kannno, T. Tsuchiya

Course Description Microsystem covers not only technologies related to individual physical or chemical phenomenon in micro scale, but also complex phenomena which are eveolved from their interaction. In this course, the physics and chemistry in micro and nanoscale will be lectured in contrast to those in macro scale. The various kinds of application devices (ex. physical (pressure, flow, force) sensors, chemical sensors, biosensors, actuators (piezoelectric, electrostatic, and shape memory) and their system are discussed.

【Grading】 The evaluation will be based on the reports given in each lecture.

[Course Goals] Understand the theory of sensing and actuating in microsystem. Acquire basic knowledge to handle various kinds of phenomena in microscale.

[Course Topics]

Theme	Class number of times	Description	
MEMC modeling		Multi-physics modeling in microscale.	
MEMS modeling	2	Electro-mechanical coupling analysis.	
MEMS simulation	2	System level simulation in MEMS.	
Electrostatic	2	Floatrostatic concers and naturators. Theory and application devices	
microsystem		Electrostatic sensors and actuators. Theory and application devices.	
Piezoelectric	2	Diazoalastria cancers and actuators. Theory and application devices	
microsystem	<i></i>	Piezoelectric sensors and actuators. Theory and application devices.	
Physical sensors	3	Physical sensors as a fundamental application in microsystem. Accelerometer,	
Filysical sellsors		vibrating gyroscope, pressure sensors.	
Micro total analysys	2		
system		Chemical analysis system and bio-sensing device using microsytem.	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

[Additional Information] The student of this class is strongly recommended to take a course 10V201 "Introduction to the Design and Implementation of Micro-Systems", which is a practice for designing microsystem. Those who wants to take this course, please contact one of the instructors as early as possible.

10G203

Micro Process and Material Engineering

マイクロプロセス・材料工学

[Code] 10G203 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location] Engineering Science Depts Bldg.-216 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese

[Instructor] H. Kotera, O. Tabata, K. Eriguchi, I. Kanno, T. Tsuchiya

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Semiconductor	3	
microfabrication	3	
Thin-film process	2	
and evaluation	3	
Silicon	2	
micromachining	3	
3D lithography	2	
Soft-micromachining	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C234

Physics of Mesoscopic Materials

メゾ材料物性学

[Code] 10C234 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Akira Sakai, Shu Kurokawa

[Course Description] The first half of the lecture explains the mesoscopic phenomena, a variety of electronic transport phenomena observed in a nano- or atomic-scale specimen that is smaller in size than the mean free path of electrons. The second half covers scanning probe microscopy (SPM), a powerful observation tool widely exploited in nanotechnology. Principles of various types of SPM and their applications in materials science are exposited with many illustrative examples.

【Grading 】 Grading will be made based on the report on the assigned problems.

[Course Goals] The final goal of this lecture is to make students acquire basic understanding on the mesoscopic phenomena and the characterization of materials with SPM.

[Course Topics]

Theme	Class number of times	Description
	7	1. Introduction to electronic conduction
		2. Quantum interference between electrons and its influence on electronic
		conduction
Mesocopic electron		3. Ballistic conduction
transport phenomena		4. Single-electron tunneling
		5. Electron transport through atom-sized contacts of metals
		6. Electron transport through single molecules
		7. Newest topics of mesoscopic electronic conduction
		1. Atomic and electronic structures of surfaces
		2. Properties of tunneling electrons
Materials		4. Forces acting across ultrasmall junctions
characterization with	8	5. Materials characterization with SPM (1)
SPM		6. Materials characterization with SPM (2)
		7. Materials characterization with SPM (3)
		8. Cutting-edge SPM researches

【Textbook 】 Lacture notes in a paper form will be distributed.

【Textbook(supplemental)】

[Prerequisite(s)] Prerequisite courses: "Solid state physics", or equivalent, in the undergraduate course.

[Web Sites]

10G041

Advanced Finite Element Methods

有限要素法特論

[Code] 10G041 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)]

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	4	
	3	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C074

Quantum Science

量子科学

[Code] 10C074 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location] Bldg.No.1-Nuclear Engineering 2 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	6	
	6	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Clinical Oncology

臨床腫瘍学

[Code] 10W609 [Course Year] [Term] 2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10B407

Robotics

ロボティクス

[Code] 10B407 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	1	
	3	
	4	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C072

Introduction to Advanced Nuclear Engineering

基礎量子エネルギー工学

[Code] 10C072 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] Bldg.No.1-Nuclear Engineering 1 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	14	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Seminar on Polymer Industry

高分子産業特論

[Code] 10D638 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 3rd and 4th

[Location] A2-306 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Human Anatomy

人体構造学

[Code] 10W696 [Course Year] [Term] 1st term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	unies	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

生理学

[Code] 10W641 [Course Year] [Term] 2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10K001

Introduction to Advanced Material Science and Technology

先端マテリアルサイエンス通論

【Code】10K001

[Course Year] Special Auditors, Special research Students, Graduate School Students (inc. International Course Students)

【Term 】1st term

[Class day & Period] Starting from April 15, the lecture will be held from 2:45 p.m. to 4:15 p.m. on Friday afternoon but some lectures are from 4:30 p.m.

[Location] Distance lectures are held between Lecture Room 1 in Engineering Bld. 8 at Yoshida campus and Seminar Room 131 in Bld. A1 at Katsura campus. Attend either of them at your convenience.

[Credits] 2 [Restriction] [Lecture Form(s)] Relay Lecture [Language] English [Instructor]

【Course Description】 The various technologies used in the field of material science serve as bases for so-called "high technologies", and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

【Grading】 In order to obtain two credits, students must attend at least ten lectures, and at least five of the submitted reports must be evaluated as "passed" by each lecturer. Each report should be submitted to the lecturer within two weeks after his/her lecture. NOTE: Reports are NOT acceptable from those who do not attend the lecture.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook] None

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10V201

Introduction to the Design and Implementation of Micro-Systems

微小電気機械システム創製学

[Code] 10V201 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-216 [Credits] 2

[Restriction] Take class 10G205 "Microsystem Engineering" [Lecture Form(s)] Lecture and Pactice

[Language] English [Instructor] O. Tabata, H. Kotera, T. Tsuchiya, I. Kanno

Course Description This is a joint lecture with Hong Kong University of Science and Technology (HKUST). A team consists of two students from each University work together to fullfill the assignment (design a microsystem) through paper survey, analysis, design, and presentation. A student can acquire not only the basic knowledge of a microsystem, but also comprehensive ability of English such as technical knowledge in English, skill for team work, and communication.

【Grading 】Presentation, Assignments, and Achievement

[Course Goals] Acquire the knowledge and skill to design and analyze a microsystem.

[Course Topics]

Theme	Class number of times	Description
Tutorial on		Master CAD program for microsystem design and analysis which will be
microsystem CAD	1	
software		utilized to accomplish an assignment.
Lecture and Task	1	Learn basic knowledge necessary to design a microsystem/MEMS(Micro
Introduction	1	Electromechical Systems) utilizing microfabrication technology.
Design and analysis	3	Analyze and design a microsystem by communicating with a team member of
work	<u>.</u>	HKUST.
Presentation I	1	The designed device and its analyzed results is presented in detail by team in
Presentation i	1	English.
Evatuation of device	1	Evaluate the fabricated microsystem.
Presentation II	1	The measured results and comparison between the analyzed results of the
Presentation II	1	fabricated microsystem is presented by team in English.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

[Additional Information] The student of this class is required to take the course 10G205 "Microsystem Engineering", which provide the knowledge about the theory of sensing and actuating in microsystem. Those who wants to take this course have to take training course for CAD in advance. For more detail, please contact one of the instructors as early as possible.

10R001

Quantum Beam Science, Adv.

量子ビーム科学特論

[Code] 10R001 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 4th

[Location] Engineering Science Depts Bldg.-213 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C018

Neutron Science

中性子科学

[Code] 10C018 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 3rd

[Location] Bldg.No.1-Nuclear Engineering 2 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	3	
	6	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Biomolecular Dynamics

生体分子動力学

[Code] 10D450 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 3rd

[Location] Engineering Science Depts Bldg.-213 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Design for Biomedical and Pharmaceutical Applications

医薬用高分子設計学

[Code] 10D636 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] A2-307 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	1	
	1	
	1	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Reactive Polymers

反応性高分子

[Code] 10D610 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] A2-307 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	3	
	1	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

生体機能高分子

[Code] 10D611 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] A2-307 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

[Grading]

【Course Goals】

【Course Topics】

Thomas	Class number of	Deganintien
Theme		Describtion
	times	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Physical Chemistry of Polymers

高分子基礎物理化学

[Code] 10D622 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 2nd

[Location] A2-307 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor]

【Course Description】

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Chemistry of Biomaterials

生体材料化学

[Code] 10D031 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd

[Location] A2-302 [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	14	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Functional Solution Chemistry

機能性溶液化学

[Code] 10D216 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] A2-303 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] T.Kakiuchi

【Course Description】

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	3	
	2	
	2	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Biorecognics

生体認識化学

[Code] 10D815 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] A2-308 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

物理有機化学

[Code] 10D808 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] A2-308 [Credits] 2 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

	GI I É	
Theme	Class number of	Doccrintion
1 Hellie		Description
	times	•

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10W409

Frontiers in the Field of Chemical Biology and Biological Chemistry

化学から生物へ 生物から化学へ

[Code] 10W409 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 5th

[Location] A2-302 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] Japanese

[Instructor] S.Nishimoto, M.Shirakawa, Y.Tabata, H.Iwata, I.Hamachi, Y.Mori, M.Umeda, H.Atomi

[Course Description] In the cutting-edge of reseach fields, chemistry and biologi are being closely related each other. In this class, progress in such interdisciplinary areas and topics including natural products, biophysics, bioimaging, baimaterials, strucural biology, chemical biology, molecular physiology and others, are briefly explained and discussed.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	times	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10S202

Green and Sustainable Chemistry

物質環境化学

[Code] 10S202 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] A2-303 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】K.Ohe,Y.Tsuji,T.Kakiuchi

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	1	
	1	
	1	
	2	
	1	
	1	
	1	
	2	
	1	
	1	
·	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G209

Multi physics Numerical Analysis

マルチフィジクス数値解析力学

[Code] 10G209 [Course Year] Master 2nd [Term] 2nd term [Class day & Period] Wed 1st

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme Class number of times	Description
2	
2	
2	
5	
2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C046

Radiation Biology and Medicine

放射線生物医学

[Code] 10C046 [Course Year] [Term] 1st term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Functional Chemistry

高分子機能化学

[Code] 10D645 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	unies	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Design of Polymerization Reactions

高分子生成論

[Code] 10D607 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Mitsuo Sawamoto and Makoto Ouchi

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	3	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Structure and Function

高分子機能学

[Code] 10D613 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

Course Description Polymers are indispensable in our modern society, fundamental in industry, and functional for chemistry, medicine, electronics, and many other advanced and emerging technologies. In this class, photo- and electric functions of polymeric materials are discussed on the basis of photochemistry and photophysics. In particular, the importance of designing nanostructures of polymer assembly is highlighted by explaining examples of state-of-the-art real systems.

【Grading】 Evaluated with the grade on the final test or the quality of report submitted after the final class.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Photofunctional	-	
Polymers	5	
Dielectric Functions	1	
of Polymers	1	
Electronic Functions		
of Polymers	5	
Advanced		
Functionality of	2	
Polymer Films		

【Textbook】 None: Some handouts will be dealt in the class of every lecture.

