[C] Advanced Engineering Course Program

Kyoto University, Graduate School of Engineering

[C] Advanced Engineering Course Program

Civil and Earth Resources Engineering	
10F251 Exercise on Project Planning	1
10U051 Integrated Seminar on Infrastracture Engineering A	2
10U052 Integrated Seminar on Infrastracture Engineering B	3
10U055 Seminar on Infrastructure Engineering A	4
10U056 Seminar on Infrastructure Engineering B	5
10U059 Internship on Infrastracture Engineering	6
10F063 Practice in Infrastructure Engineering	7
10U060 ORT on Infrastructure Engineering	8
10U064 Practice in Advanced Infrastructure Engineering A	9
10U065 Practice in Advanced Infrastructure Engineering B	10
10F003 Continuum Mechanics	11
10F067 Structural Stability	12
10F068 Material and Structural System & Management	13
10F261 Earthquake Engineering/Lifeline Engineering	14
10W001 Infrastructural Structure Engineering	15
10F009 Structural Design	16
10F010 Bridge Engineering	17
10A019 Concrete Structural Engineering	18
10F227 Structural Dynamics	19
10F263 Seismic Engineering Exercise	20
10F415 Ecomaterial and Environment-friendly Structures	21
10F089 Infrastructure Safety Engineering	22
10F075 Hydraulics & Turbulence Mechanics	23
10A216 Hydrology	24
10F019 River Engineering and River Basin Management	25
10A040 Sediment Hydraulics	26
10F464 Hydrologic Design and Management	27
10F245 Open Channel Hydraulics	28
10F462 Coastal Wave Dynamics	29
10F267 Hydro-Meteorologically Based Disaster Prevention	30
10A222 Water Resources Systems	31
10F077 River basin management of flood and sediment	32
10F269 Coastal and Urban Water Disasters Engineering	33
10F466 Basin Environmental Disaster Mitigation	34
10F011 Computational Fluid Dynamics	35
10F065 Hydraulic Engineering for Infrastructure Development and Management	36
10F100 Applied Hydrology	37
10F103 Case Studies Harmonizing Disaster Management and Environment Conservation	38
10F106 Integrated Disasters and Resources Management in Watersheds	39

10F025 Geomechanics	40
10K016 Computational Geotechnics	41
10F238 Geo-Risk Management	42
10F241 Construction of Geotechnical Infrastructures	43
10F405 Fundamental Geofront Engineering	44
10A055 Environmental Geotechnics	45
10F109 Disaster Prevention through Geotechnics	46
10F203 Public Finance	47
10F207 Urban Environmental Policy	48
10F219 Quantitative Methods for Behavioral Analysis	49
10F215 Intelligent Transportation Systems	50
10A805 Remote Sensing and Geographic Information Systems	51
10A808 Civic and Landscape Design	52
10F223 Risk Management Theory	53
10X333 Disaster Risk Management	54
693287 Disaster Information	55
10A845 Theory & Practice of Environmental Design Research	56
10A402 Resources Development Systems	57
10F053 Applied Mathematics in Civil & Earth Resources Engineering	58
10K008 Computational Mechanics and Simulation	59
10A405 Environmental Geosphere Engineering	60
10F071 Applied Elasticity for Rock Mechanics	61
10F073 Fundamental Theories in Geophysical Exploration	62
10F087 Design of Underground Structures	63
10A420 Lecture on Exploration Geophysics	64
10F085 Measurement in the earth's crust environment	65
10F088 Earth Resources Engineering	66
10X311 Urban Infrastructure Management	67
10F113 Global Survivability Studies	68
693291 Emergency Management Systems	69
10F201 Information Technology for Urban Society	70
10Z001 Urban Transport Policy	71
10Z002 Policy for Low-Carbon Society	72
10Z003 Urban Transport Management	73
10F380 Engineering Seminar for Disaster Resilience in ASEAN countries	74
10F382 Disaster and Health Risk Management for Liveable City	75
Urban Management	
10F201 Information Technology for Urban Society	76
10F251 Exercise on Project Planning	77
10F253 Capstone Project	78
10U201 Integrated Seminar on Urban Management A	79
10U203 Integrated Seminar on Urban Management B	80
10F257 Seminar on Urban Management A	81

10F259 Seminar on Urban Managemen B	82
10F150 Long-Term Internship	83
10U210 Practice in Urban Management	84
10U216 ORT on Urban Management	85
10U224 Practice in Advanced Urban Management A	86
10U225 Practice in Advanced Urban Management B	87
10F003 Continuum Mechanics	88
10F067 Structural Stability	89
10F068 Material and Structural System & Management	90
10F261 Earthquake Engineering/Lifeline Engineering	91
10W001 Infrastructural Structure Engineering	92
10F009 Structural Design	93
10F010 Bridge Engineering	94
10A019 Concrete Structural Engineering	95
10F227 Structural Dynamics	96
10F263 Seismic Engineering Exercise	97
10F415 Ecomaterial and Environment-friendly Structures	98
10F089 Infrastructure Safety Engineering	99
10F075 Hydraulics & Turbulence Mechanics	100
10A216 Hydrology	101
10F019 River Engineering and River Basin Management	102
10A040 Sediment Hydraulics	103
10F464 Hydrologic Design and Management	104
10F245 Open Channel Hydraulics	105
10F462 Coastal Wave Dynamics	106
10F267 Hydro-Meteorologically Based Disaster Prevention	107
10A222 Water Resources Systems	108
10F077 River basin management of flood and sediment	109
10F269 Coastal and Urban Water Disasters Engineering	110
10F466 Basin Environmental Disaster Mitigation	111
10F011 Computational Fluid Dynamics	112
10F065 Hydraulic Engineering for Infrastructure Development and Management	113
10F100 Applied Hydrology	114
10F103 Case Studies Harmonizing Disaster Management and Environment Conservation	115
10F106 Integrated Disasters and Resources Management in Watersheds	116
10F025 Geomechanics	117
10K016 Computational Geotechnics	118
10F238 Geo-Risk Management	119
10F241 Construction of Geotechnical Infrastructures	120
10F405 Fundamental Geofront Engineering	121
10A055 Environmental Geotechnics	122
10F109 Disaster Prevention through Geotechnics	123
10F203 Public Finance	124
10F207 Urban Environmental Policy	125

10F219 Quantitative Methods for Behavioral Analysis	126
10F215 Intelligent Transportation Systems	127
10A805 Remote Sensing and Geographic Information Systems	128
10A808 Civic and Landscape Design	129
10F223 Risk Management Theory	130
10X333 Disaster Risk Management	131
693287 Disaster Information	132
10A845 Theory & Practice of Environmental Design Research	133
10A402 Resources Development Systems	134
10F053 Applied Mathematics in Civil & Earth Resources Engineering	135
10K008 Computational Mechanics and Simulation	136
10A405 Environmental Geosphere Engineering	137
10F071 Applied Elasticity for Rock Mechanics	138
10F073 Fundamental Theories in Geophysical Exploration	139
10F087 Design of Underground Structures	140
10A420 Lecture on Exploration Geophysics	141
10F085 Measurement in the earth's crust environment	142
10F088 Earth Resources Engineering	143
10X311 Urban Infrastructure Management	144
10F113 Global Survivability Studies	145
693291 Emergency Management Systems	146
10Z001 Urban Transport Policy	147
10Z002 Policy for Low-Carbon Society	148
10Z003 Urban Transport Management	149
10F380 Engineering Seminar for Disaster Resilience in ASEAN countries	150
10F382 Disaster and Health Risk Management for Liveable City	151
Environmental Engineering	
10F439 Environmental Risk Analysis	152
10A632 Urban Metabolism Engineering	153
10F454 Systems Approach on Sound Material Cycles Society	154
10F441 Water Quality Engineering	155
10F234 Water Sanitary Engineering	156
10F461 Nuclear Environmental Engineering, Adv.	157
10F446 Atmospheric and Global Environmental Engineering, Adv.	158
10F400 Seminar on Urban and Environmental Engineering A	159
10F402 Seminar on Urban and Environmental Engineering B	160
10U401 Advanced Seminar on Urban and Environmental Engineering A	161
10U403 Advanced Seminar on Urban and Environmental Engineering B	162
10A643 Environmental Microbiology, Adv.	163
10A626 Advanced Environmental Health	164
10H424 Environmental-friendly Technology for Sound Material Cycle	165
10A622 Geohydro Environment Engineering. Adv.	166
10X321 Lecture on Environmental Management Leader	167

10F456 New Environmental Engineering I	, Advanced	168
10F458 New Environmental Engineering I	I, Advanced	169
10F468 Environmental Organic Micropollu	utants Analysis Lab.	170
10F470 Advanced Enivironmental Engineer	ering Lab.	171
10F472 Seminer on Practical Issues in Urb	an and Environmental Enginering	172
10F449 Exercises in Urban and Environme	ental Engineering A	173
10F450 Exercises in Urban and Environme	ental Engineering B	174
10F475 ORT on Urban and Environmental	Engineering	175
10D051 Frontiers in Modern Science & Te	chnology	176
10i045 Exercise in Practical Scientific Eng	lish	177
Architecture and Architectural Engin	eering (Advanced Engineering Course	Program
(3yr Course))		
10Q021 Advanced Theory of Architecture	and Architectural Engineering I	178
10Q022 Advanced Theory of Architecture	and Architectural Engineering II	179
10Q005 Seminar on Architectural Design a	and Planning I	180
10Q006 Seminar on Architectural Design a	and Planning II	181
10Q017 Seminar on Architectural Design a	and Planning III	182
10Q018 Seminar on Architectural Design a	and Planning IV	183
10Q008 Seminar on Structural Engineering	g of Buildings I	184
10Q009 Seminar on Structural Engineering	g of Buildings II	185
10Q015 Seminar on Structural Engineering	g of Buildings III	186
10Q016 Seminar on Structural Engineering	g of Buildings IV	187
10Q011 Seminar on Environmental Engine	eering I	188
10Q012 Seminar on Environmental Engine	eering II	189
10Q013 Seminar on Environmental Engine	eering III	190
10Q014 Seminar on Environmental Engine	eering IV	191
10D051 Frontiers in Modern Science & Te	chnology	192
10i045 Exercise in Practical Scientific Eng	lish	193
10i041 Professional Scientific Presentation	Exercises (English lecture)	194
10i042 Advanced Engineering and Econom	y (English lecture)	195
10i047 Engineering Project Management	(English lecture)	196
10i048 Engineering Project Management	(English lecture)	197
Mechanical Engineering and Science		
10G001 Applied Numerical Methods		198
10G003 Solid Mechanics, Adv.		199
10G005 Thermal Science and Engineering		200
10G007 Introduction to Advanced Fluid D	ynamics	201
10G009 Quantum Condensed Matter Physic	cs	202
10G011 Design and Manufacturing Engine	ering	203
10G013 Dynamic Systems Control Theory		204
10G057 Engineering Ethics and Manageme	ent of Technology	205
10G017 Fracture Mechanics		206

10B628 Physics of Neutron Scattering	207
10B407 Robotics	208
10G025 Mechanical Functional Device Engineering	209
10G029 Patent Seminar	210
10G036 Basic Seminar on Mechanical Engineering and Science A	211
10G037 Basic Seminar on Mechanical Engineering and Science B	212
10G031 Seminar on Mechanical Engineering and Science A	213
10G032 Seminar on Mechanical Engineering and Science B	214
10G041 Advanced Finite Element Methods	215
10B418 Strength of Advanced Materials	216
10B622 Thermophysics for Thermal Engineering	217
10G039 Transport Phenomena	218
10G021 Engineering Optics and Spectroscopy	219
10G403 Optimum System Design Engineering	220
10B631 High Energy Radiation Effects in Solid	221
10B634 Advanced Experimental Techniques and Analysis in Engineering Physics	222
10Q807 Theory for Design Systems Engineering	223
10B828 High Precision Engineering	224
10V003 Biomechanics	225
10D450 Biomolecular Dynamics	226
10W603 Introduction to Biomedical Engineering	227
10B440 Environmental Fluid Dynamics	228
10Q402 Turbulence Dynamics	229
10G055 Crystallography of Metals	230
10Q610 Seminar: Dynamics of Atomic Systems	231
10V007 Neutron Science Seminor 1	232
10V008 Neutron Science Seminar II	233
10K013 Advanced Mechanical Engineering	234
10K005 Advanced Modern Science and Technology (English lecture)	235
10X411 Design of Complex Mechanical Systems	236
10X402 Theory for Designing Artifacts	237
693518 Theory of Symbiotic Systems	238
693510 Control Theory for Mechanical Systems	239
693513 Theory of Human-Machine Systems	240
693431 Dynamical Systems, Advanced	241
653316 Heat Engine Systems	242
653322 Combustion Science and Engineering	243
10V012 Advanced Exercise in Mechanical Engineering and ScienceA	244
10V013 Advanced Exercise in Mechanical Engineering and ScienceB	245
10V014 Advanced Exercise in Mechanical Engineering and ScienceC	246
10V015 Advanced Exercise in Mechanical Engineering and ScienceD	247
10V016 Advanced Exercise in Mechanical Engineering and ScienceE	248
10V017 Advanced Exercise in Mechanical Engineering and ScienceF	249
10G049 Internship M	250