【Textbook(supplemental)】None:

[Prerequisite(s)] Students are expected to have knowledge of Physical Chemistry and Polymer Chemistry provided in chemisty course of undergraduate.

[Web Sites]

Polymer Supermolecular Structure

高分子集合体構造

[Code] 10D616 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】Hirokazu Hasegawa

Course Description Polymers self-assemble by intra- and/or intermolecular interaction to form assembled structures of polymer molecules. Such structures are closely related to the properties of the polymeric materials, it is necessary to control the assembled structures of the constituent polymer molecules in order to control the properties of polymeric materials, especially solid materials. In this lecture particularly, formation mechanisms, analytical techniques, and elucidated structures of crystalline and liquid-crystalline polymers, phase-separated structures of polymer mixtures, microphase-separated structures of block and graft copolymers will be discussed.

[Grading] The grading is based on the report assignments.

Course Goals This course aims for the development of the faculty to infer the properties of polymeric materials from their morphology based on the knowledge of structure-property relationships of higher-order structures of crystalline and liquid-crystalline polymers, phase-separated structures of polymer mixtures (blends), microdomain stuctures of block copolymers, etc.

[Course Topics]

Theme	Class number of times	Description
	3	In the lectures, unit cell structures and hierarchical higher-order structures of
Crystalline Polymers		polymer crystals such as folded-chain lamellar crystals and spherulites, as well
		as deformation and thermal behavior of polymer crystals will be discussed.
Liquid Constalling	1	The lecture on the self-assembled structure of liquid-crystalline polymers will
Liquid-Crystalline		be given. Their phase diagrams, defects, domain structures, and
Polymers		structure-property relationships will be mentioned.
	4	Miscubility, phase-diagrams, mechanisms and dynamics of phase transitions,
Polymer Blends		relationships between phase-separated structures and properties, methods to
		control the phase-separated structures will be discussed.
	7	The lectures include nano-scale domain formation of block copolymers by
D111 C6		microphase-separation, miscibility and phase diagrams, order-disorder and
Block and Graft Copolymers		order-order transitions, bicontinuous structures, structure formation in thin
		films, blends with homopolymers or other block copolymers, multi-component
		multi-block copolymers, miktoarm star block copolymers, and more.

[Textbook] Not used.

【Textbook(supplemental)】Given in the lectures.

[Prerequisite(s)] Thermodynamics preferable.

[Web Sites]

Polymer Spectroscopy

高分子分光学

[Code] 10D625 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	4	
	2	
	2	
	3	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Design of Polymer Materials

高分子材料設計

[Code] 10D628 [Course Year] Master Course [Term] 2nd term [Class day & Period]

[Location] ICR Seminar Room [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Controlled Synthesis

高分子制御合成

[Code] 10D647 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	1	
	1	
	6	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Biomaterials Science and Engineering

高分子医工学

[Code] 10D633 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	2	
	2	
	1	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Physics and Function

高分子機能物性

[Code] 10D028 [Course Year] Master and Doctor Course [Term] (not held; biennially) [Class day & Period]

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	3	
	5	
	3	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C206

Thermodynamics for Materials Science, Adv. B

材料熱力学特論B

[Code] 10C206 [Course Year] Master 1st [Term] 1st term [Class day & Period] Fri 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
•	3	
	3	
	3	
	3	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites] http://www.aqua.mtl.kyoto-u.ac.jp/

10V426

Functionalized Nucleic Acids Chemistry

機能性核酸化学

[Code] 10V426 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location] A2-303 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Nishimoto and Tanabe

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	1	
	2	
	2	
	2	
	2	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Molecular Biology

分子生物化学

[Code] 10D812 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】 Biological responses are elicited at the interface of intrinsic genetic information and extrinsic environmental factors. This course discusses on molecular aspects of brain function and immunity. Experimental tools such as fluorescent probes for second messenger molecules are also explained through performance of experiments using the probes.

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Basics	1	
Principles of	2	
neurotransmission	3	
Immunity and	2	
inflammation	3	
Gaseous bioactive	2	
molecules	3	
Experiments to		
observe cellular	3	
responses		

[Textbook] Provided in the course

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Bioorganic Chemistry

生物有機化学

[Code] 10D813 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Biotechnology

生物工学

[Code] 10D816 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	2 0001.pul

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Biomolecular Function Chemistry

生体分子機能化学

[Code] 10D448 [Course Year] Master and Doctor Course [Term] (not held; biennially) [Class day & Period]

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

[Grading]

【Course Goals】

【Course Topics】

Theme Class number of times	Description
-----------------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C031

Quantum Manipulation Technology

量子制御工学

[Code] 10C031 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 3rd

[Location] Bldg.No.1-Nuclear Engineering 2 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	12	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10W651

High Precision Radiation Therapy

高精度放射線治療学

[Code] 10W651 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],,,

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme Class number of times Description	
---	--

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Molecular Materials

分子機能材料

[Code] 10D413 [Course Year] Master and Doctor Course [Term] (not held; biennially)

[Class day & Period] Wed 2nd [Location] A2-304 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] K. Tanaka and A. Ito

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	11	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Excited-State Hydrocarbon Chemistry

励起物質化学

[Code] 10D207 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location] A2-303 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] S.Nishimoto

【Course Description】

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	2	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G209

Multi physics Numerical Analysis

マルチフィジクス数値解析力学

[Code] 10G209 [Course Year] Master 2nd [Term] 2nd term [Class day & Period] Wed 1st

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	2	
	5	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Biomaterials Science and Engineering

高分子医工学

[Code] 10D633 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	2	
	2	
	1	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C046

Radiation Biology and Medicine

放射線生物医学

[Code] 10C046 [Course Year] [Term] 1st term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10W651

High Precision Radiation Therapy

高精度放射線治療学

[Code] 10W651 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],,,

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme Class number of times Description	
---	--

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Biomaterials Science and Engineering

高分子医工学

[Code] 10D633 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	2	
	2	
	1	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10V426

Functionalized Nucleic Acids Chemistry

機能性核酸化学

[Code] 10V426 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location] A2-303 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Nishimoto and Tanabe

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	1	
	2	
	2	
	2	
	2	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Molecular Biology

分子生物化学

[Code] 10D812 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】 Biological responses are elicited at the interface of intrinsic genetic information and extrinsic environmental factors. This course discusses on molecular aspects of brain function and immunity. Experimental tools such as fluorescent probes for second messenger molecules are also explained through performance of experiments using the probes.

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Basics	1	
Principles of	2	
neurotransmission	3	
Immunity and	2	
inflammation	3	
Gaseous bioactive	2	
molecules	3	
Experiments to		
observe cellular	3	
responses		

[Textbook] Provided in the course

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Bioorganic Chemistry

生物有機化学

[Code] 10D813 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Biotechnology

生物工学

[Code] 10D816 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	2 0001.pul

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Structure and Function

高分子機能学

[Code] 10D613 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

Course Description Polymers are indispensable in our modern society, fundamental in industry, and functional for chemistry, medicine, electronics, and many other advanced and emerging technologies. In this class, photo- and electric functions of polymeric materials are discussed on the basis of photochemistry and photophysics. In particular, the importance of designing nanostructures of polymer assembly is highlighted by explaining examples of state-of-the-art real systems.

[Grading] Evaluated with the grade on the final test or the quality of report submitted after the final class.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Photofunctional	5	
Polymers	5	
Dielectric Functions	1	
of Polymers	1	
Electronic Functions		
of Polymers	5	
Advanced		
Functionality of	2	
Polymer Films		

【Textbook】 None: Some handouts will be dealt in the class of every lecture.

【Textbook(supplemental)】None:

[Prerequisite(s)] Students are expected to have knowledge of Physical Chemistry and Polymer Chemistry provided in chemisty course of undergraduate.

[Web Sites]

Polymer Supermolecular Structure

高分子集合体構造

[Code] 10D616 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】Hirokazu Hasegawa

Course Description Polymers self-assemble by intra- and/or intermolecular interaction to form assembled structures of polymer molecules. Such structures are closely related to the properties of the polymeric materials, it is necessary to control the assembled structures of the constituent polymer molecules in order to control the properties of polymeric materials, especially solid materials. In this lecture particularly, formation mechanisms, analytical techniques, and elucidated structures of crystalline and liquid-crystalline polymers, phase-separated structures of polymer mixtures, microphase-separated structures of block and graft copolymers will be discussed.

[Grading] The grading is based on the report assignments.

Course Goals This course aims for the development of the faculty to infer the properties of polymeric materials from their morphology based on the knowledge of structure-property relationships of higher-order structures of crystalline and liquid-crystalline polymers, phase-separated structures of polymer mixtures (blends), microdomain stuctures of block copolymers, etc.

[Course Topics]

Theme	Class number of times	Description
	3	In the lectures, unit cell structures and hierarchical higher-order structures of
Crystalline Polymers		polymer crystals such as folded-chain lamellar crystals and spherulites, as well
		as deformation and thermal behavior of polymer crystals will be discussed.
Liquid Constalling	1	The lecture on the self-assembled structure of liquid-crystalline polymers will
Liquid-Crystalline		be given. Their phase diagrams, defects, domain structures, and
Polymers		structure-property relationships will be mentioned.
	4	Miscubility, phase-diagrams, mechanisms and dynamics of phase transitions,
Polymer Blends		relationships between phase-separated structures and properties, methods to
		control the phase-separated structures will be discussed.
	7	The lectures include nano-scale domain formation of block copolymers by
Block and Graft Copolymers		microphase-separation, miscibility and phase diagrams, order-disorder and
		order-order transitions, bicontinuous structures, structure formation in thin
		films, blends with homopolymers or other block copolymers, multi-component
		multi-block copolymers, miktoarm star block copolymers, and more.

[Textbook] Not used.

【Textbook(supplemental)】Given in the lectures.

[Prerequisite(s)] Thermodynamics preferable.

[Web Sites]

Design of Polymer Materials

高分子材料設計

[Code] 10D628 [Course Year] Master Course [Term] 2nd term [Class day & Period]

[Location] ICR Seminar Room [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Controlled Synthesis

高分子制御合成

[Code] 10D647 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	1	
	1	
	6	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Design of Polymerization Reactions

高分子生成論

[Code] 10D607 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Mitsuo Sawamoto and Makoto Ouchi

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	3	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Functional Chemistry

高分子機能化学

[Code] 10D645 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Biomolecular Function Chemistry

生体分子機能化学

[Code] 10D448 [Course Year] Master and Doctor Course [Term] (not held; biennially) [Class day & Period]

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Functional Chemistry

高分子機能化学

[Code] 10D645 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Design of Polymerization Reactions

高分子生成論

[Code] 10D607 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Mitsuo Sawamoto and Makoto Ouchi

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	3	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Structure and Function

高分子機能学

[Code] 10D613 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] Polymers are indispensable in our modern society, fundamental in industry, and functional for chemistry, medicine, electronics, and many other advanced and emerging technologies. In this class, photo- and electric functions of polymeric materials are discussed on the basis of photochemistry and photophysics. In particular, the importance of designing nanostructures of polymer assembly is highlighted by explaining examples of state-of-the-art real systems.

[Grading] Evaluated with the grade on the final test or the quality of report submitted after the final class.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Photofunctional	5	
Polymers	5	
Dielectric Functions	1	
of Polymers	1	
Electronic Functions		
of Polymers	5	
Advanced		
Functionality of	2	
Polymer Films		

[Textbook] None: Some handouts will be dealt in the class of every lecture.