10V019 Internship DS	251
10V020 Internship DL	252
10V025 Seminar of Complex Mechanical Engineering,A	253
10V027 Seminar of Complex Mechanical Engineering,B	254
10V029 Seminar of Complex Mechanical Engineering,C	255
10V031 Seminar of Complex Mechanical Engineering,D	256
10V033 Seminar of Complex Mechanical Engineering,E	257
10V035 Seminar of Complex Mechanical Engineering,F	258
10G051 Experiments on Mechanical Engineering and Science, Adv. I	259
10G053 Experiments on Mechanical Engineering and Science, Adv. II	260
Micro Engineering	
10G001 Applied Numerical Methods	261
10G003 Solid Mechanics, Adv.	262
10G005 Thermal Science and Engineering	263
10G007 Introduction to Advanced Fluid Dynamics	264
10G009 Quantum Condensed Matter Physics	265
10G011 Design and Manufacturing Engineering	266
10G013 Dynamic Systems Control Theory	267
10G057 Engineering Ethics and Management of Technology	268
10G203 Micro Process and Material Engineering	269
10G205 Microsystem Engineering	270
10G209 Multi physics Numerical Analysis	271
10B619 Quantum Theory of Condensed Matter	272
10G211 Solid State Physics 1	273
10G223 Basic Seminar on Micro Engineering A	274
10G224 Basic Seminar on Micro Engineering B	275
10G216 Seminar on Micro Engineering A	276
10G217 Seminar on Micro Engineering B	277
10B418 Strength of Advanced Materials	278
10G214 Precision Measurement and Machining	279
10V003 Biomechanics	280
10D450 Biomolecular Dynamics	281
10V201 Introduction to the Design and Implementation of Micro-Systems	282
10G041 Advanced Finite Element Methods	283
10W603 Introduction to Biomedical Engineering	284
10B617 Quantum Theory of Molecular Physics	285
10Q408 Quantum Theory of Chemical Physics	286
10V205 Solid State Physics 2	287
10K013 Advanced Mechanical Engineering	288
10K005 Advanced Modern Science and Technology (English lecture)	289
10X411 Design of Complex Mechanical Systems	290
10X402 Theory for Designing Artifacts	291
10V210 Advanced Exercise in Micro Engineering A	292

10V211 Advanced Exercise in Micro Engineering B	293
10V212 Advanced Exercise in Micro Engineering C	294
10V213 Advanced Exercise in Micro Engineering D	295
10V214 Advanced Exercise in Micro Engineering E	296
10V215 Advanced Exercise in Micro Engineering F	297
10Z101 Micro/Nano Scale Material Engineering	298
10G049 Internship M	299
10V019 Internship DS	300
10V020 Internship DL	301
10V025 Seminar of Complex Mechanical Engineering,A	302
10V027 Seminar of Complex Mechanical Engineering,B	303
10V029 Seminar of Complex Mechanical Engineering,C	304
10V031 Seminar of Complex Mechanical Engineering,D	305
10V033 Seminar of Complex Mechanical Engineering,E	306
10V035 Seminar of Complex Mechanical Engineering,F	307
10G226 Experiments on Micro Engineering, Adv. I	308
10G228 Experiments on Micro Engineering, Adv. II	309
Aeronautics and Astronautics	
10G001 Applied Numerical Methods	310
10G003 Solid Mechanics, Adv.	311
10G005 Thermal Science and Engineering	312
10G007 Introduction to Advanced Fluid Dynamics	313
10G009 Quantum Condensed Matter Physics	314
10G011 Design and Manufacturing Engineering	315
10G013 Dynamic Systems Control Theory	316
10G057 Engineering Ethics and Management of Technology	317
10G401 Jet Engine Engineering	318
10G405 Propulsion Engineering, Adv.	319
10G406 Gas Dynamics, Adv.	320
10G409 Aerospace Systems and Control	321
10G411 Fluid Dynamics for Aeronautics and Astronautics	322
10C430 Advanced Flight Dynamics of Aerospace Vehicle	323
10G230 Dynamics of Solids and Structures	324
10G423 Transport Phenomena in Reactive Flows	325
10G041 Advanced Finite Element Methods	326
10V401 Seminar on Engineering Science of Ionized Gases	327
10V412 Seminar on Gas Dynamics	328
10V405 Seminar on Fluid Dynamics for Aeronautics and Astronutics	329
10R410 Seminar on Aerospace systems	330
10R419 Seminar on Systems and Control	331
10V407 Seminar on Optimum System Design Engineering	332
10V409 Thermal Engineering Seminar	333
10V413 Seminar on Mechanics of Functional Solids and Structures	334

10X411 Design of Complex Mechanical Systems	335
10K013 Advanced Mechanical Engineering	336
693431 Dynamical Systems, Advanced	337
693410 Mathematical Analysis, Advanced	338
693320 Topics in Nonlinear Dynamics A	339
693321 Topics in Nonlinear Dynamics B	340
10M226 Meteorology I	341
10M227 Meteorology II	342
10V019 Internship DS	343
10V020 Internship DL	344
10V025 Seminar of Complex Mechanical Engineering,A	345
10V027 Seminar of Complex Mechanical Engineering,B	346
10V029 Seminar of Complex Mechanical Engineering,C	347
10V031 Seminar of Complex Mechanical Engineering,D	348
10V033 Seminar of Complex Mechanical Engineering,E	349
10V035 Seminar of Complex Mechanical Engineering,F	350
10G418 Experiments and Exercises in Aeronautics and Astronautics I	351
10G420 Experiments and Exercises in Aeronautics and Astronautics II	352
Nuclear Engineering	
10C070 Introduction to Quantum Science	353
10C072 Introduction to Advanced Nuclear Engineering	354
10C004 Quantum Field Theory	355
10C074 Quantum Science	356
10C013 Nuclear Materials	357
10C014 Nuclear Fuel Cycle 1	358
10C015 Nuclear Fuel Cycle 2	359
10C017 Radiation Physics and Engineering	360
10C018 Neutron Science	361
10C031 Quantum Manipulation Technology	362
10C076 Fundamentals of Magnetohydrodynamics	363
10C034 Nuclear Energy Conversion and Reactor Engineering	364
10C037 Multiphase Flow Engineering and Its Application	365
10C038 Physics of Fusion Plasma	366
10C078 Hybrid Advanced Accelerator Engineering	367
10C080 Nuclear Reactor Safety Engineering	368
10C082 Applied Neutron Engineering	369
10C046 Radiation Biology and Medicine	370
10C047 Radiation Medical Physics	371
10C084 Nuclear Engineering, Adv.	372
10C068 Nuclear Engineering Application Experiments	373
10R001 Quantum Beam Science, Adv.	374
10R004 Quantum Physics, Adv.	375
10R013 Nonlinear Physics in Fusion Plasmas	376

10C086 Introduction to Nucelar Engineering 1	377
10C087 Introduction to Nucelar Engineering 2	378
10W620 Radiation Measurement for Medicine	379
10K001 Introduction to Advanced Material Science and Technology (English lecture)	380
10K005 Advanced Modern Science and Technology (English lecture)	381
10D051 Frontiers in Modern Science & Technology	382
10i045 Exercise in Practical Scientific English	383
10C050 Internship M	384
10C063 Experiments and Exercises on Nuclear Engineering, Adv. I	385
10C064 Experiments and Exercises on Nuclear Engineering, Adv. II	386
10C089 Seminar on Nuclear Engineering A	387
10C090 Seminar on Nuclear Engineering B	388
10R017 Engineering Internship D	389
10R019 Seminar on Nuclear Engineering, Adv. A	390
10R021 Seminar on Nuclear Engineering, Adv. B	391
10R023 Seminar on Nuclear Engineering, Adv. C	392
10R025 Seminar on Nuclear Engineering, Adv. D	393
10R027 Seminar on Nuclear Engineering, Adv. E	394
10R029 Seminar on Nuclear Engineering, Adv. F	395
Materials Science and Engineering	
10C208 Thermodynamics for Materials Science, Adv.	396
10C210 Material and Chemical Information Analysis	397
10C214 Microstructure, solidification and crystal growth	398
10C267 Ceramic Materials Science	399
10C263 Physical Properties of Crystals Adv.	400
10C271 Magnetism and magnetic materials	401
10C286 Atomic-molecular scale engineering	402
10C288 Microstructure theory and structure evaluation	403
10C289 Advanced Structural Metallic Materials	404
10C290 Electrochemistry for Materials Processing,	405
10K001 Introduction to Advanced Material Science and Technology (English lecture)	406
10C273 Social Core Advanced Materials I	407
10C275 Social Core Advanced Materials I I	408
10C277 Internship M for Materials Science & Engineering	409
10C251 Seminar on Materials Science and Engineering A	410
10C253 Seminar on Materials Science and Engineering B	411
10C240 Laboratory & Seminar in Materials Science and Engineering, Adv.	412
10C241 Laboratory & Seminar in Materials Science and Engineering, Adv.II	413
10R241 Seminar on Materials Science and Engineering, Adv. B	414
10R242 Seminar on Materials Science and Engineering, Adv. B	415
10R243 Seminar on Materials Science and Engineering, Adv. C	416
10R244 Seminar on Materials Science and Engineering, Adv. D	417
10R245 Seminar on Materials Science and Engineering, Adv. E	418

10R247 Seminar on Materials Science and Engineering, Adv. A ~ F	419
10W410 Nano Materials Science	420
10D051 Frontiers in Modern Science & Technology	421
10C292 International Standards	422
Electrical Engineering	
10C643 Advanced Experiments and Exercises in Electrical Engineering ,	423
10C646 Advanced Experiments and Exercises in Electrical Engineering II	424
10R610 Advanced Electrical Engineering Seminar	425
10C628 State Space Theory of Dynamical Systems	426
10C604 Applied Systems Theory	427
10C601 Applied Mathematics for Electrical Engineering	428
10C647 Electrical and Electromagnetic Circuits	429
10C610 Electromagnetic Theory, Adv.	430
10C613 Superconductivity Engineering	431
10C614 Biological Function Engineering	432
10C621 Applied Hybrid System Engineering	433
10C625 Theory of Electric Circuits, Adv.	434
10C631 Design of Control Systems	435
10C616 Electric Power Transmission System	436
10C611 Computer Simulations of Electrodynamics	437
10C612 Space Radio Engineering	438
10C617 Applied Microwave Engineering	439
10C714 Spacio-Temporal Media Analysis	440
10C716 Visualized Simulation Technology	441
10K010 Recent Advances in Electrical and Electronic Engineering	442
693622 Digital Communication Engineering	443
693628 Information Network	444
10X001 Prospects of Interdisciplinary Photonics and Electronics	445
10C718 Advanced Seminar in Electrical Engineering I	446
10C720 Advanced Seminar in Electrical Engineering II	447
10C627 Research Internship(M)	448
10R630 Research Internship (D)	449
10R632 Advanced Exercises on Electrical Engineering I, II	450
10R633 Advanced Exercises on Electrical Engineering I, II	451
10D051 Frontiers in Modern Science & Technology	452
10i045 Exercise in Practical Scientific English	453
10K001 Introduction to Advanced Material Science and Technology (English lecture)	454
10K005 Advanced Modern Science and Technology (English lecture)	455
Electronic Science and Engineering	
10C710 Advanced Experiments and Exercises in Electronic Science and Engineering ,	456
10C713 Advanced Experiments and Exercises in Electronic Science and Engineering II	457
10R701 Advanced Seminar on Electronic Science and Engineering	458

10C825 Quantum Mechanics for Electronics Engineering	459
10C800 Semiconductor Nanospintronics	460
10C801 Charged Particle Beam Apparatus	461
10C803 Quantum Information Science	462
10C810 Semiconductor Engineering Adv.	463
10C813 Electronic Materials Adv.	464
10C816 Molecular Electronics	465
10C819 Surface Electronic Properties	466
10C822 Optical Properties and Engineering	467
10C828 Quantum Optoelectronics Devices	468
10C829 Quantum Optics	469
10C830 Quantum Measurement	470
10C851 Electrical Conduction in Condensed Matter	471
10C834 High Performance Thin Film Engineering	472
10K010 Recent Advances in Electrical and Electronic Engineering	473
693631 Integrated Circuits Engineering, Advanced.	474
10X001 Prospects of Interdisciplinary Photonics and Electronics	475
10C846 Advanced Seminar in Electronic Science and Engineering I	476
10C848 Advanced Seminar in Electronic Science and Engineering II	477
10C821 Research Internship(M)	478
10R823 Research Internship(D)	479
10R825 Advanced Exercises on Electronic Science and Engineering I, II	480
10R827 Advanced Exercises on Electronic Science and Engineering I, II	481
10D051 Frontiers in Modern Science & Technology	482
10i045 Exercise in Practical Scientific English	483
10K001 Introduction to Advanced Material Science and Technology (English lecture)	484
10K005 Advanced Modern Science and Technology (English lecture)	485
Material Chemistry	
10H001 Chemistry of Inorganic Materials	486
10H004 Chemistry of Organic Materials	487
10H007 Chemistry of Polymer Materials	488
10H010 Chemistry of Functional Materials	489
10H013 Chemistry and Structure of Inorganic Compounds	490
10H016 Synthetic Chemistry of Inorganic Solids	491
10H019 Synthesis of Organic Materials	492
10H022 Chemistry of Organic Natural Products	493
10H025 Analysis and Characterization of Materials	494
10H029 Polymer Physics and Function	495
10H031 Chemistry of Biomaterials	496
10H034 Analysis and Characterization of Materials	497
10D037 Laboratory and Exercise in Material Chemistry	498
10K001 Introduction to Advanced Material Science and Technology (English lecture)	499
10K005 Advanced Modern Science and Technology (English lecture)	500

10i045 Exercise in Practical Scientific English	501
10D051 Frontiers in Modern Science & Technology	502
10D043 Instrumental Analysis, Adv.	503
10D046 Instrumental Analysis, Adv.	504
10H041 Organotransition Metal Chemistry 1	505
10H042 Organotransition Metal Chemistry 2	506
10P055 Material Chemistry Adv. I	507
10P056 Material Chemistry Adv. II	508
10P057 Material Chemistry Adv.	509
10P058 Material Chemistry Adv.	510
10S001 Design of Functional Materials	511
10S002 Design of Functional Materials, Advanced	512
10S003 Inorganic Structural Chemistry, Advanced	513
10S006 Industrial Solid-State Chemistry, Advanced	514
10S010 Organic Reaction Chemistry, Advanced	515
10S013 Organic Chemistry of Natural Products, Advanced	516
10S016 Analytical Chemistry of Materials, Advanced	517
10S019 Physical Properties of Polymer Materials, Advanced	518
10S022 Synthesis of Polymer Materials, Advanced	519
10i041 Professional Scientific Presentation Exercises (English lecture)	520
10i042 Advanced Engineering and Economy (English lecture)	521
10i047 Engineering Project Management (English lecture)	522
10i048 Engineering Project Management (English lecture)	523
10Z101 Micro/Nano Scale Material Engineering	524
10i009 Internship	525
10P011 General Material Chemistry	526
Energy and Hydrocarbon Chemistry	
10H201 Energy Conversion Reactions	527
10H202 Green and Sustainable Chemistry	528
10H205 Inorganic Solid-State Chemistry	529
10H200 Electrochemistry Advanced	530
10H215 Chemistry of Functional Interfaces	531
10H213 Catalysis in Organic Reactions	532
10H207 Excited-State Hydrocarbon Chemistry	533
10H209 Advanced Biomedical Engineering	534
10H217 Chemical Conversion of Carbon Resources	535
10H210 Chemistry of Organometallic Complexes	536
10H218 Design of Solid Catalysts	537
10H222 Material Transformation Chemistry	538
10H219 Structural Organic Chemistry	539
	7. 40
10H238 Radiochemistry, Adv.	540
10H238 Radiochemistry, Adv. 10H226 Chemistry of Well-Defined Catalysts	540 541

10H818 Advanced Organic Chemistry	543
10P818 Advanced Organic Chemistry 2 Continued	544
10H041 Organotransition Metal Chemistry 1	545
10H042 Organotransition Metal Chemistry 2	546
10D228 Energy and Hydrocarbon Chemistry, Adv. I	547
10D229 Energy and Hydrocarbon Chemistry, Adv. II	548
10D230 Energy and Hydrocarbon Chemistry, Adv. III	549
10D231 Energy and Hydrocarbon Chemistry, Adv. IV	550
10D232 Energy and Hydrocarbon Chemistry, Adv. V	551
10D233 Energy and Hydrocarbon Chemistry, Adv. IV	552
10D235 Energy and Hydrocarbon Chemistry, Adv. VII	553
10D236 Energy and Hydrocarbon Chemistry, Adv. VIII	554
10K001 Introduction to Advanced Material Science and Technology (English lecture)	555
10K005 Advanced Modern Science and Technology (English lecture)	556
10D043 Instrumental Analysis, Adv.	557
10D046 Instrumental Analysis, Adv.	558
10D051 Frontiers in Modern Science & Technology	559
10i045 Exercise in Practical Scientific English	560
10i009 Internship	561
10D234 Experiments & Exercises in Energy and Hydrocarbon Chemistry, Adv.	562
10S204 Energy and Hydrocarbon Chemistry Special Seminar 1	563
10S205 Energy and Hydrocarbon Chemistry Special Seminar 2	564
10S206 Energy and Hydrocarbon Chemistry Special Seminar 3	565
Molecular Engineering	
10H401 Statistical Thermodynamics	566
10H405 Quantum Chemistry	567
10H406 Quantum Chemistry	568
10H408 Molecular Spectroscopy	569
10H448 Biomolecular Function Chemistry	570
10H413 Molecular Materials	571
10H416 Catalysis Science at Molecular Level	572
10P416 Catalysis Science at Molecular Level 2	573
10H417 Molecular Photochemistry	574
10P417 Molecular Photochemistry 2	575
10H419 Molecular Reaction Dynamics	576
10H422 Molecular Materials Science	577
10H425 Molecular Inorganic Materials Science	578
10H428 Molecular Rheology	579
10H430 Molecular Porous Physical Chemistry	580
10D432 Laboratory and Exercises in Molecular Engineering I	581
10D433 Laboratory and Exercises in Molecular Engineering I I	582
10D439 Molecular Engineering, Adv. IA	583
10D445 Molecular Engineering, Adv. IB	584

10D440 Molecular Engineering, Adv. IIA	585
10D447 Molecular Engineering, Adv. IIB	586
10H436 Molecular Engineering, Adv.	587
10D437 Molecular Engineering, Adv.	588
10D438 Molecular Engineering, Adv. V	589
10P439 Molecular Engineering, Adv.	590
10P440 Molecular Engineering, Adv.	591
10P448 Japan Gateway Project Seminar	592
10P450 Japan Gateway Project Seminar	593
10P452 Japan Gateway Project Seminar	594
10P454 Japan Gateway Project Seminar	595
10P456 Japan Gateway Project Seminar	596
10P457 Japan Gateway Project Seminar	597
10K001 Introduction to Advanced Material Science and Technology (English lecture)	598
10K005 Advanced Modern Science and Technology (English lecture)	599
10i045 Exercise in Practical Scientific English	600
10D043 Instrumental Analysis, Adv.	601
10D046 Instrumental Analysis, Adv.	602
10D051 Frontiers in Modern Science & Technology	603
10i009 Internship	604
10S401 Advanced Molecular Engineering	605
10S404 Advanced Seminar on Molecular Engineering 1	606
10S405 Advanced Seminar on Molecular Engineering 2	607
Polymer Chemistry	
10H649 Polymer Synthesis	608
10D652 Polymer Physical Properties	609
10S604 Advanced Seminar on Polymer Chemistry 1	610
10S605 Advanced Seminar on Polymer Chemistry 2	611
10H645 Polymer Functional Chemistry	612
10H607 Design of Polymerization Reactions	613
10H610 Reactive Polymers	614
10H613 Polymer Structure and Function	615
10H616 Polymer Supermolecular Structure	616
10H611 Biomacromolecular Science	617
10H643 Polymer Solution Science	618
10H622 Physical Chemistry of Polymers	619
10H625 Polymer Spectroscopy	620
10H628 Design of Polymer Materials	621
10H647 Polymer Controlled Synthesis	622
10H636 Polymer Design for Biomedical and Pharmaceutical Applications	623
10H633 Biomaterials Science and Engineering	624
10H638 Advanced Seminar on Polymer Industry	625
10D640 Polymer Chemistry Laboratory & Exercise	626

10K001 Introduction to Advanced Material Science and Technology (English lecture)	627
10K005 Advanced Modern Science and Technology (English lecture)	628
10H041 Organotransition Metal Chemistry 1	629
10H042 Organotransition Metal Chemistry 2	630
10H818 Advanced Organic Chemistry	631
10P818 Advanced Organic Chemistry 2 Continued	632
10D043 Instrumental Analysis, Adv.	633
10D046 Instrumental Analysis, Adv.	634
10D051 Frontiers in Modern Science & Technology	635
10i045 Exercise in Practical Scientific English	636
10i041 Professional Scientific Presentation Exercises (English lecture)	637
10i009 Internship	638
Synthetic Chemistry and Biological Chemistry	
10H802 Organic System Design	639
10H804 Synthetic Organic Chemistry	640
10H805 Functional Coordination Chemistry	641
10H808 Physical Organic Chemistry	642
10H834 Fine Synthetic Chemistry	643
10H813 Bioorganic Chemistry	644
10H812 Molecular Biology	645
10H815 Biorecognics	646
10H816 Microbiology and Biotechnology	647
10H818 Advanced Organic Chemistry	648
10P818 Advanced Organic Chemistry 2 Continued	649
10H836 Advanced Biological Chemistry	650
10P836 Advanced Biological Chemistry 2 Continued	651
10H041 Organotransition Metal Chemistry 1	652
10H042 Organotransition Metal Chemistry 2	653
10D839 Synthetic Chemistry and Biological Chemistry, Adv,A	654
10D840 Synthetic Chemistry and Biological Chemistry, Adv,B	655
10D841 Synthetic Chemistry and Biological Chemistry, Adv,C	656
10D842 Synthetic Chemistry and Biological Chemistry, Adv,D	657
10D843 Synthetic Chemistry and Biological Chemistry, Adv,E	658
10D844 Synthetic Chemistry and Biological Chemistry, Adv,F	659
10D828 Special Experiments and Exercises in Synthetic Chemistry and Biological Chemistry	660
10K001 Introduction to Advanced Material Science and Technology (English lecture)	661
10K005 Advanced Modern Science and Technology (English lecture)	662
10D043 Instrumental Analysis, Adv.	663
10D046 Instrumental Analysis, Adv.	664
10D051 Frontiers in Modern Science & Technology	665
10i045 Exercise in Practical Scientific English	666
10i041 Professional Scientific Presentation Exercises (English lecture)	667
10i042 Advanced Engineering and Economy (English lecture)	668

10i047 Engineering Project Management (English lecture)	669
10i048 Engineering Project Management (English lecture)	670
10S807 Special Seminar 1in Synthetic Chemistry and Biological Chemistry	671
10S808 Special Seminar 2in Synthetic Chemistry and Biological Chemistry	672
10S809 Special Seminar 3 in Synthetic Chemistry and Biological Chemistry	673
Chemical Engineering	
10H002 Special Topics in Transport Phenomena	674
10H003 Advanced Topics in Transport Phenomena (English lecture)	675
10H005 Separation Process Engineeering, Adv.	676
10H008 Chemical Reaction Engineering, Adv.	677
10H009 Chemical Reaction Engineering, Adv. (English lecture)	678
10H011 Advanced Process Systems Engineering	679
10H053 Process Data Analysis	680
10H017 Fine Particle Technology, Adv.	681
10H020 Surface Control Engineering	682
10H021 Engineering for Chemical Materials Processing	683
10H023 Environmental System Engineerig	684
10H037 Special Topics in English for Chemical Engineering	685
10E038 Process Design	686
10H030 Special Topics in Chemical Engineering I	687
10H032 Special Topics in Chemical Engineering II	688
10H033 Special Topics in Chemical Engineering III	689
10H035 Special Topics in Chemical Engineering IV	690
10H040 Research Internship in Chemical Engineering	691
10P043 Chemical Engineering Seminar	692
10P044 Chemical Engineering Seminar	693
10P045 Chemical Engineering Seminar	694
10P046 Chemical Engineering Seminar	695
10E045 Reseach in Chemical Engineering	696
10E047 Reseach in Chemical Engineering	697
10E049 Reseach in Chemical Engineering	698
10E051 Reseach in Chemical Engineering	699
10K001 Introduction to Advanced Material Science and Technology (English lecture)	700
10K005 Advanced Modern Science and Technology (English lecture)	701
10D043 Instrumental Analysis, Adv.	702
10D046 Instrumental Analysis, Adv.	703
10D051 Frontiers in Modern Science & Technology	704
10T004 Special Seminar of Chemical Engineering 1	705
10T005 Special Seminar in Chemical Engineering 2	706
10T006 Special Seminar of Chemical Engineering 3	707
10T007 Special Seminar in Chemical Engineering 4	708
10T008 Special Seminar in Chemical Engineering 5	709
10T009 Special Seminar in Chemical Engineering 6	710

10F251

Exercise on Project Planning

自主企画プロジェクト

[Code] 10F251 [Course Year] Master 1st [Term] 1st+2nd term

[Class day & Period] 1st term: Thu 3rd, 2nd term: Wed 5th [Location] C1-173 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese and English

[Instructor] Related instructors,

Course Description The purpose of this seminar is to bring out the self-initiative, the planning ability, the creativity of students. From project and to practice, the students set up the goals of projects, go ahead with the projects by themselves, and finally make the presentations of project results. Specifically, about the internship activities in enterprises, the training activities in enterprises or universities at home and abroad, the planning and operation of collaborative projects with citizen, the student makes the perfect plannings including the purposes, the ways, the results and so on. For a final, the students do practice, they write the reports and make the presentations about the project results.

[Grading] Planning, implementation of project and reports are comprehensively evaluated.

[Course Goals] Goals are cultivating ability for self-initiative, planning and creativity.

[Course Topics]

Theme	Class number of times	Description
Course introduction	1	
Proposal of project		
Management of		
project		
Progress report		
Final report		
Presentation		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details are provided in the first lecture.

Integrated Seminar on Infrastracture Engineering A

社会基盤工学総合セミナーA

[Code] 10U051 [Course Year] Doctor 1st [Term] 1st term [Class day & Period] Fri 5th [Location] C1-173

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] English [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Integrated Seminar on Infrastracture Engineering B

社会基盤工学総合セミナーB

[Code] 10U052 [Course Year] Doctor 1st [Term] 2nd term [Class day & Period] Tue 5th

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] English

[Instructor] Related instructors.

【Course Description】 On the investigation of themes by the students, they make the presentation and discussion in English. The themes are about the technology innovation of infrastructure on the international viewpoint, the ideal style of infrastructure management, the standardization of project technology for internationalization, and about the technology movement or the role of Japan in the world on the construction of infrastructure and the usage of resource energy such as the development and utilization of international crust or resource energy.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be provided in the guidance and first lecture.

Seminar on Infrastructure Engineering A

社会基盤工学セミナー A

[Code] 10U055 [Course Year] Master Course [Term] 1st+2nd term

[Class day & Period] 1st term: Wed&Fri 5th, 2nd term: Mon&Tue 5th [Location] [Credits] 4 [Restriction]

[Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description] This lecture focuses on the movement and content of the most advanced research at home and abroad on Infrastructure Engineering. The students are individually instructed about the planning of study schedule, the way of collecting datas, the way of doing the research and summarizing the results of research.

【Grading】 Points are allocated for research activities such as a presentation at laboratory seminars, domestic conferences, international conferences, research paper presentation etc. Students are required to obtain the points in total which are more than predefined points.

Students are required to get no less than 10 points in total for two years from M1 to M2, no less than 3 points in each year.

1 point: Presentation at laboratory seminar (only if supervisor agrees), oral presentation in the annual meeting in the Society of Civil Engineers.