【Textbook(supplemental)】None:

[Prerequisite(s)] Students are expected to have knowledge of Physical Chemistry and Polymer Chemistry provided in chemisty course of undergraduate.

[Web Sites]

Polymer Supermolecular Structure

高分子集合体構造

[Code] 10D616 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】Hirokazu Hasegawa

Course Description Polymers self-assemble by intra- and/or intermolecular interaction to form assembled structures of polymer molecules. Such structures are closely related to the properties of the polymeric materials, it is necessary to control the assembled structures of the constituent polymer molecules in order to control the properties of polymeric materials, especially solid materials. In this lecture particularly, formation mechanisms, analytical techniques, and elucidated structures of crystalline and liquid-crystalline polymers, phase-separated structures of polymer mixtures, microphase-separated structures of block and graft copolymers will be discussed.

[Grading] The grading is based on the report assignments.

Course Goals This course aims for the development of the faculty to infer the properties of polymeric materials from their morphology based on the knowledge of structure-property relationships of higher-order structures of crystalline and liquid-crystalline polymers, phase-separated structures of polymer mixtures (blends), microdomain stuctures of block copolymers, etc.

[Course Topics]

Theme	Class number of times	Description
	3	In the lectures, unit cell structures and hierarchical higher-order structures of
Crystalline Polymers		polymer crystals such as folded-chain lamellar crystals and spherulites, as well
		as deformation and thermal behavior of polymer crystals will be discussed.
Liquid Caratallina		The lecture on the self-assembled structure of liquid-crystalline polymers will
Liquid-Crystalline	1	be given. Their phase diagrams, defects, domain structures, and
Polymers		structure-property relationships will be mentioned.
	4	Miscubility, phase-diagrams, mechanisms and dynamics of phase transitions,
Polymer Blends		relationships between phase-separated structures and properties, methods to
		control the phase-separated structures will be discussed.
	7	The lectures include nano-scale domain formation of block copolymers by
D111-C6		microphase-separation, miscibility and phase diagrams, order-disorder and
Block and Graft		order-order transitions, bicontinuous structures, structure formation in thin
Copolymers		films, blends with homopolymers or other block copolymers, multi-component
		multi-block copolymers, miktoarm star block copolymers, and more.

[Textbook] Not used.

【Textbook(supplemental)】Given in the lectures.

[Prerequisite(s)] Thermodynamics preferable.

[Web Sites]

Polymer Spectroscopy

高分子分光学

[Code] 10D625 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	4	
	2	
	2	
	3	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Design of Polymer Materials

高分子材料設計

[Code] 10D628 [Course Year] Master Course [Term] 2nd term [Class day & Period]

[Location] ICR Seminar Room [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Controlled Synthesis

高分子制御合成

[Code] 10D647 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	1	
	1	
	6	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Biomaterials Science and Engineering

高分子医工学

[Code] 10D633 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	2	
	2	
	1	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Molecular Biology

分子生物化学

[Code] 10D812 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】 Biological responses are elicited at the interface of intrinsic genetic information and extrinsic environmental factors. This course discusses on molecular aspects of brain function and immunity. Experimental tools such as fluorescent probes for second messenger molecules are also explained through performance of experiments using the probes.

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Basics	1	
Principles of	2	
neurotransmission	3	
Immunity and	2	
inflammation	3	
Gaseous bioactive	2	
molecules	3	
Experiments to		
observe cellular	3	
responses		

【Textbook 】Provided in the course

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Bioorganic Chemistry

生物有機化学

[Code] 10D813 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Hydrology

水文学

[Code] 10A216 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Michiharu SHIIBA and Yasuto TACHIKAWA

Course Description Physical mechanisms of the hydrologic cycle are described from the engineering viewpoint. The rainfall-runoff modeling and its prediction method are emphasized. Physical hydrological processes explored are surface flow, saturated-unsaturated subsurface flow, groundwater flow, streamflow routing, and evapotranspiration. Physical mechanism of each hydrological process and its numerical modeling method are explained, and the basic equations and numerical simulation methods are provided. Then, distributed hydrological modeling which incorporate various hydrological processes and a lumping method of distributed hydrological model are explained.

【Grading 】 Examination and report

[Course Goals] The goals of the class are to understand the physical mechanism of hydrological processes, their basic equations, and numerical simulation methods.

	- · ·
I ('Ollred	Topics 1
Course	1 Opics 1

Theme	Class number of times	Description
Introduction	1	The hydrologic cycle and the hydrological processes are explained.
		The physical process of the surface flow and its numerical modeling method are
Surfaceflow	2	described. The basic equations of the surface flow and the numerical simulation
		methods are explained.
		The physical process of the saturated-unsaturated subsurface flow and its
Saturated-unsaturated	2	numerical modeling method are described. The basic equations of the
subsurface flow	2	saturated-unsaturated subsurface flow and the numerical simulation methods are
		explained.
		The physical process of the groundwater flow and its numerical modeling method
Groundwater flow	2	are described. The basic equations of the groundwater flow and the numerical
		simulation methods are explained.
		The physical process of the streamflow routing and its numerical modeling method
Streamflow routing	2	are described. The basic equations of the streamflow routing and the numerical
		simulation methods are explained.
		The physical process of the evapotranspiration and its numerical modeling method
Evapotranspiration	2	are described. The basic equations of the evapotranspiration and the numerical
		simulation methods are explained.
Channel network and	1	Numerical representations of channel networks and catchments are explained.
watershed modeling	1	Numerical representations of channel networks and catchinents are explained.
Distributed	1	A physically-based distributed hydrological model is described, which is
hydrological model	1	constructed with numerical representations of channel networks and catchments.
Lumping of flow,		Lumping methods of a distributed hydrological model are described, which include
parameter and	1	lumping of flow, parameter and watershed model.
watershed model		rumping of now, parameter and watersned moder.

【Textbook】 Handouts are distributed at each class.

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge of hydraulics and hydrology

[Web Sites] http://hywr.kuciv.kyoto-u.ac.jp/lecture/lecture.html

Water Resources Systems

水資源システム論

[Code] 10A222 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	1	
	1	
	2	
	2	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Civic and Landscape Design

景観デザイン論

[Code] 10A808 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

LUCIUC	number of times	Description
	1	
	1	
	1	
	1	
	1	
	2	
	2	
	2	
	1	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Theory of Structural Materials, Adv.

構造材料特論

[Code] 10A832 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 3rd

[Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Yoshio Kaneko

Course Description Compositions, constitutive laws and applications of major structural materials including concrete and steel are lectured. Demanded performances of structural materials are explained from the view point of mutual dependencies between materials and structural systems. Furthermore, newly developed high performance materials (HPM), structural systems using HPM, and environmental control technique using structural materials are discussed.

【Grading】 Evaluation will be made based on attendance to lectures and submissions of assignments.

[Course Goals] 1) To understand Compositions, constitutive laws and applications of major structural materials including concrete and steel as well as continual process of research, development and design from the material level up to the structural level. 2) To understand engineering meanings of structural materials in development of new structural systems and research trend of new structural materials. 3) To understand how to apply the varied structural materials into new structural systems and development of environmental control systems.

[Course Topics]

Theme	Class number of times	Description
Guidance and		Basic properties, plastic theory, fracture theory, and softening characteristics
Structural Material (1	4	of cementitious composites and steel are lectured. Fundamental principle of
) Basic Theory		material constitutive laws and mathematical model of materials are explained.
Structural Material (2) New material		Research trend and application of new materials are lectured. Fiber reinforced
	4 ~ 5	cementitious composites, intelligent-smart material, application of structural
		materials into new structural systems are explained.
Structural Material (3		Environmental controls of concrete and metallic materials are lectured. Health
) Environmental	4 ~ 5	monitoring of concrete, environmental control systems using steel, production
Control		and environment of metallic materials are explained.

[Textbook] Not assigned.

【Textbook(supplemental)】 H. Mihashi, K. Rokugo and M. Kunieda (Editors): "Crack of Concrete and Fracture Mechanics," Gihodo Publisher, Tokyo, July 2010, (in Japanese).

[Prerequisite(s)] Basic knowledge on concrete, steel and structures.

[Web Sites]

[Additional Information] It is encouraged to ask questions and attend with positive mind.

10A845

Theory & Practice of Environmental Design Research

環境デザイン論

[Code] 10A845 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	9	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10A856

Dwelling Planning

居住空間計画学

[Code] 10A856 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 3rd

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	4	
	6	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Theory of Architectural Design, Adv.

建築設計特論

[Code] 10B013 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 5th

[Location] C2-213 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	7	
	7	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Theory of Architectural and Environmental Planning 1

建築環境計画論

[Code] 10B014 [Course Year] Master 1st [Term] 1st term [Class day & Period] Thu 2nd

[Location] C2-102 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Teruyuki Monnai

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Basic Theory of		
Semiotics	4	
Architectural and	2	
Urban Semiotics	2	
Development of		
Townscape	2	
Semiotics		
Creative		
Regeneration of		
Townscape in	1	
Historical City		
Kyoto		
System Theory of		
Designa and	1	
Evaluation of Living	1	
Environment		
Development of	2	
Design Methodology	2	
Perspactive on		
Theory of		
Architectural and	1	
Environmental		
Planning		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Theory of Architectural and Environmental Planning II

建築環境計画論

[Code] 10B015 [Course Year] Master Course [Term] 2nd term [Class day & Period] Thu 1st [Location] C2-213

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Tetsu YOSHIDA

Course Description In explanatory theory of human psychology and behavior in built-environment, formation of privacy feeling based on territorial behavior or owing to others sight line is explained. Furthermore, crime prevention through environmental design (CPTED) and feeling of insecurity against crime is also explained. How privacy was dealt in the field of, firstly information and then architectural planning and urban planning and so on are widely explained. Especially, privacy of residents living in detached houses and apartment houses in built-up area designed and built by successive rebuilding way is major issues. Furthermore, through field survey and presentation, understanding about subject matter will be enriched.

[Grading] Presentation in class - 50%, Report at the end of period - 50%

[Course Goals] Enriching understanding about privacy dealt in architectural and urban planning field

【Course Topics】

Theme	Class number of times	Description
privacy in architectural	1	
and urban planning	1	Explain outline how privacy is dealt in architectural and urban planning
Privacy dealt in mass		
medium and data		Firstly classification of privacy is presented. And Privacy dealt in mass medium and
privacy, and privacy in	1	
assessment of dwelling		data privacy, and privacy in assessment of dwelling environment is explained.
environment		
Privacy between	1	Privacy between members in family in one house which began to be considered after
members in family	1	the modern Enlightenment in Europe is explained
Privacy dealt in houses		Develpment in built-up area designed and built by successive rebuilding way is
rebuilt by successively	1	explained. And get a better grasp that understanding of privacy feeling of residents in
in built-up area		such area is important
Privacy dealt with	1	Privacy dealt with sunshine condition and open space condition especially in urban
sunshine condition and		planning is explained
open space condition		planning is explained
Privacy after	1	Formation of privacy feeling after possession of territory explained by proxemics
possession of territory		theory is explained
Privacy dealt after		
comparing windows of	3	Formation of privacy feeling after comparing windows of houses and buildings to ones'
houses and buildings to	3	eyes is explained
eyes		
Crime prevention, Fear	3	CPTED concepts besed on possession of territory and feeling of insecurity against
of crime	<u>.</u>	crime is explained.
Presentation by	3	In addition to knowledge got from lecture, based on field survey and so on, presentation
students	3	by students

[Textbook]

【Textbook(supplemental)】 Distributed hand-out at lectures

[Prerequisite(s)] General knowledge about proxemics theory

[Web Sites]

Theory of Architecture, Adv.