- 1 ~ 5 point: Attending the lecture held by Academic Society (Certification is required), number of points is determined by your supervisor in accordance to the level of difficulty for approval.
- 3 point : Presentation in English in international conference. If the papers are peer-reviewed, the points are determined as journal papers (see below).
- 5 ~ 10 point: Fist author or coauthor of published and/or accepted journal papers (e.g., for Journal of Society of Civil Engineers, ASCE Journal, etc.) (Number of points is determined by your supervisor depending on level of journal and/or your contribution.)

Others: Exercise on project or training course (Number of points is determined by your supervisor). However, the activities related to the other courses are not admitted, which are Exercise on Project Planning, Capstone Project, Internship on Infrastructure Engineering, Long-Term Internship, Practice in Infrastructure Engineering or Practice in Urban Management.

[Course Goals]

[Course Topics]

Theme Class number of times Description			
	Theme	times	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Independent Study Outside of Class]

[Web Sites]

Seminar on Infrastructure Engineering B

社会基盤工学セミナー B

[Code] 10U056 [Course Year] Master Course [Term] 1st+2nd term

【Class day & Period】1st term: Thu 5th & Fri 4th, 2nd term: Thu 4th & Fri 5th 【Location】 【Credits】4

[Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor] Related instructors,

[Course Description] The students make the collection of data, study and summarize the research results about the specific themes on Infrastructure Engineering. In addition, the students are individually instructed about the way of presentation of research results through the presentations at the conferences at home and abroad, the ones at laboratory and participation in training course.

[Grading] Points are allocated for research activities such as a presentation at laboratory seminars, domestic conferences, international conferences, research paper presentation etc. Students are required to obtain the points in total which are more than predefined points.

Students are required to get no less than 10 points in total for two years from M1 to M2, no less than 3 points in each year.

1 point: Presentation at laboratory seminar (only if supervisor agrees), oral presentation in the annual meeting in the Society of Civil Engineers.

- 1 ~ 5 point: Attending the lecture held by Academic Society (Certification is required), number of points is determined by your supervisor in accordance to the level of difficulty for approval.
- 3 point: Presentation in English in international conference. If the papers are peer-reviewed, the points are determined as journal papers (see below).
- 5 ~ 10 point: Fist author or coauthor of published and/or accepted journal papers (e.g., for Journal of Society of Civil Engineers, ASCE Journal, etc.) (Number of points is determined by your supervisor depending on level of journal and/or your contribution.)

Others: Exercise on project or training course (Number of points is determined by your supervisor). However, the activities related to the other courses are not admitted, which are Exercise on Project Planning, Capstone Project, Internship on Infrastructure Engineering, Long-Term Internship, Practice in Infrastructure Engineering or Practice in Urban Management.

[Course Goals]

[Course Topics]

	Theme	Class number of times	Description
o11		'	Each supervisor navigates students thorough their presentations and
all			discussion.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Internship on Infrastracture Engineering

社会基盤工学インターンシップ

[Code] 10U059 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description] Through the long-term internship outside the university, the students can get the practical techniques, the way of finding and solving the problems, the way of integrating the techniques, the way of summarizing the results and making the presentation in each field of Urban Management.

[Grading] Writing plans, completing internship, final report and presentation are comprehensively evaluated.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Practice in Infrastructure Engineering

社会基盤工学実習

[Code] 10F063 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 1st

[Location] C1-173 [Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese

[Instructor] Related instructors,

【Course Description】 To develop fundamental and practical understandings on Civil and Earth Resources
Engineering and cultivate problem-solving abilities, students are encouraged to attend a practical education and
engineering program offered by educational institutes such as universities, international and domestic associations.
Students attend a program under the instructions of academic supervisors. Programs are limited to the ones
certified by the department.

【Grading】 Attendance and reports are comprehensively evaluated.

[Course Goals] To develop fundamental and practical understandings on Civil and Earth Resources Engineering and cultivate problem-solving abilities by attending a practical education and engineering program offered by educational institutes such as universities, international and domestic associations.

[Course Topics]

	Theme	Class number of times		Description
all		15	study practical knowledge.	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

ORT on Infrastructure Engineering

社会基盤工学ORT

[Code] 10U060 [Course Year] Doctor Course [Term] 1st+2nd term

[Class day & Period] 1st term: Thu 3rd&4th, 2nd term: Thu 4&5th [Location] C1-173 [Credits] 4 [Restriction]

[Lecture Form(s)] [Language] [Instructor] Related instructors,

Course Description 1 By practicing about the research themes on Infrastructure Engineering and making the presentations of the research results at the conferences, the students can develop the advanced specialities and the ability of finding out the new fields of research. Also, the students get the practical ability which is necessary for researchers and engineers. The students can participate in the conferences at home and abroad, in the presentations of research at laboratory, in some kinds of seminars, symposiums, lecture classes, internship to the enterprises or research organizations at home and abroad. The director of the department and the supervisor totally evaluate the reports made about these activities by the students.

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	30	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be provided in the guidance.

Practice in Advanced Infrastructure Engineering A

社会基盤工学総合実習 A

[Code] 10U064 [Course Year] Doctor 1st [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	3	
	5	
	2	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Practice in Advanced Infrastructure Engineering B

社会基盤工学総合実習 B

[Code] 10U065 [Course Year] Doctor 1st [Term] 2nd term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	3	
	5	
	2	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Continuum Mechanics

連続体力学

[Code] 10F003 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Kunitomo Sugiura, Tomomi Yagi,

[Course Description] Continuum mechanics is a unified basis for solid mechanics and fluid mechanics. The aims of this course are to introduce the continuum mechanics from their basics to the some forms of constitutive law and also to provide students with mathematical way of understanding the continuum mechanics. This course contains the fundamentals of vector and tensor calculus, the basic equations of continuum mechanics, the tensor expressions of elastic problems and further applications.

【Grading】 Assessment will be based on exam, report and participation.

[Course Goals] Fundamental theorems on structural mechanics and design will be learned, and ability to judge the proprieties of each computational structural analysis will be acquired.

【Course Topics】

Theme	Class number of times	Description
Introductions	1	- Outline of Structural Analysis - Mathematical Preliminaries(Vectors and Tensors)
Matrices and tensors	1	- Summation Convention - Eigenvalues and Eigenvectors
differential and integral calculus of tensors	1	- Quotient Laws - Divergence Theorem
Kinematics	1	- Material Description- Spatial Description- Material derivative
Deformation and strain	2	- Strain tensors - Compatibility conditions
Stress and equilibrium equation	1	- Stress Tensors - Equilbrium Equations
Conservation law and governing equation	1	- Conservation of Mass - Conservation of Linear Momentum - Conservation of Energy
Constitutive equation of idealized material	1	- Perfect Fluid - Linear Elastic Material(Isotropic)
Elastic-plastic behavior and constitutive equation of construction materials	1	- Yield Criteria - Flow Rule - Hardening Rule
Boundary value problem	1	- Governing Equations and Unknowns - Navier-Stokes Equation - Navier Equation
Variational principle	1	- Principle of Virtual Work - Principle of Complementary Virtual Work
Various kinds of numerical analyses	2	- Weighted Residual Method - Finite Element Method
Confirmation of the attainment level of learning	1	Feedback based on the Final Examination

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge for structural mechanics, soil mechanics and fluid mechanics are required.

[Independent Study Outside of Class] As appropriate, the assignments are given based on the content of Lecture.

[Web Sites]

Structural Stability

構造安定論

[Code] 10F067 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd [Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Hiromichi SHIRATO, Kunitomo SUGIURA,

Course Description I Fundamental concept of static and dynamic stability of large-scale structures such as bridges is to be introduced in addition to the way to keep/improve their safety and to evaluate their performance. Basic concept of structural stability and its application and technical subjects to improve safety will be lectured systematically. Furthermore, the practical solutions to the subjects are to be introduced to assure the safety of structures.

【Grading 】 Grading will be evaluated by written examination, reports and attendance.

[Course Goals] The class aims to cultivate the understanding of static and dynamic stability problems for structural system and make understand the methodology to clarify the limit state. To get knowledge on countermeasures to assure the stability which is applicable to practical design and manufacturing will be also required.

[Course Topics]

Theme	Class number of times	Description
		Stability of Structures and Failures
		Basis of Structural Stability
Electic Stability	7	Elastic Buckling of Columns
Elastic Stability		Elastic Buckling of Beams & Frames
under Static Loading		Elastic Buckling of Plates
		Elasto-plastic Buckling
		Buckling Analysis
		The stability around the equilibrium points based on the state equation of
Basic theory of	7	motion in which the nonlinearity of external, damping and restring forces are
•		taken into account. Wind-induced vibration of a square prism (Galloping) and
dynamic stability and its application		1dof system with nonlinear spring will be introduced as practical examples.
		Chaotic motion of a pendulum subjected to periodic external force is also
		explained as an introduction of chaos theory.
Achievement Check	1	Summary and Achievement Check.

【Textbook】Not specified.

【Textbook(supplemental)】Introduced in class if necessary.

[Prerequisite(s)] It is desired for participants to master structural mechanics, continuum mechanics, mathematical analysis as well as vibration theory.

[Independent Study Outside of Class]

[Web Sites] none

Material and Structural System & Management

材料・構造マネジメント論

[Code] 10F068
 [Course Year] Master and Doctor Course
 [Term] 1st term
 [Class day & Period] Wed 2nd
 [Location] C1-173
 [Credits] 2
 [Restriction] No Restriction
 [Lecture Form(s)] Relay Lecture
 [Language] English
 [Instructor] Hirotaka Kawano, Atsushi Hattori, Takashi Yamamoto,

Course Description I With regard to the maintenance of concrete structures, the deterioration prediction procedures in material and structural properties are discussed based on durability and deterioration processes of concrete structures. Repair materials and methods are also introduced. Note: strengthening materials and methods are discussed in Concrete Structural Engineering, provided in the second semester. In the later half of this lecture, structures are focused as groups rather than an individual structure to understand the difference between asset management and maintenance. By taking into consideration the economic aspect and human resources aspect as well as the physical aspect, the flow of the asset management for structures' groups with view points of the life cycle cost and the budget is provided.

【Grading】Reports ,presentations and other activities are inclusively considered.

[Course Goals] To understand the maintenance for a single structure and the asset management for structures' group.

[Course Topics]

Theme	Class number of times	Description
1. Outline of		
maintenance for	1	
concrete structures		
2. Deterioration		
mechanisms of		
concrete structures	4	
and deterioration		
prediction		
3. Repair materials		
and methods for	1	
concrete structures		
4. Maintenance and	2	
asset management		
5. Maintenance for	2	
structures' group		
6. Management for	2	
structures' group		
7. Presentations and	3	
discussions		

【Textbook】Not specified. Some materials may be provided.

【Textbook(supplemental)】Not specified.

[Prerequisite(s)] Basic knowledge on Construction Materials and Concrete Engineering.

[Independent Study Outside of Class] Check the handouts. Additional studies will also be instructed.

[Web Sites]

[Additional Information] Positive presence in the lecture is expected by joining discussions for example.

Earthquake Engineering/Lifeline Engineering

地震・ライフライン工学

[Code] 10F261 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 4th [Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Kiyono, Igarashi,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	1	
	1	
	1	
Principles of seismic	2	Fundamental thories on dynamic response of nonlinear elastoplastic structural
design of structures	2	systems and representative seismic design principles
Seismic performance		
of concrete and steel	1	Essentials and current issues related to seismic performance and design of RC
structures		and steel structures
Seismic response		Idea and current issues on seismic isolation, seismic response control
control and seismic	1	techniques for enhancement of seismic performance of structures, and seismic
retrofit of structures		retrofit and rehabilitation of existing structures
	1	
	2	
	1	
	1	
Achievement	1	
evaluation	1	Students' achievements in understanding of the course material are evaluated.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Infrastructural Structure Engineering

社会基盤構造工学

[Code] 10W001 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] English [Instructor] Related Faculty members,

[Course Description] Structural engineering problems related to planning, design, construction and maintenance of the infrastructures are discussed. Topics concerning structural engineering and management are widely taken up including latest advanced knowledge and technology, future view and/or international topics. Special lectures by extramural lecturers are carried out if necessary.

【Grading】Coursework will be graded based on the reports.

[Course Goals] To grasp problems related to structural engineering and their specific solutions.

To understand applicability of advanced technologies and development prospects.

【Course Topics】

Theme	Class number of times	Description
Structural Materials,	4	Steel materials, Concrete materials, mechanical behavior of structures,
Structural Mechanics	4	Problems related to design, construction and maintenance
Applied Mechanics	1	Numerical analysis for structure performance evaluation
Earthquake and		Infrastructure and natural disaster,
Wind Resistance of	7	Trends of disaster prevention technology,
Structures		Problems related to Earthquake and wind resistant design
Maintenance of		International technology,
	3	Scenario design,
structure		International technological education and collaboration

【Textbook 】 The textbook is not required. Materials will be supplied by instructors.

【Textbook(supplemental)】 Supplemental text books will be introduced by instructors.

[Prerequisite(s)] Structural Mechanics, Wind Resistant Design, Construction Materials, Dynamics of Structures, etc.

【Independent Study Outside of Class】

[Web Sites]

Structural Design

構造デザイン

[Code] 10F009 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Yoshiaki Kubota, Yoshikazu Takahashi, Masahide Matsumura

[Course Description] This course provides the knowledge of the structural planning and design for civil infrastructures. Fundamentals of the reliability of structures based on the probability and statistics are given. Emphasis is placed on the reliability index and the calibration of partial safety factors in the LRFD design format. Furthermore, the relationship between structure and form is discussed with various examples.

[Grading] Assessed by term-end examination, reports and quizes

[Course Goals] To understand the structural planning and design for civil infrastructures.

To understand the reliability-based design of structures.

To deepen the understanding of the relationship between structure and form.

[Course Topics]

Theme	Class number of times	Description
Structural Planning	2	Structural Planning of civil infrastructures is introduced. The concept, significance
		of planning, characteristics of civil infrastructures are discussed. Practical planning
		process of a bridge is explained.
		The bridge types such as girder, truss, arch and suspension bridge that have been
		regarded individually are explained as an integrated concept from the viewpoint of
Structure and Form	3	acting forces to understand the structural systems which have continuous or
		symmetrical relationships. Furthermore, various examples are discussed based on
		the understanding of the structural systems.
Structural Design and	3	Design theory of civil infrastructures is introduced. The allowable stress design
Performance-based		method and the limit state design method are explained. The basic of earthquake
		resistant design is discussed based on the dynamic response of structures.
Design		Performance-based design is also introduced.
Random Variables		Fundamentals of random variables, functions of random variables, probability of
and Functions of	1	·
Random Variables		failure and reliability index in their simplest forms are lectured.
Structural Safety	3	Limit states, probability of failure, FOSM reliability index, Hasofer-Lind reliability
Analysis	3	index, Monte Carlo method are lectured.
Design Codes	2	Code format as Load and Resistance Factors Design (LRFD) method, calibration
Design Codes	2	of partial safety factors based on the reliability method are given.
Assessment of the	1	Assess the level of attainment.
Level of Attainment	1	Assess the level of attainment.

[Textbook] Reliability of Structures, A. S. Nowak & K. R. Collins, McGraw-Hill, 2000

[Textbook(supplemental)] U.Baus, M.Schleich, "Footbridges", Birkhauser, 2008 (Japanese ver.:

"Footbridges"(translated by Kubota, et al.), 鹿島出版会, 2011)

久保田善明,『橋のディテール図鑑』, 鹿島出版会, 2010

Other books will be given in the lectures as necessary.

[Prerequisite(s)] Fundamental knowledge on Probability and Statistics, and Structural Mechanics

[Independent Study Outside of Class] N/A

Web Sites

[Additional Information] Structural planning and design will be given by Y. Takahashi, Structure and form by Y. Kubota, and Structural reliability analysis by M. Matsumura.

Bridge Engineering

橋梁工学

[Code] 10F010 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 3rd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】 Hiromichi Shirato, Kunitomo Sugiura, Tomomi Yagi, Masahide Matsumura

Course Description The subject matter of bridge engineering can be divided into two main parts, which are steel structure and wind loading/wind resistant structure. The aim of this course is to provide details of mechanical behaviors, maintenance and design of bridge structures. The former part of this course contains the static instability of steel structures and the problems of corrosion, fatigue, brittleness, weldability on steel bridges. In the latter part, the basics of wind engineering, bridge aerodynamics and wind-resistant design including current problems to be solved are provided are provided. [Grading] Assessment will be based on exam, reports and participation.

Course Goals

Also, the basic knowledge for wind engineering and aerodynamic instabilities, which are necessary for the wind resistant design of bridges, will be acquired.

【Course Topics】

Theme	Class number of times	Description
		- Fundamental knowledge on steel structures
Introduction	1	- Types of steel structures
		- Future trend of steel structures
M-4:-1 b-bi T-::4:-1		- Construction of steel structures
Material behavior, Initial	1	- Residual stresses and initial deformations
imperfections and Damages		- Damages
		- Yield surfaces
G 1 1 .		- Bauschinger effect
Stress-strain relationship,	1	- Hardening effect
Joints		- Welded joint
		- Bolted joint
		- S-N design curve
Fatigue fracture, fatigue life		- Fatigue crack growth, stress intensity factor
and fatigue design	1	- Miner's rule on damage accumulation
		- Repair of fatigue damage
	1	- Structural instability and accident
Structural stability and		- Theory of Stability
design for buckling		- Compressive members, etc.
		- Mechanism of corrosion
Corrosion and anti-corrosion	1	- Micro- and Macro- cells
of steel structures		- Anti-corrsion
		- Life-cycle costs
		- Natural winds due to Typhoon, Tornado and so on
Wind resistant design of	_	- Evaluation and estimation of strong winds
structures	3	- Wind resistant design methods
		- Various kinds of design codes
		- Introduction of aerodynamic instabilities (ex. vortex-induced vibration, galloping, flutter, buffeting,
Aerodynamic instabilities of		cable vibrations)
structures	3	- Mechanisms of aerodynamic instabilities
		- Evaluation methods and Countermeasures
Wind-induced disaster	1	- Accidents on structures due to strong winds
		- Disaster prevention
Topics	1	Introduction of current topics on bridge engineering by a visiting lecturer
Confirmation of the		
attainment level of learning	1	Confirm the attainment level of learning

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)] Basic knowledge for construction materials, structural mechanics and fluid mechanics are required.

【Independent Study Outside of Class】

[Web Sites]

Concrete Structural Engineering

コンクリート構造工学

[Code] 10A019 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Yoshikazu Takahashi, Takashi Yamamoto, Satoshi Takaya, Katsuhiko Mizuno (Sumitomo Mitsui Construction Co., LTD.)

【Course Description】 Concrete is one of the most useful construction materials employed for an infrastructure. The structural properties of a reinforced concrete including a prestressed concrete are introduced among the various structural components of concrete. The engineering techniques in design, execution, diagnosis, repair, strengthening and management of reinforced and/or prestressed concrete structures are discussed from the point of view of the performance based system.

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	6	
	6	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Structural Dynamics

構造ダイナミクス

[Code] 10F227 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Igarashi, Furukawa

[Course Description] This course deals with dynamics of structural systems and related topics, to provide the theoretical basis to deal with the problems of vibration, safety under dynamic loads and health monitoring associated with infrastructures. The students will study the dynamic response, properties of natural modes and methods of eigenvalue analysis for multi-DOF systems. The topics on the numerical time integration schemes, probabilistic evaluation of structural response to random excitation, and dynamic response control techniques for structures are also studied.

【Grading】 Based on the results of a final examination, plus homework assignments

【Course Goals】(1) To aquire the knowledge on theories and principles of analysis of MDOF systems (2) Systematic understanding of frequency-domain structural response analysis (3) Concept of analysis of numerical time integration schemes (4) Understanding of fundamentals of the random vibration theory

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Fudamental concepts, harmonic motion
Dynamics of Multi-Degree-Of-Freedom 2 Systems		Formulation of Eq. of Motion / Lagrange's method / Normal Modes / Modal Analysis / Modeling of System Damping
Frequency-Domain Analysis of System Response	1	Frequency Response Funcs. / Fourier Transform
Numerical Time Integration	2	Formulation / Stability and Accuracy Analysis of Integration
Random Vibration	6	Overview / Probability Theory / Sequence of i.i.d. Random Variables / Concept of Random Processes / Correlation Funcs. / White Noise / Stochastic Differential Eq. / Lyapunov Eq. / Response to White Noise Excitation / Covariance Matrix Approach / Correlation Funcs. of Random Response / Spectral Representation of Random Processes / Spectral Representation of Structural Response / Application
Structural Response Control	2	Active Control / Semi-Active Control
Achievement Evaluation	1	Students' achievements in understanding of the course material are evaluated.

【Textbook】Not used; Class hand-outs are distributed when necessary.

【Textbook(supplemental)】

[Prerequisite(s)] Mechanical vibration (undergraduate level), Complex calculus (integration of analytic functions, Fourier transform, etc.), Probability theory, Linear algebra

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] There will be homework assignments at the end of most of the lectures.

Seismic Engineering Exercise

サイスミックシミュレーション

[Code] 10F263
 [Course Year] Master and Doctor Course
 [Term] 2nd term
 [Class day & Period] Mon 4th
 [Location] C1-192
 [Credits] 2
 [Restriction] No Restriction
 [Lecture Form(s)] Lecture and Exercise
 [Language] Japanese
 [Instructor] Sawada, Takahashi, Goto

[Course Description] This course provides the knowledge of simulation methods for earthquake engineering. Small groups of students are exercised in the prediction of ground motion generated by a specified seismic fault and the response analysis of structure selected by themselves considering soil-structure interaction.

[Grading] Based on the performance during the course (including homework) and the results of presentation and reports.

【Course Goals】 At the end of this course, students will be required to have a good understanding of: - Prediction of ground motion generated by a specified seismic fault - Dynamic response analysis of structures and foundation (linear/nonlinear)

[Course Topics]

Class number of times	Description
1	Basics of Fourier transformation is introduced.
1	Basics of Fourier transformation is introduced.
1	Equation of motion of SR model is introduced and the integration method of
1	the equation in time domain is explained.
	Small groups of students are everyised in electic modeling of structures and
2	Small groups of students are exercised in elastic modeling of structures and
	linear response analysis in time domain and frequency domain.
2	Empirical Green's function method is introduced to predict large earthquakes
3	based on observed small earthquakes.
2	Seismic analysis method of layered half-space based on equivalent
2	linearization method is introduced.
	Nonlinear modeling of structures and the integration and iterative methods of
2	the nonlinear equation of motion in time domain are introduced.
	the nonlinear equation of motion in time domain are introduced.
	Small groups of students are exercised in the prediction of ground motion
3	generated by a specified seismic fault and the nonlinear response analysis of
	structures and foundation.
1	All students give presentations and discussions.
	1 2 3 2 3

[Textbook] Not used; Class hand-outs are distributed when necessary.

【Textbook(supplemental)】

[Prerequisite(s)] Earthquake Engineering/Lifeline Engineering (10F261), Structural Dynamics (10F227) Independent Study Outside of Class] Students require to review and analyze in preparation for final presentations.

[Web Sites]

Ecomaterial and Environment-friendly Structures

環境材料設計学

[Code] 10F415 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hirotaka KAWANO, Atsushi HATTORI, Toshiyuki ISHIKAWA,

【Course Description】 Lecture on outline of impact of construction materials to environment and influence on materials and structures from environment. Discuss how to use materials sustainably. Keywords are concrete, steel, composite materials, CO2, durability, recycle and reuse, life-cycle assessment.

Grading Attendance(%), Report(%), Presentation(%)

[Course Goals] To understand the limit of resources and effect of material use to environment, and to understand the basic theory to make environmental-friendly infrastructures from the view point of materials use.

[Course Topics]

Theme	Class number of times	Description
Guidance	1	Object of the Course, Grading and Goals
product of materials		
and impact to	1	Product of cement, steel, concrete CO2 product and its influence
environment		
recycle and reuse of	3	Recycle and reuse of steel, metals, concrete, asphalt, plastics Technology
materials		development of construction materials
deterioration of	1	Mechanism of deterioration of concrete structures: carbonation, salt attack,
concrete structures	1	alkali-aggregate reaction Maintenance and retrofit methods
deterioration of steel	1	Mechanism of deterioration of steel structures: corrosion, fatigue Maintenance
structures	1	and retrofit methods
deterioration of	1	Mechanism of deterioration of composite structures: Maintenance and retrofit
composite structures		methods
life-cycle assessment	1	Life-cycle assessment of structures considering initial cost as well as
of structures	1	maintenance cost
topics and discussion	2	Recent topics on construction materials and discussion
presentation by		Presentation by students on the individual topics Discussion on the topics.
students and	4	"Feedback" at the last class
discussion / feedback		1 cododer at the fast class

[Textbook] No set text

【Textbook(supplemental)】Instructed in class

[Prerequisite(s)] Basic knowledge of construction materials, concrete engineering

[Independent Study Outside of Class] Check the handouts. Additional studies will also be instructed.

[Web Sites]

[Additional Information] Questions and discusions are welcome

Infrastructure Safety Engineering

社会基盤安全工学

[Code] 10F089 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 3rd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Tomoyasu Sugiyama, Tsutomu Iyobe

[Course Description] The issues concerning the safety and reliability of infrastructures such as tunnels and bridges and also the issues on natural disaster are reviewed in the lecture.

[Grading] This lecture involves reports (70%) and attendance(30%)

[Course Goals] To understand the basic technologies to enhance the safety of structures and also the fundamentals on disaster prevention.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Introduction on the safety of infrastructures
Maintenance of	1	Planning, investigation, evaluation and repair in maintenance for mainly
railway structures	1	railway structures is generally explained
Weather information		Overview of weather information for disaster prevention and its monitoring
for disaster	2	system, the evaluation method for climatological statistics and extreme value
prevention		statistics.
D:		To sustain the users' safety in railway system, it is necessary to maintain the
Disaster prevention	1	structures properly but also to consider the prevention against disaster. Thus
in railway structures		herein disasters in railway structures and its counteractions are explained
Regulation and		
counteraction against	1	The need for regulation in railway operation at rainfall is explained
rainfall		
Risk assessment for	1	Risk assessment for rainfall disaster is described and also some practical cases
rainfall disaster	1	are introduced
Technical tour	3	Prevention technologies against natural disaster
E-uth111		Warning system for earthquake and the algorithm of earthquake early
Earthquake and its	1	detection, which is one of the regulations for Super expressway in earthquake,
early detection		is explained
Basics of snow	2	Physical phenomenon of snow hydrology and its relationship with natural and
hydrology	2	social environment
Countermeasures of		
snow disasters for	1	Disorder caused by snow and ice and the countermeasures in railways
railway		
Report	1	Report

[Textbook]

【Textbook(supplemental)】

【Prerequisite(s)】 Basic knowledge on statistics is required. Students should have taken the course of geo-mechanics, structural mechanics and concrete engineering.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] confirm the attendance at every lecture

Hydraulics & Turbulence Mechanics

水理乱流力学

[Code] 10F075 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd

[Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Toda, Sanjou, Okamoto,

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
Guidance	1	Guidance and entrance level lecture about fluid dynamics and turbulence
Theories of	2	Lectures about momentum equation, boundary layer, energy transport, vortex
turbulence	3	dynamics and spectrum analysis
Turbulence in natural	4	I at the state of
rivers	4	Lectures about diffusion and dispersion phenomena observed in natural rivers.
Vegetation and	2	Lecture about turbulence transport in vegetation canopy together with
turbulence	3	introduction of recent researches
Practical topics in	2	Lastynes shout commound showed and sadiment two court
natural rivers	2	Lectures about compound channel and sediment transport
Practical topics in		
hydraulic	2	Lectures about drifting object in flood and fish way
engineering		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Hydraulics

【Independent Study Outside of Class】

[Web Sites]

Hydrology

水文学

[Code] 10A216 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Yasuto TACHIKAWA, Yutaka ICHIKAWA and Kazuaki YOROZU

【Course Description】 Physical mechanisms of the hydrologic cycle are described from the engineering viewpoint. The rainfall-runoff modeling and its prediction method are emphasized. Physical hydrological processes explored are surface flow, saturated-unsaturated subsurface flow, streamflow routing, and evapotranspiration. Physical mechanism of each hydrological process and its numerical modeling method are explained. The basic equations and numerical simulation methods are provided. Then, detail of distributed hydrological modeling is explained through exercise.