建築論特論

[Code] 10B016 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C2-213 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

History of Architecture and Environmental Design

建築都市文化史学特論

[Code] 10B017 [Course Year] [Term] 1st term [Class day & Period] Wed 3rd [Location] C2-413 [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Building construction project management

建築プロジェクトマネジメント論

[Code] 10B019 [Course Year] Master Course [Term] 2nd term [Class day & Period] Thu 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	6	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Theory of Architecture and Environment Design, Adv.

生活空間学特論

[Code] 10B024 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 4th

[Location] C2-213 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Waro Kishu, Takahiro Taji

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Architectural Information Systems, Adv.

建築情報システム学特論

[Code] 10B027 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 1st

[Location] C2-213 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Naoki Katoh, Makoto Ohsaki

【Course Description】 We will teach theory and methodology to model the design process of an architecture and to carry out planning, analysis, design, production and and management. For this, we will teach the system engineering methodology such as system analysis method, optimization theory, and heuristics approach, and data analysis methodology such as data mining. We will give assignments which require to use computer software.

【Grading】 It is based on the attendance of class, and on reports.

[Course Goals] The goal is to make students to acquire the knowledge of system engineering methods such as optimization theory and data analysis and to apply the knowledge to solve real problems.

[Course Topics]

Theme	Class number of times	Description
What is optimization	1	We will give a brief overview about the fundamental concepts.
method?		
linear programming,		We will give lectures about inear programming and network programming by
network	3~4	focusing on how to model real problems as linear and network problems. We
programming		will teach how to use linear programming software.
integer		We will introduce problems that can be modeled as integer programs by giving
programming,	3	applications to architectural problems. We will also teach how to use software
approximation		for solving integer programs.
method		Tot solving integer programs.
location theory	2	We will teach what is location theory and mention several applications in
		urban design.
	4	Among method for knowledge discovery from huge amount of data, we will
data mining		teach association rules, decision trees, clustering, and multiple regression
data mining		analysis. We will give assignment which require to use data mining software
		called Weka.
computational	2	We will teach what are computational geometry and GIS and mention
geometry and GIS	2	applications to architecture.

【Textbook】 Introduction to architectural Systems, Naoki Katoh, Makoto Ohsaki, Akinori Tani, Kyoritsu Shuppan (in Japanese).

【Textbook(supplemental)】 Mathematical Programming, Naoki Katoh, Corona Sha (in Japanese). Data mining and its Applications, Naoki Katoh, Yukinobu Hamuro, Katsutoshi Yada, Asakura Shoten (in Japanese).

[Prerequisite(s)] linear algebra, calculus, probability theory

[Web Sites]

Applied Solid Mechanics

応用固体力学

[Code] 10B034 [Course Year] Master 1st [Term] 1st term [Class day & Period] [Location] C2-313

[Credits] 4 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	10	
	4	
	3	
	3	
	3	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Design Theory of Architecture and Human Environment

人間生活環境デザイン論

[Code] 10B035 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] C2-102 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] KANKI Kiyoko

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

History of Japanese Architecture

建築史学特論

[Code]10B036 [Course Year] [Term]2nd term [Class day & Period]Wed 3rd [Location]C2-213 [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Design Mechanics for Building Structures

建築設計力学

[Code] 10B037 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 1st [Location] C2-101

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] I. Takewaki, M. Tsuji

[Course Description] Basic mechanics and inverse problem for design of building structures are explained. Structural optimization methods are also presented. Rational structural design approaches are introduced in place of conventional try-and-error approaches.

【Grading 】 Grading is based on the examination at the end of semester.

[Course Goals] Obtain the knowledge on basic mechanics for design of building structures. Also obtain advanced knowledges on new theories and methodologies of structural optimization and inverse-problem formulations.

【Course Topics】

Theme	Class number of times	Description
Fundamentals of mathematical programming	2	Fundamentals of mathematical programming methods are explained. Linear and nonlinear programming methods are introduced and some examples are presented.
Design sensitivity analysis	1	Basic methods of sensitivity analysis for computing derivatives (sensitivity coefficients) of static responses and frequencies of free vibration with respect to vatiations of design parameters, shape sensitivity analysis with respect to nodal
Application to optimization of framed structures	1	Application of mathematical programming methods to optimization of framed structures is presented.
Earthquake response constrained design	1	Design earthquakes defined in response spectrum and earthquake response constrained design for shear building models
Earthquake response constrained design for response controlled	1	Earthquake response constrained design for response controlled structures and isolated structures including the design of control devices.
Exercise 1	1	Exercise on simple structural optimization problem.
Concept of inverse problem	1	Examples of inverse problem in terms of shear building models
Hybrid inverse problem of structural systems	1	Examples of hybrid inverse problem in vibration and classification of hybrid inverse problems. The solution procedure of hybrid inverse mode problems is discussed.
Strain-controlled design method for moment-resisting frames	1	Simple examples are used for understanding fundamental concepts of strain-controlled design.
Inverse problem via design sensitivity analysis	1	An inverse problem formulation via design sensitivity analysis (direct method) is explained.
Earthquake-response constrained design	1	A method of earthquake-response constrained design for shear building models is explained. Design loads in terms of the design response spectrum are used in the design method.
Performance-based Design	1	A design methodology based on the concept of performance-based design is explained.
Exercise 2	1	Exercise on inverse problems.

[Textbook]

[Textbook(supplemental)] Design Mechanics and Control Dynamics of Building, Architectural Institute of Japan, 1994.

[Prerequisite(s)] Mechanics of Building Structures, Basic Linear Algebra, Basic Calculus

[Web Sites]

Theory of Cognition in Architecture and Human Environment

人間生活環境認知論

[Code] 10B038 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] C2-413 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	1	
	2	
	2	
	1	
	1	
	1	
	1	
	3-4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Structural Analysis

構造解析学特論

[Code] 10B040 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Wed 3rd

[Location] C2-313 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	1	
	1	
	1	
	3	
	2	
	1	
	1	
	1	
	1	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Concrete Structures, Advanced

コンクリート系構造特論

[Code] 10B043 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Wed 2nd

[Location] C2-313 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	5	
	4	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10B046

Dynamic Response of Building Structures

建築振動論

[Code] 10B046 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 1st

[Location] C2-102 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
•	3	
	3	
	3	
	3	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Control for Structural Safety

構造安全制御

[Code] 10B052 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Wed 1st

[Location] C2-313 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Masayoshi Nakashima

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	2	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10B054

Building Systems

建築設備システム特論

[Code] 10B054 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location] C2-413

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	3	
	2	
	6	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Environmental Control Engineering, Adv.

環境制御工学特論

[Code] 10B222 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] C2-101 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Kazunori HARADA, Shuichi HOKOI

【Course Description】 This lecture deals with fundamental aspects on functional aspects of building envelope as a shelter from outdoor climate. Specifically, the detailed methods on air flow, thermal radiation and indoor air quality are described and discussed for use in practice of building design for thermal environment control and safety problems during fire.

[Score is evaluated by end-term examination.', 'Score is evaluated by end-term examination.']

[Course Goals] To acquire basic concepts on fundamental concepts on thermal environment control for preparation of master thesis development.

【Course Topics】

Theme	Class number of times	Description
introduction	2	The history of numerical methods in architectural environmental control is briefly introduced, followed by introduction of mathematical formulation of physical phenomena.
numerical methods in heat conduction	4	As a common knowledge, heat conduction equation is dealt with in order to understand the basic framework in numerical methods. At the end of this term, report will be obligatory to understand the meaning of discrete equations and their nature.
numerical methods on fluid motion	5	Lecture will be given for standard methods of calculation of fluid dynamics. At the end of this term, simple practice on control volume method and SIMPLE algorithm will be obligatory.
simultaneous system and turbulence	4	Lecture will be given for simultaneous systems of fluid motion and thermal field. In a similar way, turbulence model is to be introduced. The participants are expected to have learned on environmental engineering in architecture at bachelor level.

【Textbook】None specified.

【Textbook(supplemental)】 To be specified during the course.

[Prerequisite(s)] The participants are expected to have learned on environmental engineering in architecture at bachelor level.

[Web Sites]

Building Geoenvironment Engineering

建築地盤工学

[Code] 10B226 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 1st [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] Japanese [Instructor] I.Takewaki, M.Tsuji

[Course Description] Wave propagation theories are explained first for 1D, 2D and 3D models. 1D multi-reflection problems of waves are also formulated and explained. Based on these theories, methods for construction of design earthquake ground motions are presented. Soil-structure interaction problems are stated finally for the purpose of developing more rational design methods for building structures.

【Grading】 Evaluated by the term examination at the end of the semester.

[Course Goals] Obtain the knowledge on wave propagation theories and 1D multi-reflection theory of waves. Furthermore obtain the knowledge on construction of design earthquake ground motions and soil-structure interaction.

[Course Topics]

Theme	Class number of times	Description
Introduction and in-situ (field) tests	1	Introduction of course is conducted and in-situ (field) tests are explained.
Wave propagation 1 (one-dimensional wave propagation 1)	1	1D wave propagation problems are formulated and explained from its fundamentals.
Wave propagation 2 (one-dimensional wave propagation 2)	1	1D multi-reflection problems of waves are formulated and explained. The introduction of the program of SHAKE is also made.
Wave propagation 3 (2D and 3D wave propagation 1)	1	3D wave propagation problems are formulated and explained.
Wave propagation 4 (2D and 3D wave propagation 2)	1	2D wave propagation problems are formulated and explained as the simplification of 3D problems.
Wave propagation 5 (2D and 3D wave propagation 3)	1	Surface waves (Rayleigh and Love waves) are explained from its fundamentals.
Exercise on wave propagation	1	Exercise on wave propagation is conducted. 1D, 2D wave propagations are treated.
Construction of design earthquake ground motions	1	Construction of design earthquake ground motions is discussed. Response spectrum, Fourier spectrum and power spectrum are also discussed from the viewpoint of construction of design earthquake ground motions.
Soil-structure interaction	2	The problem of soil-structure interaction is explained and various models for this problem are introduced.
Exercise on structural design considering soil-structure interaction	1	Exercise on structural design considering soil-structure interaction is conducted.
Seismic damage to soil, pile and foundation	1	Seismic damage to soil, pile and foundation is explained.
Seismic upgrading (structures)	1	Seismic upgrading (structures) is discussed.
Seismic upgrading (soil, pile and foundation)	1	Seismic upgrading (soil, pile and foundation) is discussed.

[Textbook]

【Textbook(supplemental)】 Suggest in the class.

[Prerequisite(s)] Basics of mechanics. Fundamentals of vibration and wave propagation. Preliminary of linear algebra and calculus.