【Grading】 Examination and report

[Course Goals] The goals of the class are to understand the physical mechanism of hydrological processes, their basic equations, and numerical simulation methods.

【Course Topics】

Theme	Class number of times	Description	
Introduction	1	The hydrologic cycle and the hydrological processes are explained.	
	2	The physical process of the surface flow and its numerical modeling method	
Surfaceflow		are described. The basic equations of the surface flow and the numerical	
		simulation methods are explained.	
		The physical process of the streamflow routing and its numerical modeling	
Streamflow routing	2	method are described. The basic equations of the streamflow routing and the	
		numerical simulation methods are explained.	
Channel network and	1	Numerical representations of shannel naturalise and actahments are avalained	
watershed modeling	1	Numerical representations of channel networks and catchments are explained	
Distributed	5	A physically-based distributed hydrological model is described, which is	
		constructed with numerical representations of channel networks and	
hydrological model		catchments.	
Climate change and	1	Data analysis of the latest GCM simulation is presented and the impact of	
hydrologic cycle	1	climate change on the hydrologic cycle is discussed.	
		The physical process of the evapotranspiration and its numerical modeling	
Evapotranspiration	2	method are described. The basic equations of the evapotranspiration and the	
		numerical simulation methods are explained.	
Feedback of study	1	Finally of study, askinyoment is conducted	
achievement	1	Feedback of study achievement is conducted.	

[Textbook] Handouts are distributed at each class.

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge of hydraulics and hydrology

[Independent Study Outside of Class] Read the textbook and/or related documents in advance and work on assignments to improve understanding of the lecture contents.

[Web Sites] http://hywr.kuciv.kyoto-u.ac.jp/lecture/lecture.html

[Additional Information] This course is open in English every other year. In 2016, the course will be open.

River Engineering and River Basin Management

河川マネジメント工学

[Code] 10F019 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hosoda, Kishida, Onda [Course Description] It is important to consider about rivers comprehensively from the various points of view based on natural & social sciences and engineering & technology. The fundamental knowledge to consider rivers and to make the plans for river basins is explained with the following contents: various view points to consider rivers, long term environmental changes of rivers and its main factors, river flows and river channel processes, the ecological system of rivers and lakes, flood & slope failure disasters, the integrated river basin planning(flood defense, environmental improvement planning, sediment transport system), functions of dam reservoir and management.

【Grading】Reports & Attendance

[Course Goals] Students are requested to understand the fundamental knowledge to consider rivers and river basins comprehensively from the various points of view based on natural & social sciences and engineering & technology.

[Course Topics]

Theme	Class number of times	Description
Various view points to		Various viewpoints to consider rivers and river basins, Various rivers on the earth,
consider rivers and river	1	Formation processes of river basins, long term environmental changes of rivers and its main
basins		factors
Ecological system in	2	
rivers	2	The fundamental knowledge on river ecologycal system
Applications of		The following items are lectured. Commutational mathed to muchiet given flows and given
computational methods	2	The following items are lectured: Computational method to predict river flows and river
to environmental	2	channel processes with sediment transport and river bed deformation, Hydrodynamics in Lake Biwa.
problems		Lake biwa.
Recent flood disasters &		Characteristics of recent flood and slope failure disasters, the Fundamental river
Integrated river basin	2	management plan and the River improvement plan based on the River Law, Procedures to
planning		make the flood control planning, Flood invasion analysis and hazard map.
Groundwater and its	2	Simulation technology of groundwater, Geo-environmental issues, Reservoir Engineering,
related field		Contaminant Transport Processes.
Sustainable development	2	Needs of dam development and history of dam construction. Maintaneae of Dam recognisis
of dam	2	Needs of dam development and history of dam construction, Maintenace of Dam reservoir.
Economic evaluation of		Evaluation of people's awareness & WTP to river improvement projects by means of CVM,
environmental	1	
improvement projects		Conjoint Analysis, etc.
Dam structure and	2	Down standard from Julius and the Down and Consider Down
maintenance	2	Dam structure, foundation, grouting. Desighn of Arch Dam and Graviety Dam.
Achievement		
Confirmation and	1	Comprehension check of course contents (Reports & Quiz)
Feedback		

 $\begin{tabular}{ll} \textbf{Textbook} \begin{tabular}{ll} \textbf{Printed materials regarding the contents of this class are distributed in the class.} \end{tabular}$

【Textbook(supplemental)】

[Prerequisite(s)] Fundamental knowledge of Hydraulics, Hydrology and Ecology

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students can contact with professors by visiting their rooms and sending e-mails.

Prof. Hosoda: hosoda.takashi.4w@kyoto-u.ac.jp Prof. Kishida: kishida.kiyoshi.3r@kyoto-u.ac.jp

Assistant. Prof. Onda: onda.shinichiro.2e@kyoto-u.ac.jp

Sediment Hydraulics

流砂水理学

[Code] 10A040 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd [Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hitoshi Gotoh and Eiji Harada,

Course Description Natural flows in river and coast are movable bed phenomena with the interaction of flow and sediment. At a river and a coast, a current and a wave activate a sediment transport and bring the topographical change of a bed such as sedimentation or erosion. This lecture provides an outline about the basics of sediment (or movable bed) hydraulics, and detail of the computational mechanics of sediment transport, which has been developed on the basis of dynamics of flow and sediment by introducing a multiphase flow model and a granular material model. Furthermore, about sediment and water-environment relationship, some of frontier technologies, such as an artificial flood, removal works of dam sedimentation, coastal protection works, and sand upwelling work for covering contaminated sludge on flow bottom etc., are mentioned.

【Grading 】 Grading is based on student 's activities in lectures and written examination.

[Course Goals] Students understand the basics of sediment hydraulics and outline of advanced models for computational sediment hydraulics, such as multiphase flow model and granular material model. Students understand the present conditions of sediment control works.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The purpose and constitution of the lecture, the method of the scholastic evaluation are explained.
Basics of sediment hydraulics	5	Physical characteristic of a movable bed and a non-equilibrium sediment transport process and its description are explained. Furthermore, the prediction technique of topographical change due to current and waves is outlined.
Computational mechanics of sediment transport: The state of the art	8	Essential parts of numerical models of the movable bed phenomena, which has been developed by introducing dynamic models such as a granular material model to describe a collision of sediment particles and a multiphase flow model to describe a fluid-sediment interaction, are described. In comparison with the conventional movable bed computation, the points on which has been improved to enhance the applicability of the models are concretely mentioned. Some frontier studies of sediment transport mechanics are also introduced.
Achievement cofirmation	1	Comprehension check of course contents.

【Textbook】 Hitoshi Gotoh: Computational Mechanics of Sediment Transport, Morikita Shuppan Co., Ltd., p.223, 2004 (in Japanese).

【Textbook(supplemental)】Non

[Prerequisite(s)] Undergraduate-level Hydraulics or Hydrodynamics is required. Because a commentary easy as possible is kept in mind by lectures, students without these prerequisite are welcomed.

[Independent Study Outside of Class] Review fundamental items of hydraulics or hydrodynamics.

[Web Sites] Non

Hydrologic Design and Management

水工計画学

[Code] 10F464 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd [Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Yasuto TACHIKAWA and Yutaka ICHIKAWA

[Course Description] Hydrologic design and real-time rainfall-runoff prediction methods are described. The frequency analysis of hydrologic extreme values and the time series analysis of hydrologic variables are described, and then a procedure to determone an external force for the hydrologic design are explained. Next, a physically based hydrologic model which includes various processes of human activities for the hydrologic cycle is described. A flood control planning and water resources management with the use of innovative hydrologic simulation tools is described. Then, A real-time rainfall runoff prediction method with the use of Kalman filter theory is described.

【Grading】Final report (100)

[Course Goals] The class aims to understand the probabilistic and statistical analysis of hydrologic variables to determine the external force of hydrologic designs, applications of hydrologic simulations for hydrologic designs, and real-time rainfall and runoff prediction methods for water resources management.

	T · 1
I COURCA	Onice
Course	LODICS

Theme	Class number of times	Description
Introduction	1	A flood control planning and water resources planning are introduced.
Frequency analysis	2	The frequency analysis of hydrologic extreme values is described. The methods to
and hydrologic design	3	set the external force for the hydrologic design are explained.
		The time series analysis of hydrologic variables is described. The methods to
Time series analysis	2	develop time series models, time serried data generation methods, spatiotemporal
and hydrologic design	2	variation of hydrologic variables and a random field model, disaggregation
		methods are explained.
	2	Hydrologic models which include the process of human activities for the
II doub		hydrologic cycle is described. Then, hydrologic predictive uncertainty is explained,
Hydrologic modeling		which is inevitable coming from model structure uncertainty, parameter
and predictive		identification uncertainty and model input uncertainty. Especially, the relation
uncertainty		between spatiotemporal scales of hydrologic modeling and model parameter values
		is described.
Hydrologic modeling	2	A hydrologic modeling system which helps to develop complicated hydrologic
system	2	simulation models and its importance for a flood control planning is also described.
Watershed		Wetnesday and the sixty of the
management for flood	2	Watershed management to mitigate flood disasters is described. A cost-benefit
disaster		analysis of flood control measures is discussed.
Real-time rainfall	2	A real-time rainfall runoff prediction method with the use of Kalman filter theory
runoff prediction		and a new filter theory is described.
Feedback of study	1	Fredhead of study only and a surface of
achievement	1	Feedback of study achievement is conducted.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge of hydrology, probability and statistics are required.

[Independent Study Outside of Class] Read the textbook and/or related documents in advance and work on assignments to improve understanding of the lecture contents.

[Web Sites] http://hywr.kuciv.kyoto-u.ac.jp/lecture/lecture.html

Open Channel Hydraulics

開水路の水理学

[Code] 10F245 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 1st [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] HOSODA, Takashi and ONDA, Shinichiro

Course Description Hydraulic engineers and river engineers are requested to understand Open Channel Hydraulics to handle practical problems properly. In this class, the basic theory on open channel hydraulics is lectured showing various applications in Hydraulic Engineering Field. The contents include the following items: Application of a singular point theory to water surface profile analysis, Derivation of 2-D depth averaged flow model, 1-D analysis of unsteady open channel flows based on the method of characteristics, Plane 2-D analysis of steady high velocity flows, Plane 2-D analysis of unsteady flows, Higher order theories such as Boussinesq equation, etc.

【Grading】 the regular examination

[Course Goals] Students are requested to understand the basic theory of Open Channel Hydraulics and to learn how to apply the basic theory to practical problems in hydraulic engineering field.

【Course Topics】

Theme	Class number of times	Description
Guidance	1	The contents of this subject are introduced showing the whole framework of Open
		Channel Hydraulics with several theoretical and computational results.
Derivation of 2-D	1	Derivation procesures of plane 2-D depth averaged flow model are expalined in details.
depth averaged model	1	Derivation procesures of plane 2-D depth averaged flow model are expanied in details.
Application of singular		
point theory to water	1	The application of a singular point theory to water surface profile analysis for steady open channel flows is explained.
surface profile analysis		open channel flows is explained.
1-D analysis of		The following items are lectured: Fundamental characteristics of 1-D unsteady open
unsteady open channel	3	channel flows, Method of Characteristics, Dam break flows, Computational methods
flows		for shallow water equations.
F 1 1 . C	1	basic theory of numerical simulation is explained by means of finite difference method,
Fundamentals of		finite element method, etc. Applications of these method to unsteady open channel flow
numerical simulation		equations are also shown with some practical applications in river engineering.
Plane 2-D analysis of		
steady high velocity	1	Characteristics of steady plane 2-D flows are explained based on the method of
flows		characteristics.
		The following items are lectured: The propagation of a characteristic surface, the shear
Plance 2-D analysis of	3	layer instability in 2-D flow fields, the application of a generalized curvilinear
unsteady flows		coordinate system to river flow computation, the application of a moving coordinate
		system, etc.
		Boussinesq equation with the effect of vertical acceleration, full/partially full
Higher order theory	3	pressurized flows observed in a sewer network, traffic flow theory based on a dynamic
		wave model and its application
Achievement		
Confirmation &	1	Understanding of the contents on Open Channel Hydraulics is confirmed through the
Feedback		regular examination.

【Textbook】 Printed materials on the contents of this class are distributed in class.

【Textbook(supplemental)】

[Prerequisite(s)] The Basic knowledge on fluid dyanamics and hydraulics

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students can contact with Hosoda by sending e-mail to hosoda.takashi.4w@kyoto-u.ac.jp.

Coastal Wave Dynamics

海岸波動論

[Code] 10F462 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 3rd

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Hitoshi Gotoh, Khayyer Abbas, Eiji Harada and Hiroyuki Ikari

【Course Description】 Wave motion, which is the main driving force in coastal zone, is explained focusing on wave transformation theory and computational fluid dynamics, and design for coastal structures of their engineering applications is illustrated. As for the computational fluid dynamics for waves, methodology of free-surface wave based on the Navier-Stokes equation, which has been significantly developed in recent years, is explained in detail.

【Grading 】 Grading is based on student 's activities in lectures and written examination.