[Web Sites]

10B231

High Performance Structural Systems Engineering

高性能構造工学

[Code] 10B231 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] C2-313 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Masayoshi Nakashima, Keiichiro Suita

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	2	
	4	
	3	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Steel Structures, Advanced

鋼構造特論

[Code] 10B234 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] C2-102 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Keiichiro Suita

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	3	
	3	
	1	
	1	
	1	
	1	
	2	
	1	
	2	
	1	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Environmental Wind Engineering

建築風工学

[Code] 10B238 [Course Year] [Term] 2nd term [Class day & Period] Thu 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	2	
	3	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Urban Disaster Mitigation Engineering

都市災害管理学

[Code] 10B241 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C2-313 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Hiroshi Kawase, Shiichi Matsushima

Course Description The natural disaster to urban society is getting complex and difficult to predict along with the density growth and high performance build-up, and so the risk of the disaster has risen more and more in recent years. Therefore, the necessity of the integrated disaster mitigation measures before the disaster, immediately after the disaster, and long after the disaster is pointed out. In this lecture, we provide the lessens learned from earthquake disaster in the past, prediction methods of strong motions and building damages, earthquake-proof performance evaluation technique in a real building, and a pros and cons of the present building code for the disaster mitigation.

【Grading 】 Grading will be based on the attendance and report.

[Course Goals] Understand the seismic vulnerability evaluation of structures and urban systems, the disaster impact evaluation scheme, and the disaster prevention countermeasures. Then learn basic knowledge needed to foresee and prepare for the earthquake disaster in future by themselves.

[Course Topics]

Theme	Class number of times	Description
Earthquake	4	Source mechanisms for disastrous earthquakes
Mechanism	4	
Wave propagation	3	Wave propagation analysis and strong motion simulation
Structural response	3	Modeling of structures and prediction of their responses
Great eartuquake	3	Duradiations of anoth conth cooks dispoten and its anxinonmental immed
disaster		Predictions of great earthquake disaster and its environmental impact
Seismic design and	2	
retrofit		Problems associated with the current building code and retrofitting technology

[Textbook]

[Textbook(supplemental)] Ground motion, phenomena and theory(AIJ)

[Prerequisite(s)] Basic knowledge of seismic design

[Web Sites]

Control Method in Built Environment

建築環境調整学

[Code] 10B257 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] C2-101 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Uetani, Yoshiaki

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	2	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10B418

Strength of Advanced Materials

先進材料強度論

[Code] 10B418 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	3	
	3	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Exercise in Practical Scientific English

実践的科学英語演習「留学ノススメ」

[Code] 10D040 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar [Language] English [Instructor] Kenji Wada. etc

【Course Description】 This course is designed to develop high-level communication and presentation skills in English required for top level scientific and industrial career prospects.

[Grading] Attendance 60%, midterm reports 20%, final report 20%. The final report must be submitted by the deadline date.

[Course Goals] This course is designed to develop high-level communication and presentation skills in English required for top level scientific and industrial career prospects.

【Course Topics】

Theme	Class number of times	Description
Introduction	1	Course Guidance, etc.
		Definition of technical writing 3C in technical writing Weaknesses of Japanese
Exercise-1	1	writers Good examples and bad examples
Exercise-2	1	Punctuation Presentation skills 1 -organization
E	1	Organizing your thoughts for the title and abstract Presentation skills 2 ?Visual
Exercise-3		aspects
Exercise-4	1	Presenting the background of your research Presentation skills 3 ?Oral Aspects
Exercise-5	1	Describing how you did your research Presentation skills 4 ?Physical Aspects
Exercise-6	1	Presenting what you observed Presentation Practice
Exercise-7	1	Placing your findings in the field Presentation Practice
Exercise-8	1	Expressing thanks and listing references Presentation practice
Exercise-9	1	Writing your proposal Presentation practice
Exercise-10	1	Presentation practice Reviews & Feedbacks Evaluation
Wrap-up lecture	1~2	Current situation of studying abraod, etc.

[Textbook] No textbook is required.

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites] http://www.ehcc.kyoto-u.ac.jp/alc/ (needs passwords).

[Additional Information] For details, contact Dr. Wada (wadaken@scl.kyoto-u.ac.jp).

10D051

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 5th

[Location] Katsura Hall [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	14	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10F267

Hydro-Meteorologically Based Disaster Prevention

水文気象防災学

[Code] 10F267 [Course Year] Master 1st [Term] 1st term [Class day & Period] Mon 4th

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	1	
	2	
	2	
	2	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Environmental Design in Geo-front Engineering

ジオフロント環境デザイン

[Code] 10F407 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] S.Nishiyama, T.Koyama, Y.Ijiri, M.Wada

【Course Description】 Practical projects of geo-risk management, advanced measurement method and groundwater environmental-assessment system associaeted with utilization and environmental conservation of underground space are introduced and explained in this lecture.

[Grading] Problem sets will be given almost every week and due one week later in class.

You can work together but turn in your own solutions.

[Course Goals] This course is intended to give students a basic understanding of the theoretical and empirical principles of underground space development.

This course will provide the analytical background for students to understand the design principles used in disposal of radioactive Waste project and subsurface CO2 disposal project.

[Course Topics]

Theme	Class number of times	Description
Introduction to		
underground	1	Introduction to rock mechanics and rock engineering.
development		
Rock mechanics for		Fundamental definitions, historical underground development, underground
underground	1	development art and engineering.
development		development art and engineering.
Construction of		Influence of rock strength on excavation, influence of undeground space size,
underground	3	ground support drilling and blasting, mechanism of rock breakage, tunnelling
structures		progress with drill and blast excavation.
Hydraulic		Geologic formation as aquifers, , groundwater flow in unsaturated zones and
engineering in	4	fractured media, hydro-geologic investigation, 3-D general flow equations and
underground	4	advection diffusion equation, groundwater modeling, etc.
development		advection diffusion equation, groundwater moderning, etc.
Geo-risk engineering	2	Risk identification, risk qualification analysis, risk response, and topics in risk
		engineering.
Examples of		
underground	2	Study on underground-space use and construction case studies.
development projects		

[Textbook] Handout will be distributed.

【Textbook(supplemental)】References are indicated in the handout.

[Prerequisite(s)] Undergraduate courses in geology, geotechnical engineering, and soil mechanics.

[Web Sites]

Integration of Research and Architectural Design

臨床建築学

[Code] 10F431 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 4th

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	2	
	1	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Design of Acoustic Environment

音環境設計論

[Code] 10F433 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 1st

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】Prof. Hirotsugu Takahashi

Course Description The aim of this lecture is the acquisition of the theory and technology regarding acoustics, which are needed in designing optimum acoustic environment for our living space in the complex urban society. To achieve good urban environment having less stresses in both physiological and psychological aspects, it is important to optimize the parameters regarding this factor. The education programs for this aim are the lecture of the conception for acoustic environment of human space, acoustic theory and technology for noise and vibration control stressing physical nature based on human science.

[Grading] The learning results are evaluated overall in terms of both the record of attendance and the final exam.

[Course Goals] The goal of this lecture is better understanding of the theory and technology regarding acoustics, which are needed in designing optimum acoustic environment for our living space in the complex urban society.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Explanation of outline of the lecture and the method for evaluation of the learning results
Fundamentals of acoustic design	4	Explanation of fundamentals of sound and vibration, propagation of acoustic energy and sound radiation problems, which are necessary to understand the physical phenomena of various acoustic problems
Noise and vibration problems in buildings	5	Lectures of physical phenomena and method of measures and evaluation method for various acoustic problems in buildings, The problems are air-borne and structure-borne sound, sound insulation, floor impact sound, duct noise, and so on
Room acoustics	3	Lectures of method of analysis, measuring techniques and evaluation of acoustics in the room in order to control and optimize the acoustic environment of the room
Update topics of acoustic problems	1	Lectures of update topics regarding the problem of noise, vibration and room acoustics

【Textbook 】 Distribution of the lecture materials

【Textbook(supplemental)】Introduced if necessary

[Prerequisite(s)] Fundamentals of Dynamics, Differential and Integration

[Web Sites] http://ae-gate1.archi.kyoto-u.ac.jp/

Social Acoustics

社会音響学

[Code] 10F435 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 3rd [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10F437

Urban Fire Hazard Mitigation and Safety Planning

都市火災安全計画論

[Code] 10F437 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] TANAKA Takeyoshi, HARADA Kazunori

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
introduction	1	
Urban fire and Kyoto	1	
Fire provisions in	2	
Edo-era	2	
Urban fires after	1	
Meiji-era	1	
Seismic fire	2	
Fire provision and		
city planning of	2	
Tokyo		
Post war		
reestablishment and	1	
urba fire plan		
fine about attained of		Basic knowledge on fire characteristics of individual buildings are lectured as
fire characteristics of	4	a context of elements in urban unit. Essential provisions for individual
individual buildings		buildings are summarized.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Applied Numerical Methods

応用数値計算法

[Code] 10G001 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 1st

[Location] Engineering Science Depts Bldg.-313 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	3	
	2	
	2	
	2	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G003

Solid Mechanics, Adv.

固体力学特論

[Code] 10G003 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	3	
	3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Thermal Science and Engineering

熱物理工学

[Code] 10G005 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] Engineering Science Depts Bldg.-315 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] H. Yoshida & M. Matsumoto

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
(M) Brownian	1	
motion	1	
(M) Transport		
phenomena and	1	
correlation functions		
(M) Spectral analysis	2	
and fractal analysis		
(M) Stochastic		
process and its	2-3	
application		
(Y) Entropy and free	1	
energy: revisit		
(Y) Science of		
atmosphere and	3	
ocean		
(Y) Hydrogen energy	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Thermodynamics, Statistical physics, Heat transfer engineering, Numerical analysis etc.

[Web Sites]

10G011

Design and Manufacturing Engineering

設計生産論

[Code] 10G011 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] Engineering Science Depts Bldg.-315 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G013

Dynamic Systems Control Theory

動的システム制御論

[Code] 10G013 [Course Year] [Term] 1st term [Class day & Period] Tue 2nd

[Location] Engineering Science Depts Bldg.-315 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	5	
	5	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Vibration and Noise Control

振動騒音制御

[Code] 10G023 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Mon 1st

[Location] Engineering Science Depts Bldg.-213 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hiroshi MATSUHISA, Hideo UTSUNO

[Course Description] Vibration and noise control of machines and structures are explained. Passive, active and semi-active vibration controls explained.

【Grading】 Examination

[Course Goals] Understand the basic theories of vibration and sound control and be able to apply them to the actual problem.

[Course Topics]

Theme	Class number of times	Description
Passive vibration		
control	2	
Semi-active vibration	2	
control	2	
Active vibration	2	
control	<u> </u>	
Modal Analysis	1	
Theory of sound	3	
Propagation of sound	2	
in outdoor field	<u> </u>	
Indoor sound	1	
Technology of noise	1	
reduction	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Transport Phenomena

熱物質移動論

[Code] 10G039 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Nakabe, Kazuyoshi, Tatsumi, Kazuya

Course Description 1 The important learning objective of this class is to understand the fundamental mechanisms of momentum, heat, and mass transfer phenomena, the knowledge of which will be markedly required for the thermal energy control technologies to further practice conservations of natural resources and energies for sustainable development. Heat and mass transfer processes consisting of conduction and forced/natural convection will be highlighted in detail, referring to the similarity characteristics of flow velocity, fluid temperature, and species concentration. Some topics on Reynolds stress, turbulent heat flux, and phase change will be introduced, expanding to their numerical models, together with some recent trends of high-tech heat and energy devices.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Surrounding		
Examples of	1	
Transport	1	
Phenomena		
Governing Equations		
and	3 ~ 4	
Non-Dimensional	3 ~ 4	
Parameters		
Boundary layer flows	2 ~ 3	
External and Internal	1 ~ 2	
Flows	1 ~ 2	
Turbulent	2 ~ 3	
Phenomena		
Topics of Flow and		
Heat Transfer	2 ~ 3	
Mechanism		
	1	

[Textbook]

【Textbook(supplemental)】 Example Transport Phenomena (Bird, R.B. et al.)

[Prerequisite(s)]

[Web Sites]

10G403

Optimum System Design Engineering

最適システム設計論

[Code] 10G403 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 2nd

[Location] Engineering Science Depts Bldg.-101 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	3	
	3	
	5	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10M035

Construction of Environment

環境構築論

[Code] 10M035 [Course Year] [Term] 1st term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

	Theme	Class number of times	Description
--	-------	-----------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10Q807

Theory for Design Systems Engineering

デザインシステム学

[Code] 10Q807 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Tue 3rd

[Location] Room 213, Butsurikei-Building [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Tetsuo Sawaragi and Hiroaki Nakanishi

[Course Description] The lecture focuses on the human design activity; designing artifacts (things, events and systems) based on human intuitions, and designing human-machine systems in which the relations between human and objects are of importance.

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	3	
	3	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

人間・環境・デザイン論

[Code] 10W801 [Course Year] [Term] 1st term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

人間・環境・デザイン融合工学特論

[Code] 10W803 [Course Year] [Term] 2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

人間・環境・デザイン総合演習

[Code] 10W805 [Course Year] [Term] 1st+2nd term [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

人間・環境・デザイン特別演習

[Code] 10W807 [Course Year] [Term] 1st+2nd term [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description			
	Theme	Class number of	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

人間・環境・デザイン特別演習

[Code] 10W809 [Course Year] [Term] 1st+2nd term [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

人間・環境・デザインセミナー

[Code] 10W811 [Course Year] [Term] 1st term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

人間・環境・デザインセミナー

[Code] 10W813 [Course Year] [Term] 2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Prospects of Interdisciplinary Photonics and Electronics

融合光・電子科学の展望

[Code] 10X001 [Course Year] [Term] 1st term [Class day & Period] Fri 2nd [Location] A1-131

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Experiments and Exercises in Interdisciplinary Photonics and

Electronics ,

融合光・電子科学特別実験及演習 1

[Code]10X003 [Course Year] [Term]1st+2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Experiments and Exercises in Interdisciplinary Photonics and

Electronics ,

融合光・電子科学特別実験及演習 2

[Code]10X005 [Course Year] [Term]1st+2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Seminar on Interdisciplinary Photonics and Electronics

融合光・電子科学特別セミナー

[Code]10X007 [Course Year] [Term]1st+2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Quantum Mechanics for Electronics Engineering

量子論電子工学

[Code] 10C825 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 3rd

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	3	
	1	
	1	
	1	
	1	
	2	
	2	
	2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Charged Particle Beam Apparatus

電子装置特論

[Code] 10C801 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 4th

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Yasuhito Gotoh

【Course Description】 Fundamental technologies of an ion beam apparatus, such as ion source, formation and evaluation of ion beam, transport of ion beam, and ioni-solid interaction will be presented. Taking ion implantation as one of the example of the ion application, the relationship between the incident ion energy and implantation depth will be presented. Each element of a typical ion beam apparatus is explained in detail.

[Grading] Evaluation will be made with the results of final examination. Achievements of exercises in the class are also taken into consideration.

[Course Goals] To understand the details of an ion beam apparatus: generation, transport and evaluation of an ion beam. Understanding of the entire ion beam apparatus as a system is also purpose of the class.

[Course Topics]

Theme	Class number of times	Description
Ion beam systems		Outline of the class is presented. Physical properties of ions in vacuum are
and their applications	1	given, and ion beam apparatuses and their application will be introduced with
and their applications		some typical examples.
		Interaction between high energy ion and solid atoms are given. Major topics
Ion-solid interaction	3	are: how the ions transfer their energy to the target atoms, i.e., how the ions are
ion-sond interaction	3	decelerated in the solid, and relationship between incident ion energy and
		implantation depth is given.
		Methods of ion generation for various elements are explained. Important
Generation and	4	euqations of beam extraction and beam transport are given. Starting with the
transport of ion beam	4	paraxial ray equation, concept of transfer matrix is given. Finally, some
		important physical parameters of ion beams are given.
		Details of magnetic sector as mass separator are given. Transfer matrix of the
Mass separators and	4	mass separator are presented and focusing effect is described. An important
energy analyzers	4	parameter of mass resolution is given. Some different kinds of energy
		analyzers are also introduced.
Design of ion beam		As a summary of the course, design of the simple ion beam system is given.
	2	Prior to the design, some important knowledges about vacuum pumps and
system		components are shown.

【Textbook】 Yasuhito Gotoh, Charged Particle Beam Appratus, 2011 version (Will be sold at CO-OP shop)

【Textbook(supplemental)】 Junzo Ishikawa, Charged Particle Engineering (Corona).

[Prerequisite(s)] Vacuum Electronic Engineering 1, 2 (undergraduate course)

[Web Sites]

Plasma Science and Engineering, Adv.

プラズマ工学特論

[Code] 10C807 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Osamu SAKAI

【Course Description】 Main regimes of plasma generation such as capacitive-coupled discharges, inductive-coupled discharges, and wave-propagation discharges are investigated and categorized with discussion of wave-heating mechanisms and particle/energy balance equations. These discussions are based on elementary process of atoms and molecules and wave dispersions in a plasma. In addition, various wave modes emerging in a spatiotemporal structure of plasmas are addressed.

【Grading】 Judged by regular examination and submitted report sheet. (In some years, regular examination is replaced by a set of report sheets.)

[Course Goals] Reviewing fundamentals of plasma engineering, understandings of industrially-available plasma sources and electromagnetic-wave propagation in a plasma are required.

[Course Topics]

Theme	Class number of times	Description
Fundamentals	2-3	Reviewing fundamentals of plasma engineering, basic phenomena including
rundamentais	2-3	elementary processes in a plasma are addressed.
		Based on wave propagation in a plasma, regimes of plasma generation such as
DI	6-7	capacitive-coupled discharges, inductive-coupled discharges, and
Plasma sources	0-7	wave-propagation discharges are investigated and categorized with discussion
		of wave-heating mechanisms and particle/energy balance equations.
Electromagnetic	F. C	Various wave modes emerging in a spatiotemporal structure of plasmas are
wave propagation	5-6	addressed; not only gaseous plasmas but also plasmas in solids are discussed.

[Textbook]

【Textbook(supplemental)】F. F. Chen and J. P. Chang, Lecture Notes on Principles of Plasma Processing (Kluwar Academic/Plenum Publishing, New York, 2003)

[Prerequisite(s)] Knowledge addressed in plasma science and engineering in the bachelor course, or similar one corresponding to this subject.

[Web Sites]

Semiconductor Engineering Adv.

半導体工学特論

[Code] 10C810 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 3rd

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】 This course explores the fundamentals of physics of semiconductors, which are esseantial to understand semiconductor materials and devices.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
		Electronic Band Structures are discussed. Nearly free electron and
Dand theory	2.4	tight-binding approachs, k dot p theory, pseudopotential method are explained.
Band theory	Band theory 3-4	Band structures of major semiconductors such as Si and GaAs are also
		discussed.
	4-5	
	4-6	

[Textbook]

【Textbook(supplemental)】 S. M. Sze Physics of Semiconductor Devices (Wiley Interscience)

P.Y.Yu and M. Cardona Fundamentals of Semiconductors (Springer)

[Prerequisite(s)] Semiconductor engineering, quantum mechanics (undergraduate level)

[Web Sites]

Electronic Materials Adv.

電子材料学特論

[Code] 10C813 [Course Year] Master Course [Term] 2nd term [Class day & Period] Thu 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Semiconductors	6-7	
Superconductors	4-5	
		Semiconductor heterostructures are fabricated by using a crystal growth
Epitaxial growth	3-4	method called "epitaxy". Fundamentals of epitaxial growth are discussed. One
		of epitaxial growth methods, molecular-beam epitaxy, is discussed in detail.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Molecular Electronics

分子エレクトロニクス

[Code] 10C816 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 2nd

[Location] A1-131 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Surface Electronic Properties

表面電子物性工学

[Code] 10C819 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 5th

[Location] A1-001 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	3	
	6	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Optical Properties and Engineering

光物性工学

[Code] 10C822 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 4th

[Location] A1-001 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	unies	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Quantum Optoelectronics Devices

光量子デバイス工学

[Code] 10C828 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 4th

[Location] A1-001 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Quantum Measurement

量子計測工学

[Code] 10C830 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 4th

[Location] A1-131 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】 As an example of high precision measurements using quantum phenomena, frequency standards, which is realized with the smallest uncertainty in all measurement quantities at present, are discussed. The principle and evaluation of frequency standards are explained.

【Grading 】Report(two times, at the first lecture and the after all lectures)

[Course Goals] The goal of this lecture is to understand that precision measurements are realized with combination of the best technologies and is based on physics.

[Course Topics]

Theme	Class number of times	Description
Introduction and		Two principles of time measurements Depreducibility postulate and dynamic
principle of time	1.5	Two principles of time measurement: Reproducibility postulate and dynamic model
measurement		model
Time and relativistic	2.5	Impact of special and conoral relativistic theory on time measurement
theory	2.3	Impact of special and general relativistic theory on time measurement
Fundamentals of		Atomic states, its energy shifts, high-resolution spectroscopy and
atomic frequency	2.5	
standards		high-sensitive detection
Cesium frequency		
standard and atom	2.5	Principle of Ramsey resonance and its interpretation as atom interferometer
interferometer		
Specification of		
frequency standards:	2	Fundamentals of evaluation of frequency stability with Allan variance, and
evaluation methods	۷	theoretical limit of frequency stability
and theoritical limit		
noise	2	Incoherent signals and shot noise

[Textbook]

【Textbook(supplemental)】C. Audoin and B. Guinot, The Measurement of Time, (Cambridge University Press, 2001). M. Kitano, Fundamentals of electronic circuits (Reimei publishing, 2009) in Japanese.

[Prerequisite(s)] Fundamentals of physics (quantum physics, in particular) and electric circuits including linear system.

The level which average graduate students of electric and electronic science and technology acquire is sufficient.

[Web Sites] https://www.kogaku.kyoto-u.ac.jp/lecturenotes/

Electrical Conduction in Condensed Matter

電気伝導

[Code] 10C851 [Course Year] Master 1st [Term] 1st term [Class day & Period] Wed 2nd

[Location] Electrical Engineering Bldg.-Lecture Room (M) [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	4	
	2	
	3	
	3	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

High Performance Thin Film Engineering

高機能薄膜工学

[Code] 10C834 [Course Year] Master 1st [Term] 1st term [Class day & Period] Tue 1st

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	2-3	
	2	
	2-3	
	5-6	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10E201

LSI devices

LSIデバイス論

[Code] 10E201 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Mon 3rd

[Location] A1-131 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	3	
	3	
	3	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

693631

Integrated Circuits Engineering, Advanced.

集積回路工学特論

[Code] 693631 [Course Year] Master 1st [Term] 1st term [Class day & Period] Wed 4th

[Location] Electrical Engineering Bldg.-Lecture Room (M) etc. [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

State Space Theory of Dynamical Systems

状態方程式論

[Code] 10C628 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 3rd

[Location] A1-131 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] T. Hagiwara, Y. Ebihara

【Course Description】 The course deals with the dynamical system theory based on linear time-invariant state equations. It covers such topics as state equations, controllability and observability, mode decomposition and its relevance to controllability/observability, stability of dynamical systems, and the Kalman canonical decomposition.