[Course Goals] Goal of this course is a detailed understanding of fundamental of wave transformation theory and computational fluid dynamics related to wave motion, and is also acquiring a design concept for coastal structures as their engineering applications.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The purpose and constitution of the lecture the method of the scholastic evaluation are explained.
Conservation laws of	4	Fundamentals of fluid mechanics, liner / non-liner wave theories and
fluid	4	numerical mathematics are explained.
Modeling of surf zone dynamics	6	Several methodologies against free-surface wave including breaking waves (i.e. VOF, MPS, SPH) are illustrated. Especially advanced approaches of MPS and SPH are explained in detail.
Introduction of turbulence models	1	Reynolds averaging models and large eddy simulation are outlined.
Modeling of rock	2	Method for tracking of armor blocks under high waves using Distinct Element
mound dynamics		Method is described.
Achievement Confirmation	1	Comprehension check of course contents.

【Textbook】Computational Wave Dynamics by Hitoshi Gotoh, Akio Okayasu and Yasunori Watanabe 234pp, ISBN: 978-981-4449-70-0

【Textbook(supplemental)】Non

[Prerequisite(s)] Non. It is desiarable to have knowledge about hydraulics, fluid mechanics.

[Independent Study Outside of Class] Review fundamental items of hydraulics or hydrodynamics.

[Web Sites]

【Additional Information】 If there are any questions, please send e-mail to the staff. This course will be offered in 2015.

Hydro-Meteorologically Based Disaster Prevention

水文気象防災学

[Code] 10F267 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Kaoru Takara, Eiichi Nakakita, Takahiro Sayama

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	1	
	2	
	2	
	2	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Water Resources Systems

水資源システム論

[Code] 10A222 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hori, T.(DPRI) and Tanaka, K.(DPRI)

[Course Description] Systems approach to natural and social phenomena associated to water resources is introduced in terms of planning and design of sustainable water resources systems.

【Grading 】 Grading is done based on examination and commitment to classes.

[Course Goals] Deep understanding of fundamentals for systems modeling of water-related natural and social processes and ability to perform data collection, analyses and design of sustainable water management systems.

[Course Topics]

Theme	Class number of times	Description
Optimum design of		
water resources	3	
systems		
desicion support for		
water resources	3	
management		
Recent topics on	1	
water management	1	
Water management	3	
practices in the world	3	
Land surface model		
and its application to	4	
water management		
achievement check	1	

【Textbook】Not specified.

【Textbook(supplemental)】Supplemental documents will be introduced in classes.

[Prerequisite(s)] Fundamentals of hydrology and water resources engineering.

[Independent Study Outside of Class] Review work based on handouts and report work for issues given in the classes are required.

[Web Sites]

【Additional Information】 Open every two years. Not available in 2016.

River basin management of flood and sediment

流域治水砂防学

[Code] 10F077 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 1st

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] (DPRI) Nakagawa, H., (DPRI) Sumi, T., (DPRI) Takebayashi, H. and (DPRI) Kawaike, K.,

【Course Description】 In a river basin, various kinds of disasters such as debris flow, land slide, flood inundation, storm surge, and etc. sometimes happen from the origin to the mouth. This lecture presents occurrence examples, mechanisms, theory and methods of prediction and prevention/mitigation methods against those disasters. Also this lecture mentions comprehensive management in a sediment routing system focusing on sediment management strategy in dam reservoirs.

【Grading】 Grading is based on 2 reports out of 4 topics and attendance.

[Course Goals] The goals of the class are to understand phenomena within a river basin and to have wide knowledge of problems of flood and sediment disasters and countermeasures against them.

[Course Topics]

Theme	Class number of times	Description
A1	4	About Sabo works, sediment disasters, countermeasures against sediment
About Sabo Works	4	disasters, Sabo projects.
About Reservoir		Reservoir sediment management focusing on reservoir sustainability and
Sediment	3	comprehensive management in a sediment routing system is overviewed
Management		including worldwide perspective and Japanese advanced case studies.
About basin-wide		About the one dimensional bed deformation analysis and the sediment runoff
Ties at susin wites	4	model are introduced. Furthermore, some examples of the application of those
sediment routing		models are introduced.
About basin-wide	4	Flood disasters and countermeasures against them are overviewed along the
flood management		history of flood management in Japan.

[Textbook] No designation. Printed materials regarding the contents of this class are distributed in class.

【Textbook(supplemental)】Instructed in class

[Prerequisite(s)] Fundamental knowledge of Hydraulics and river engineering

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This class is held biennially and is not held in 2014. Attendance is taken every time.

Coastal and Urban Water Disasters Engineering

沿岸・都市防災工学

[Code] 10F269 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] C1-192 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] H. Mase, A. Igarashi, N. Yoneyama, Nobuhito Mori,

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
Out line of coastal	1	Introduction of coastal and urban disasters will be lectured. The type and cause
and urbarn disasters	1	of coastal and urban disasters will be explained for sequential lectures.
Modeling of tsunami,		The fundamental physics and governing equations of tsunami, storm surge and
storm surge and	3	ocean waves will be described and applications and historical events will be
waves		explained in detail.
Reduction of coastal		Characteristics of historical tsunamis, storms surges and coastal erosion will be
	3	presented with countermeasures by engineering approaches. Reliability design
disasters		for coastal structures will be explained following Japanese standard.
Earthquake Disaster		Review of recent earthquake disasters in urban areas in Japan and other
in Urban Areas	1	counries
Principle of Strucural		Fundamental Principles of sofaty and performance of structures against
Design against	3	Fundamental Principles of safety and performance of structures against
Disasters		extreme events, including earthquakes and tsunami
	1	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Basin Environmental Disaster Mitigation

流域環境防災学

[Code] 10F466 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

【Course Description】

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	3	
	3	
	3	
	3	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Computational Fluid Dynamics

数值流体力学

[Code] 10F011 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 4th [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Satoru Ushijima, Hitoshi Gotoh, Abbas Khayyer

Course Description Computational Fluid Dynamics (CFD) is largely developed according to the progress of computer technology in recent years. It is the powerful and effective technique to predict the various fluid phenomena, which show the complicated behaviors due to the non-linearity and other conditions. This course provides the dynamics of fluids and eddies as well as the discretization and numerical techniques, such as finite difference, finite volume and particle methods.

[Grading] The grading will be based on homework assignments.

[Course Goals] Course goal is to understand the basic theory and numerical techniques for CFD.

[Course Topics]

Theme	Class number of times	Description
computational method for incompressible fluids	7	The course introduces the MAC algorithm, which is generally used for incompressible Newtonian fluids on the basis of finite difference and finite volume methods (FDM and FVM). The outline of numerical methods is also discussed for parabolic, hyperbolic or elliptic partial differential equations, in terms of the numerical stability and accuracy. Homework will be assigned each week.
Particle method - basic theory and improvements	7	To simulate violent flow with gas-liquid interface which is characterized by fragmentation and coalescence of fluid, particle method shows excellent performance. Firstly, basics of the particle method, namely discretization and algorithm, which is common to SPH(Smoothed Particle Hydrodynamics) and MPS(Moving Particle Semi-implicit) methods, are explained. Particle method is superior in robustness for tracking complicated interface behavior, while it suffers from existence of unphysical fluctuation of pressure. By revisiting the calculation principle of particle method, various improvements have been proposed in recent years. In this lecture, the state-of-the-art of accurate particle method is also described.
Feedback	1	Discuss the contents of all classes and assignments. The details will be introduced in the course.

【Textbook 】 No textbook assigned to the course

[Textbook(supplemental)] Recommended books and papers will be introduced in the course.

[Prerequisite(s)] Basic knowledge of fluid dynamics, continuum mechanics and computational technique

【Independent Study Outside of Class】

[Web Sites]

Hydraulic Engineering for Infrastructure Development and Management 水域社会基盤学

[Code] 10F065 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Hosoda Takashi, Toda Keiichi, Gotoh Hitoshi, Tachikawa Yasuto, Kisihida Kiyoshi, Ichikawa Yutaka, Harada Eiji, Sanjou Michio, Khayyer Abbas and Kim Sunmin,

Course Description This lecture picks up various water-related problems and provides their explanation and solution methodology related to hydrodynamic and hydrological infrastructure improvements, maintenance, disaster prevention against flood and damage of water environment, interweaving several leading-edge cases in the real world. Turbulent flow and CFD, sediment transport system and design/planning of hydraulic structure are described on the basis of the integrated management of river-and-coast systems with sediment control and these relationship with infrastructure improvement. Perspective from the viewpoint of public environmental infrastructure on water environment is presented.

【Grading 】 Grading is based on students activities in lectures and reports.

[Course Goals] Students learn about case-based practical solutions against various problems related to hydraulic engineering, and students acquire academic preparation of how to approach to public environmental infrastructure on water area.

[Course Topics]

Theme	Class number of times	Description
I		The purpose and constitution of the lecture, the method of the scholastic
Introduction	1	evaluation are explained.
Hydraulics in	3	Several problems and exciting topics related to hydraulics in open-channel
open-channel flows		flows are discussed with advanced practical examples.
River basin		Introduction of flood disasters during a few decades in the world, flood control
	3	planning in Japan, Economic evaluation and analysis of people 's awareness
management		to river improvement projects with dam construction.
	3	Several problems and their solution methodology against sediment transport
Beach erosion		process in coastal zone are explained. Advanced approaches for sediment
		control are overviewed.
Rainfall-runoff		Water resources issues related to rainfall-runoff prediction and hydrologic
prediction and	3	
hydrologic design		design are discussed with advanced practical examples.
Numerical		
simulation for	1	Recent numerical simulation development and related state-of-the-art
Hydraulic	1	technologies are overviewed.
engineering		
Achievement	1	Comprehension check of course contents. The exercises to the given subjects
Confirmation		are performed.

[Textbook] Non

【Textbook(supplemental)】Non

[Prerequisite(s)] hydraulics, fluid mechanics, river engineering, coastal engineering, hydrology, etc.

[Independent Study Outside of Class]

[Web Sites] Non

Applied Hydrology

応用水文学

[Code] 10F100 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Hori(DPRI), Sumi(DPRI), S.Tanaka(DPRI), Takemon(DPRI), K.Tanaka(DPRI), Kantoush(DPRI)

【Course Description】 Applied and integrated approach to the problems closely related to the water circulation system, such as floods, droughts, water contamination, ecological change, and social change is introduced mainly from the hydrological viewpoint with reference to water quantity, quality, ecological and socio-economic aspects. In the course, several actual water problems are taken up and solving process of each problem which comprises of problem-identification and formulation, impact assessment, countermeasures design and performance evaluation is learned through the lectures ' description and also investigation and discussion among the students.

【Grading 】 Grading is based on student activities in lectures, presentation and reports.

【Course Goals】 To obtain fundamental Knowledge and skills to perform problem definition, survey amd countermeasure design on problems about water use, water hazard mitigation and water environment.

[Course Topics]

Theme	Class number of times	Description
Water disasters and	2	Risk assessment of water disasters, countermeasures and adaptation design,
risk management	2	wataer disasters and human security
Reservoir Systems	2	Reservoir system and its environmental impacts, Sustainable management of
and Sustainability	2	reservoir system
Hydrological	2	Basic theory and application of Hydrological Frequency Analysis, which is the
Frequency Analysis	3	basis for hydrologic design.
Land Surface	2	M-4-11:
Proceses		Modelling of land surface processes, Application of land surface model
Hydrological		Deline and account of headerless and account
Measurements of	2	Design and management of hydrological measurement system in large river
Large River Basins		basins
Hydro oo Cystems	2	Ecohydrological management of habitats in river ecosystems, Ecohydrological
Hydro-eco Systems	2	management of biodiversity in wetland ecosystems
Presentation and	2	study and avaraize for sivan tonics
Discussion	2	study and exersize for given topics

[Textbook] Printed materials on the contents of this class are distributed in class.

【Textbook(supplemental)】None

[Prerequisite(s)] Elementary knowledge of hydrology and water resources engineering.

[Independent Study Outside of Class] Review work based on handouts and report work for issues given in the classes are required.

[Web Sites]

Case Studies Harmonizing Disaster Management and Environment

Conservation

環境防災生存科学

[Code] 10F103 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th [Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English

【Instructor】K. TAKARA(DPRI), H. NAKAGAWA(DPRI), E. NAKAKITA(DPRI), H. MASE(DPRI), N. MORI(DPRI), T. SAYAMA(DPRI)

[Course Description] Environmental impacts by infrastructure for disaster prevention and mitigation are discussed. Introducing various examples of natural disasters, degradation of the environment, and harmonizing disaster management and environmental conservation in the world, this classroom carries on a dialogue about effective measures for reducing negative environmental impacts and serious disasters.

[Grading] Considering both the number of attendances and the score of final test at the end of the semester.

[Course Goals] Conservation of the environment and prevention/mitigation of natural disasters, which are very important for human's survivability, often conflict with each other. This course introduces various examples. Students will learn many examples harmonizing these two issues, and shall consider technical and social countermeasures fitting to the regional characteristics.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Introduction
Disaster due to heavy		
rainfall utilization of	3	Disaster due to heavy rainfall sutilization of weather rader and global climate change
weather radar and global	3	Disaster due to heavy rainfall utilization of weather radar and global climate change
climate change		
Flood disaster prevention	2	Flood disaster provention and the environment
and the environment		Flood disaster prevention and the environment
River environment and	3	River environment and disaster management
disaster management		River environment and disaster management
Hydrological processes		
and water disaster	2	Hydrological processes and water disaster predictions
predictions		
Coastal disasters due to		
tsunamis and storm	2	Coastal disasters due to tsunamis and storm surges
surges		
Projection of climate and		
coastal environmental	2	Projection of climate and coastal environmental change
change		

[Textbook] No particular textbook for this course. Necessary documents and literature introduction are provided in the class room from time to time.