【Grading】 The grading will be based on the exam.

[Course Goals] To acquire the knowledge on the basic theory for linear system analysis by means of state equations.

[Course Topics]

Theme	Class number of times	Description
feedback systems	3 ~ 4	fundamentals of state equations, their relationship to transfer functions and
and state equations	3 ~ 4	block diagram representations
responses of linear	5 ~ 6	state transition matrices, equivalence transformation of systems, mode
systems	3 ~ 6	decomposition and Lyapunov stability
controllability and		controllability and observability, mode decomposition and its relevance to
controllability and	5 ~ 6	controllability/observability, controllable subspace and unobservable subspace,
observability		and the Kalman canonical decomposition

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] classical control theory (in terms of transfer functions), linear algebra and calculus

[Web Sites]

[Additional Information] Handouts will be given at the class.

Applied Systems Theory

応用システム理論

[Code] 10C604 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Tue 1st

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】E. Furutani

[Course Description] The course deals with mathematical methods of system optimization mainly for combinatorial optimization problems. It covers such topics as the integer optimization and its typical problems, exact solution methods including the dynamic programming and the branch and bound method, approximate solution methods including the greedy method, meta-heuristics including the genetic algorithms, the simulated annealing method, and the tabu search.

[Grading] The grading will be based on an exam and the evaluation of the reports on the subjects given in the class.

[Course Goals] To acquire the knowledge on formulation of combinatorial optimization problems into integer programming problems, basic concepts, algorithms, characteristics, and application procedures of exact solution methods, approximate solution methods, and meta-heuristics.

[Course Topics]

Theme	Class number of times	Description
combinatorial	1	managaity and immentance of combinatorial antimization, and typical maklama
optimization	1	necessity and importance of combinatorial optimization, and typical problems
exact solution	3	principle of optimality, dynamic programming, branch and bound method, and
methods	3	their applications
into con programmina	2-3	formulation into integer programming problem, relaxation problem, and
integer programming	2-3	cutting plane algorithm
o o manul o vite v	1	complexity, classes P and NP, complexity of combinatorial optimization
complexity	1	problems, necessity of approximate solution methods and meta-heuristics
approximate solution	1.2	aready mothed relayation mathed martial anymountion mathed ato
methods	1-2	greedy method, relaxation method, partial enumeration method, etc.
meta-heuristics	1.5	local search, basic ideas of meta-heuristics, genetic algorithms, simulated
	4-5	annealing method, tabu search, etc.

[Textbook]

【Textbook(supplemental)】 M. Fukushima: Introduction to Mathematical Programming (in Japanese), Asakura, 1996

- Y. Nishikawa, N. Sannomiya, and T. Ibaraki: Optimization (in Japanese), Iwanami, 1982.
- M. Yagiura, and T. Ibaraki: Combinatorial Optimization ---With a Central Focus on Meta-heuristics--- (in Japanese), Asakura, 2001.
- B. Korte, and J. Vygen: Combinatorial Optimization --- Theory and Algorithms, Third Edition, Springer, 2006.

[Prerequisite(s)] linear programming, nonlinear programming

[Web Sites]

[Additional Information] Handouts and exercises are given at the class.

Electrical and Electromagnetic Circuits

電気電磁回路論

[Code] 10C647 [Course Year] Master 1st [Term] 1st term [Class day & Period] Wed 2nd

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】Osami Wada

【Course Description】

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	8	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Electromagnetic Theory, Adv.

電磁気学特論

[Code] 10C610 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Wed 3rd

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] T. Matsuo

【Course Description】 The first half: computational electromagnetics

The latter half: the special theory of relativity and the covariance of Maxwell's equations

【Grading】Submission of reports (twice)

【Course Goals 】 1. Understanding of computational methods for electromagnetic field analysis

2. Understanding of the basic concepts of special theory of relativity and the covariant formulation of Maxwell's equations

[Course Topics]

Theme	Class number of times	Description
Finite element		- Introduction to finite element analysis for magnetic field analysis
method for magnetic	2-3	- Edge element for three-dimensional magnetic field analysis
field analysis		- Edge element for three-dimensional magnetic field analysis
Finite integration		
method for	3-4	- Introduction to finite integration method
electromagnetic field	3-4	- Application to electromagnetic field analysis
analysis		
Introduction to		Calilaan valativity and anasial valativity
special theory of	2-3	- Galilean relativity and special relativity - Lorentz transformation
relativity		- Lorentz transformation
Tensor		Introduction to tanger representation
representation and	2-3	- Introduction to tensor representation
relativistic dynamics		- Relativistic dynamics
Covariant		
formulation of	2	- Electromagnetic field tensor
Maxwell 's	2	- Lorentz covariance of Maxwell 's equations
equations		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Basic electromagnetic theory

[Web Sites]

Superconductivity Engineering

超伝導工学

[Code] 10C613 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 4th

[Location] A1-001 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Biological Function Engineering

生体機能工学

[Code] 10C614 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Tetsuo Kobayashi

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

times	Description
3	
1	
1	
6	
O	
3	
1	
1	
	3 1 6 3 1

[Textbook]

【Textbook(supplemental)】 Tetsuo Kobayashi, Isamu Ozaki and Ken Nagata (eds.): "Brain topography and multimodal imaging", (Kyoto Univ. Press, 2009)

[Prerequisite(s)]

[Web Sites]

Theory of Electric Circuits, Adv.

電気回路特論

[Code] 10C625 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 1st [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	4	
	4	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Design of Control Systems

制御系設計理論

[Code] 10C631 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 2nd

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] T. Hagiwara, Y. Ebihara

【Course Description】 The course is based on State Space Theory of Dynamical Systems, and provides the applications of the concepts given therein to systematic control system design. The course covers such topics as state feedback and pole assignment, observers, synthesis of feedback control systems, servo conditions and feedforward, and optimal control under quadratic performance indices.

【Grading】 In principle, the grading will be based on the absolute and comprehensive evaluation of the reports on the subjects given in the class. Should this change due to inadequate efforts on the submitted reports, an exam might be also imposed, in which case the details will be announced at the class at least two weeks before the exam term.

[Course Goals] To understand the basic ideas of control system design based on state space representations, and acquire fundamental knowledge and skills on practical control system design through simulated experiences with the report subjects.

[Course Topics]

Theme	Class number of times	Description
1 ' 11		state feedback, controllable canonical forms and pole assignment of
pole assignment by state feedback	4 ~ 5	scalar/multivariable systems, computation of the state feedback gains for pole
state reedback		assignment, transient responses, uncontrollable poles and stabilizability
-1	2 4	observable canonical forms and observability conditions, full-order observer,
observers	3 ~ 4	minimal-order observer, conditions for observers and observer-based feedback
synthesis of feedback	2 ~ 3	feedback systems with integral compensation, servo systems, internal model
systems	2 ~ 3	principle, synthesis of servo systems
optimal control under		2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
quadratic	3 ~ 4	optimal regulators and their closed-loop poles, Riccati equations and their
performance index		solutions, relationship with the pole assignment problem

【Textbook】 Handouts will be given at the class.

【Textbook(supplemental)】

[Prerequisite(s)] The contents given in State Space Theory of Dynamical Systems, and linear algebra.

[Web Sites] (Info) http://www-lab22.kuee.kyoto-u.ac.jp/~hagiwara/ku/matlab-octave.html

Computer Simulations of Electrodynamics

電磁界シミュレーション

[Code] 10C611 [Course Year] Master 1st [Term] 1st term [Class day & Period] Tue 5th

[Location] A1-101/Electrical Engineering Bldg.-Lecture Room (M)/Uji Campus(Remote Lecture Room)

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme Class number of times Description	Theme	Class number of	Description
---	-------	-----------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Space Radio Engineering

宇宙電波工学

[Code] 10C612 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] N1 lecture room in the Faculty of engineering building No. 3, A1-131 in Katsura campus, Uji

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Hiroshi Yamakawa, Hirotsugu Kojima

[Course Description] The present lecture provides the guideline how the technology on the electronics and propulsion system is used for the development of spacecraft and space systems. Furthermore, in order to understand the environment in space, we also give a lecture on the space plasma physics.

【Grading】 attendance and reports

[Course Goals] Mastery of the way how we can make use of the knowledges of the physics and technology to the space engineering.

[Course Topics]

Theme	Class number of times	Description
Plasma physics/Magnetospheri physics	c 7	Plasma physics which are closely related to the magnetospheric physics
Space environment	3	The space environment in the view point of spacecraft desing such as thermal condition, plasmas, and charging.
Spacecraft systema and its related technology	4	The spacecraft system and its technology related to power system, communication system, EMC, and payload desings.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Plasma physics, Electromagnetics. Radio engineering, Electronics

[Web Sites]

Applied Microwave Engineering

マイクロ波応用工学

[Code] 10C617 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 4th

[Location] A1-101/Electrical Engineering Bldg.-Lecture Room (M)/Uji Campus [Credits] 2 [Restriction]

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] (RISH) Shinohara

【Course Description】 This lecture picks up microwave power transmission (MPT) technology, rectifying antenna (rectenna), antenna and propagation for the MPT, microwave transmitters, and some MPT applications like the Space Solar Power Satellite/Station. This lecture also picks up the other wireless power transmission technologies like resonnance coupling, energy harvesting, and applied microwave technologies of microwave processing, wireless communications, and radar.

【Grading】Reports

[Course Goals] Students learn about applied microwave engeering, mainly microwave power transmission.

[Course Topics]

Theme	Class number of times	Description
Intro du ation	1	The purpose and constitution of the lecture, and review of microwave
Introduction	1	engineering are explained.
Applications of		Space Solar Power Satellite/Station and Ubiquitous power source as
Wireless Power	3-4	applications of microwave power transmission, the resonance coupling and
Tramsmission		energy harvesting as the other battery-less technologies are explained.
rectifying antenna	1.2	and the contract of the contra
(rectenna)	1-2	rectifying antenna (rectenna) for the MPT are explained.
antenna and		Calculation of beam collection efficiency and beam propagation with FDTD
propagation for the	5-6	method are explained. Phased array technologies, beam targetting method, non
MPT		linear physics of microwave-plasma interation are overviwed.
Microwave	2	High officient semi conductor amplificate and mismovers takes are symbolical
transmitters	2	High efficient semi-conductor amplifiers and microwave tubes are explained.
microwave		
processing, wireless	1	Microwave processing, wireless communications, and radar texhnologies are
communications, and	1	explained.
radar		

【Textbook】Non. Hand out will be distributed.

【Textbook(supplemental)】

[Prerequisite(s)] Microwave engineering

[Web Sites]

[Additional Information] Number of the lectures may change.

Spacio-Temporal Media Analysis

時空間メディア解析特論

[Code] 10C714 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1-2	
	2	
	1-2	
	1-2	
	1-2	
	2	
	1-2	
	0-2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Visualized Simulation Technology

可視化シミュレーション学

[Code] 10C716 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 4th [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1-2	
	2-3	
	2-3	
	3-4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G021

Engineering Optics and Spectroscopy

光物理工学

[Code] 10G021 [Course Year] [Term] 2nd term [Class day & Period] Wed 1st

[Location] Engineering Science Depts Bldg.-212 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	4-5	
	2	
	6	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Physical Properties of Crystals Adv.

結晶物性学特論

[Code] 10C263 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Magnetism and magnetic materials

磁性物理

[Code] 10C271 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] Integrated Research Bldg.-111 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	8	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10G203

Micro Process and Material Engineering

マイクロプロセス・材料工学

[Code] 10G203 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location] Engineering Science Depts Bldg.-216 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese

[Instructor] H. Kotera, O. Tabata, K. Eriguchi, I. Kanno, T. Tsuchiya

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
Semiconductor	3	
microfabrication	3	
Thin-film process	2	
and evaluation	3	
Silicon	2	
micromachining	3	
3D lithography	2	
Soft-micromachining	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Quantum Science

量子科学

[Code] 10C074 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location] Bldg.No.1-Nuclear Engineering 2 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	6	
	6	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Molecular Materials Science

分子材料科学

[Code] 10D422 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] 2F Seminar Room, Training Center for Industrial Instructors, Uji Campus [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Kaji

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	3	
	3	
	2	
	2	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Chemistry of Polymer Materials

高分子材料化学

[Code] 10D007 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] A2-302 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	4	
	3	
	7	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Fundamentals of Quantum Optics

量子光学基礎論

[Code] 10X011 [Course Year] [Term] 2nd term [Class day & Period] Tue 2nd [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] [Instructor],,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Digital Signal Processing, Advanced

ディジタル信号処理論

[Code] 10X013 [Course Year] [Term] 1st term [Class day & Period] Wed 3rd [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

693622

Digital Communication Engineering

ディジタル通信工学

[Code] 693622 [Course Year] Master 1st [Term] 1st term [Class day & Period] Thu 2nd

[Location] Electrical Engineering Bldg.-Lecture Room (M) [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	3-4	
	2	
	1	
	2-3	
	2-3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

693628

Information Network

情報ネットワーク

[Code] 693628 [Course Year] [Term] 1st term [Class day & Period] Tue 2nd

[Location] Electrical Engineering Bldg.-Lecture Room (M) [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of	Description
	times	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

【Additional Information】 http://www.i.kyoto-u.ac.jp/curriculum/syllabus.html

10R804

Seminar on Creation of New Industries

新産業創成論

[Code] 10R804 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 5th

[Location] VBL Seminar Room [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	2	
	1	
	2	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10R807

Seminar on Advanced Electronic Materials

先端電子材料学

[Code] 10R807 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 5th

[Location] A1-001 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	1	
	1	
	1	
	1	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Recent Advances in Interdisciplinary Photonics and Electronics

融合光・電子科学通論

[Code] 10X009 [Course Year] [Term] 2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Seminar in Interdisciplinary Photonics and Electronics

融合光・電子科学特別研修 1(インターン)

[Code] 10X015 [Course Year] [Term] 1st term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Seminar in Interdisciplinary Photonics and Electronics

融合光・電子科学特別研修 2(インターン)

[Code] 10X017 [Course Year] [Term] 1st term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Research Internship (M,D)

研究インターンシップ M(融合光)

[Code]10X019 [Course Year] [Term]1st+2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Research Internship (M,D)

研究インターンシップ D(融合光)

[Code]10X021 [Course Year] [Term]1st+2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Exercises on Interdisciplinary Photonics and Electronics I, II

融合光·電子科学特別演習 1

[Code]10X023 [Course Year] [Term]1st+2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Advanced Exercises on Interdisciplinary Photonics and Electronics I, II 融合光·電子科学特別演習 2

[Code]10X025 [Course Year] [Term]1st+2nd term [Class day & Period] [Location] [Credits] [Restriction]

[Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 5th

[Location] Katsura Hall [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	14	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Exercise in Practical Scientific English

実践的科学英語演習「留学ノススメ」

[Code] 10D040 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar [Language] English [Instructor] Kenji Wada. etc

【Course Description】 This course is designed to develop high-level communication and presentation skills in English required for top level scientific and industrial career prospects.

[Grading] Attendance 60%, midterm reports 20%, final report 20%. The final report must be submitted by the deadline date.

[Course Goals] This course is designed to develop high-level communication and presentation skills in English required for top level scientific and industrial career prospects.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Course Guidance, etc.
		Definition of technical writing 3C in technical writing Weaknesses of Japanese
Exercise-1	1	writers Good examples and bad examples
Exercise-2	1	Punctuation Presentation skills 1 -organization
E	1	Organizing your thoughts for the title and abstract Presentation skills 2 ?Visual
Exercise-3 1	aspects	
Exercise-4	1	Presenting the background of your research Presentation skills 3 ?Oral Aspects
Exercise-5	1	Describing how you did your research Presentation skills 4 ?Physical Aspects
Exercise-6	1	Presenting what you observed Presentation Practice
Exercise-7	1	Placing your findings in the field Presentation Practice
Exercise-8	1	Expressing thanks and listing references Presentation practice
Exercise-9	1	Writing your proposal Presentation practice
Exercise-10	1	Presentation practice Reviews & Feedbacks Evaluation
Wrap-up lecture	1~2	Current situation of studying abraod, etc.

[Textbook] No textbook is required.

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites] http://www.ehcc.kyoto-u.ac.jp/alc/ (needs passwords).

[Additional Information] For details, contact Dr. Wada (wadaken@scl.kyoto-u.ac.jp).

10K001

Introduction to Advanced Material Science and Technology

先端マテリアルサイエンス通論

【Code】10K001

[Course Year] Special Auditors, Special research Students, Graduate School Students (inc. International Course Students)

【Term 】1st term

[Class day & Period] Starting from April 15, the lecture will be held from 2:45 p.m. to 4:15 p.m. on Friday afternoon but some lectures are from 4:30 p.m.

[Location] Distance lectures are held between Lecture Room 1 in Engineering Bld. 8 at Yoshida campus and Seminar Room 131 in Bld. A1 at Katsura campus. Attend either of them at your convenience.

[Credits] 2 [Restriction] [Lecture Form(s)] Relay Lecture [Language] English [Instructor]

(Course Description) The various technologies used in the field of material science serve as bases for so-called "high technologies", and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

【Grading】 In order to obtain two credits, students must attend at least ten lectures, and at least five of the submitted reports must be evaluated as "passed" by each lecturer. Each report should be submitted to the lecturer within two weeks after his/her lecture. NOTE: Reports are NOT acceptable from those who do not attend the lecture.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook] None

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C601

Applied Mathematics for Electrical Engineering

電気数学特論

[Code] 10C601 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 1st

[Location] A1-001 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] T. Hikihara & S. Doi

[Course Description] In the class, fundamental mathematics is lectured for electrical engineering, electronics, system engineering, and material science. In particular, system theory, nonlinear dynamics, and particle dynamics in force field can be discussed with mathematical clear image.

[Grading] Students are requested to reply to report assignments. The grading is based on the evaluation of the reports.

[Course Goals] Professors expect students to model their system and analyze the models theoretically. Students will be requested to understand their system in principle mechanics and control them based on system theory.

[Course Topics]

Theme	Class number of times	Description	
	1		
	3		
	3		
		Relationship between the previous classes and further will be explained. The	
Introduction 2	1	introduction to nonlinear dynamics will be explained based on oscillation	
		theory.	
Hamiltonian	4	Manufikanian maakaniaa ay linaan amankata maay is katana d	
mechanics	4	Hamiltonian mechanics on linear symplectic space is lectured.	
Manifold and vector	3		
field		Manifold is discussed in nonlinear system with relation to vector filed anal	

[Textbook]

【Textbook(supplemental)】S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag.

[Prerequisite(s)] Linear algebra

[Web Sites] https://www.t.kyoto-u.ac.jp/lecturenotes/gse/kueeng/10C601/syllabus

[Additional Information] Appropriate references will be shown in classes.

10C829

Quantum Optics

量子光学

[Code] 10C829 [Course Year] Master 1st [Term] 1st term [Class day & Period] Tue 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	3	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

10C621

Applied Hybrid System Engineering

応用ハイブリッドシステム工学

[Code] 10C621 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 1st

[Location] A1-001 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Takashi Hikihara, Shinji Doi, Yoshihiko Susuki, Syunichi Azuma

[Course Description] In the class, we will focus on hybrid systems consisting of continuous and discrete dynamics. Modeling, analysis, and control theory are lectured.

[Grading] Reports for each topics are evaluated. The reports without attending the class are not accepted.

[Course Goals] The comprehension to hybrid systems and applications of the theory are aimed in the class.

【Course Topics】

Theme	Class number of times	Description
Fundamentals of	4	Modeling of hybrid system, consisting of continuous and discrete dynamics, is
Hybrid system		lectured based on hybrid automaton. Some examples are shown.
Fundamentals of perturbation method and asymptotic expansion	3	Perturbation theory and asymptotic expansion method are lectured. In addition, analytical and geometrical perturbation methods are lectured for understanding global dynamics of system.
Application of hybrid system theory - I	3	The application to power system is lectured. After the explanation of fundamentals of power system, safety, modeling, problem setting, and simulation method are focused.
Analysis and design of dynamic quantizers	2	System with quantizer is lectured. The analysis and design of the system is the main topics of the lecture.
Application of hybrid system theory - II	2	The application to communication system is picked up. The packet transfer in the network is discussed based on the hybrid system theory.

【Textbook】Prints are distributed.

【Textbook(supplemental)】 In the class, appropriate textbooks are indicated.

[Prerequisite(s)] Knowledge of mathematics and control theory at under graduate school.

[Web Sites]

[Additional Information] Attending class is substantial to submit reports.

Molecular Materials

分子機能材料

[Code] 10D413 [Course Year] Master and Doctor Course [Term] (not held; biennially)

[Class day & Period] Wed 2nd [Location] A2-304 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] K. Tanaka and A. Ito

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	11	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Polymer Structure and Function

高分子機能学

[Code] 10D613 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] Polymers are indispensable in our modern society, fundamental in industry, and functional for chemistry, medicine, electronics, and many other advanced and emerging technologies. In this class, photo- and electric functions of polymeric materials are discussed on the basis of photochemistry and photophysics. In particular, the importance of designing nanostructures of polymer assembly is highlighted by explaining examples of state-of-the-art real systems.

【Grading】 Evaluated with the grade on the final test or the quality of report submitted after the final class.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Photofunctional	E	
Polymers	5	
Dielectric Functions	1	
of Polymers	1	
Electronic Functions		
of Polymers	5	
Advanced		
Functionality of	2	
Polymer Films		

【Textbook】 None: Some handouts will be dealt in the class of every lecture.

【Textbook(supplemental)】None:

[Prerequisite(s)] Students are expected to have knowledge of Physical Chemistry and Polymer Chemistry provided in chemisty course of undergraduate.

[Web Sites]

工学研究科シラバス 2011 年度版

([C] Interdisciplinary Engineering Course Program (5yr Course)) Copyright ©2011 京都大学工学研究科 2011年4月1日発行(非売品)

編集者 京都大学工学部教務課 発行所 京都大学工学研究科 〒 615-8530 京都市西京区京都大学桂

デザイン 工学研究科附属情報センター

工学研究科シラバス 2011 年度版

- · [A] Common Subjects of Graduate School of Engineering
- [B] Master's Program
- [C] Interdisciplinary Engineering Course Program (5yr Course)
- [D] Advanced Engineering Course Program (5yr Course)
- [E] Interdisciplinary Engineering Course Program (3yr Course)
- [F] Advanced Engineering Course Program (3yr Course)
- ・オンライン版 http://www.t.kyoto-u.ac.jp/syllabus-gs/

本文中の下線はリンクを示しています.リンク先はオンライン版を参照してください.

オンライン版の教科書・参考書欄には京都大学蔵書検索(KULINE)へのリンクが含まれています.