Lecture material for "Coastal disasters due to tsunamis and storm surges"

http://urx3.nu/t4sq

http://urx3.nu/t4sA

http://urx3.nu/t4sC

【Textbook(supplemental)】 Some literature would be introduced by professors.

[Prerequisite(s)] No special knowledge and techniques are necessary, but requires reading, writing and discussing in English in the

[Independent Study Outside of Class] No specific requirement for independent study. Collect information broadly regarding environment and disaster related topics.

[Web Sites]

[Additional Information] Contact Prof. Takara at <takara.kaoru.7v@kyoto-u.ac.jp> if you have any query.

10F106

Integrated Disasters and Resources Management in Watersheds

流域管理工学

[Code] 10F106 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 1st

[Location] Katsura Campus, Ujigawa Open Laboratory, Shirahama Oceanographic Observatory and Hodaka Sedimentation Observatory

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture and Exercise [Language] English

[Instructor] Masaharu FUJITA(DPRI), Tetsuya HIRAISHI(DPRI), Nozomu YONEYAMA(DPRI), Kenji KAWAIKE(DPRI), Hiroshi TAKEBAYASHI(DPRI), Daizo TSUTSUMI(DPRI), Yasuyuki BABA(DPRI),

[Course Description] Mechanism and countermeasures of sediment disasters, flood disasters, urban flood disasters and coastal disasters are explained. An integrated watershed management of these disasters and water/sediment resources is also introduced. This lecture will be open at Katsura Campus, Ujigawa Open Laboratory, Shirahama Oceanographic Observatory and Hodaka Sedimentation Observatory. Students attending this lecture must take one of the intensive experiment/field study courses offered in Ujigawa Open Laboratory and these observatories.

【Grading】Presentation, Discussion and Report

[Course Goals] Learn an integrated basin management system for natural disasters (sediment disasters, food disasters, coastal disasters, urban flood disasters) mitigation and water/sediment resources utilization considering environmental conservation.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Contents of this lecture are explaned.
		We review urban floods from the viewpoint of river basins, flood causes, and features,
Urban flood disaster	2	together with the results of recent studies. Based on these studies, we propose comprehensive
managemnet	2	measures against urban floods, including underground inundations. In addition, we discuss
		on prediction methods of the tsunami disaster in urban area.
Flood disaster	2	Prevention / mitigation measures against flood disasters and flood prediction methods are
management		explained as well as examples of recent flood disasters in Japan.
Sediment disaster	2	Showing the problems on sediment disasters and sediment resources, I explain an integrated
management		sedimnet management system both for sediment disasters and sediment resources.
Coastal disaster	2	Coastal erosion and tsunami hazard become remarkable in these days in Japanese coast. In a
management		lecture, we discuss on characteristics of such coastal disasters.
Exercise on flood	6 (集中2	Experiment and analysis on debris flows, riverbed variation and flooding at Ujigawa Open
disaster at Ujigawa Open	日間)	Laboratory, Fushimi-ku, Kyoto city.
Laboratory (Selective)	цы <i>)</i>	Laboratory, Pushinin-Ru, Kyoto City.
Exercise on sediment		The Hodaka Sedimentation Observatory is located at Okuhida region, Gifu Prefecture. In the
related disaster at	6 (集中2	field exercise, observation methods of rainfall-runoff and sediment movement processes will
Hodaka Sedimentation	日間)	be explained. Field investigations into several types of erosion control facilities, sediment
Observatory (Selective)		producing sites, debris flow sites and sediment related disaster sites will be carried out.
Exercise on coastal		The Shirahama Oceanographic Observatory is located in Shirahama, Wakayama Prefecture.
disaster at Shirahama	6 (集中2	In the lecture, the observatory, waves, currents and tide levels monitoring system is
Oceanographic	日間)	demonstrated as well as the observation tower and the observation boat.
Observatory (Selective)		demonstrated as well as the observation tower and the observation boat.

【Textbook】None

【Textbook(supplemental)】None

[Prerequisite(s)] Hydraulics, River Engineering, Coastal Engineering, Sediment Transport Hydraulics

【Independent Study Outside of Class】

[Web Sites]

Geomechanics

地盤力学

[Code] 10F025 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Mamoru Mimura, Sayuri Kimoto,

[Course Description] Mechanical behavior of soils and problems of its deformation and failure will be covered based on the multiphase mixture theory and the mechanics of granular materials.

[Grading] Final examination (70) and hormeworks, class performance (30)

[Course Goals] The objectives of this course are to understand the basics of geomechanics, and the advanced theories.

[Course Topics]

Theme	Class number of times	Description
Deformation of	1	Mechanical property of geomaterials, critical state soil mechanics, Failure
geomaterils		criteria, modelling of geomaterials (by Prof.Mimura)
Field equations and	2	Framework and field equations for continum, stress-strain ralations for soils,
constitutive model		elastic model, elasto-plastic model, plasticity theory (by Prof.Mimura)
elasto-plastic	3	Constitutive model for geomaterials, elasto-plastic model, Cam clay model (by
constitutive model		Prof. Mimura)
Theory of viscosity		Viscoelasticity, viscoplasticity, Elasto-viscoplastic mode, Adachi-Oka model,
	3	Microstructure of soils, Temperature dependent behavior, Applications of
and viscoplasticity		constitutive models (by Prof. Mimura)
Consolidation	2	Biot's consolidation theory and its application, Consolidation of embankment
analysis	3	(by Assoc.Prof. Kimoto)
Liquefaction of soils	2	Liquefaction of sandy soil, Damage and failure due to liquefaction, Remedial
		measures for liquefaction (by Assoc.Prof. Kimoto)
Confirmation of	1	
achievement	1	

【Textbook】 Handout will be given.

Soil mechanics, Fusao Oka, Asakura Publishing (in Japaneses)

【Textbook(supplemental)】 An elasto-viscoplastic constitutive model, Fusao Oka, Morikita Publishing (in Japanese)

[Prerequisite(s)] Soil mechanics, Fundamentals of continuum mechanics

[Independent Study Outside of Class]

[Web Sites]

Computational Geotechnics

計算地盤工学

[Code] 10K016 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] English [Instructor],

Course Description The course provides students with the numerical modeling of soils to predict the behavior such as consolidation and chemical transport in porous media. The course will cover reviews of the constitutive models of geomaterials, and the development of fully coupled finite element formulation for solid-fluid two phase materials. Students are required to develop a finite element code for solving boundary valueproblems. At the end of the term, students are required to give a presentation of the results.

【Grading】Presentation and home works

[Course Goals] Understanding the numerical modeling of soils to predict the mechanical behavior of prous media, such as, deformation of two-phase mixture and chemical transportation.

[Course Topics]

Theme	Class number of times	Description
Guidance and	1	Fundamental concept in continuum mechanics such as deformation, stresses,
Introduction	1	and motion.
Governing equations		Motion, conservation of mass, balance of linear momeutum for fluid-solid
for fluid-soid	2	two-phase materials. Constitutive models for soils, including elasticity,
two-phase materials		plasticity, and visco-plasticity.
Ground water flow		
and chemical	5	Chemical transport in porous media, advective-dispersive chemical transport.
transport		
Daym damy yelya		The virtual work theorem and finite element method for two phase material are
Boundary value	~	described for quasi-static and dynamic problems within the framework of
problem, FEM programming	5	infinitesimal strain theory. Programing code for consolidation analysis is
		presented.
Presentation	2	Students are required to give a presentation of the results.

【Textbook】 Handout will be given.

【Textbook(supplemental)】

[Prerequisite(s)] Fundamental geomechanics and numericalmethods

【Independent Study Outside of Class】

[Web Sites]

Geo-Risk Management

ジオリスクマネジメント

[Code] 10F238 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Ohtsu

【Course Description】 This lecture aims to provide interdisciplinary knowledge associated with geo-risk engineering, the topics of risk analysis focusing on geotechnical structures. In detail, the contents of lectures consist of following topics: Introduction to risk analysis, Mathematical background of geo-risk evaluation, Examples of risk evaluation mainly focusing on slopes and Risk management on road slopes.

Grading Attendance(10%), Report(30%), Examination(60%)

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Guidance	1	Guidance
Guidance	1	Introduction of Geo-Asset Management
Basic	4	Basics of Risk Analysis (3)
Probability theory	7	Evaluation of Slope Risk
Case Studies in	2	Natural Disasters in Asian Countries
Asian Countries		Natural Disasters in Asian Countries
Feed back	1	Feed back

【Textbook】 Hiroyasu Ohtsu, Project Management, Corona Publishing, 2010. (in Japanese)

【Textbook(supplemental)】C. Chapman and S. Ward, Project Risk Management, John Wiley & Sons, 1997.

R. Flanagan and G. Norman, Risk Management and Construction, Blackwell Science

V.M. Malhotra & N.J. Carino, CRC Handbook on Nondestructive Testing of Concrete, CRC Press, 1989.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 Additional information is available by visiting the following professors. Appointment shall be made in advance by e-mail.

ohtsu.hiroyasu.6n@kyoto-u.ac.jp

Construction of Geotechnical Infrastructures

ジオコンストラクション

[Code] 10F241 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 1st [Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Kimura, Kishida

[Course Description] Advanced construction technology of geo infrastructures, such as tunnel, large underground cavern, foundation, culvert, retaining wall, is introduced and explained. And, the practical projects applied by the advanced construction technology are also introduced.

【Grading】 Attendance and Report (20 %), Examination (80 %)

[Course Goals] To learn to the advanced construction technology and to propose the project and design through the advanced construction technology.

[Course Topics]

Theme	Class number of times	Description
Guidance,		
Introduction of		
construction of	1	Guidance, Introduction of construction of geotechnical infrastructures
geotechnical		
infrastructures		
Geo-investigation		Total destination of the advanced and infection and account to hairman
and survey	2	Introduction of the advanced geo-infestation and survey techniques.
techniques		Explanation of inversion theory and technique.
		Introduction of NATM for construction of tunnel and underground cavern. In
Auxiliary mthods of	2	addition, the role of auxiliary methods, auxiliary method for safety in tunnel
mountain tunnel		constrcution, axiliary methods for preservation of the surrounding environment
		are explained
Dools physics and its		Introduction of the constitutive law of rock material and rock physics (pressure
Rock physics and its	2	solution) and its application fields, such as special projects of underground
applications		space, namely, nuclear waste disposal, and Carbon Capture and Storage.
Field visit or special	1	Visit the construction field or invite special lecture who is the expert engieer
lecture	1	on the construction of geotechnical infrastructures.
Foundation	2	Design and construction of piles foundation and steel pipe sheet piles
Culvert	2	Design and construction of box type and arch type culverts
Retaining wall	2	Design and construction of retaining wall
Examination of	1	
understanding	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Soil mechanics, Rock mechanics

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Office hour will be explained at the guidance. Students can contact with professors as an e-mail.

kimura.makoto.8r@kyoto-u.ac.jp

kishida.kiyoshi.3r@kyoto-u.ac.jp

Fundamental Geofront Engineering

ジオフロント工学原論

[Code] 10F405 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st [Location] C1 Jin-Yu Hall [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Prof. Mamoru MIMURA, Prof. Makoto KIMURA, Assoc. Prof. Yosuke HIGO

[Course Description] This course deals with near-surface quaternary soft soil deposits that are the most important in the engineering sense.

Physical properties and the mechanical characteristics of partially saturated and fully saturated soils are explained, and then various problems in terms of disaster prevention and infrastructure construction are discussed.

[Grading] Performance grading will be provided based on quality of assigned reports and presentations, etc.

[Course Goals] The aim of this course is to understand engineering problems and their mechanical background in the following points:

- Physical properties and mechanical characteristics of quaternary soft soil deposits and relevant engineering problems in terms of disaster prevention
- Fundamentals of unsaturated soil mechanics and engineering problems of earth structures in terms of disaster prevention
- Concepts of innovative underground foundations and structures and engineering problems during construction

【Course Topics】

Theme	Class number of times	Description
Outline of the course, introduction to quaternary deposits	1	Introduction to quaternary deposits. Types and mechanisms of geotechnical disasters relevant to quaternary deposits.
Geo-informatic database	1	Geo-informatic database and its application to modelling soft alluvial soils, liquefaction hazard map, etc.
Evaluation of subsurface structure based on GID	1	Scheme to evaluate subsurface structures using Geo-informatic database including boring logs, geophysical exploration, geological structures. Application to Kyoto basin is given.
Evaluation of liquefaction for near-surface sand depoits	1	Evaluation of liquefaction for near-surface sand deposits using Geo-informatic database is explained. Applications to the 1995 Hyogo-ken Nanbu Earthquake and the 2011 Off the Pacific Coast of Tohoku Earthquake are given, through which open questions are discussed.
Problems of soft clay deposits	1	Deformation characteristics and stability of soft clay deposits and their evaluation methods are explained, e.g., effectiveness and limitation of ground improvement, long term settlement problem, and case histories of large scale reclamation.
Concept of innovative underground structures	1	Citizen-participate-type renovation technique for unpaved roads using sandbags.
Concept of innovative underground structures	1	New construction method of embankments using consecutive precast arch culvert.
Concept of innovative underground structures	2	Technical problems of steel pipe sheet pile. Development of consecutive steel pipe sheet pile and its application.
Outline of earth structures, Unsaturated soil mechanics	2	Roles of earth structures as an infrastructure. Unsaturated soil mechanics.
Damage of earth structures caused by rainfall and earthquake	1	Case examples and their mechanisms of the damages of earth structures caused by rainfall and earthquake.
Methods to evaluate and improve stability of earth structures subjected to rainfall and earthquake	1	Design methods of earth structures and their problems are outlined.
Site visit	1	Visit construction site relevant to the issues of this course.
Evaluation and feedback	1	Evaluation of achievement by assigned reports and its feedback are given.

【Textbook】 Handout will be distributed.

 $\label{thm:condition} \begin{tabular}{ll} Textbook (supplemental) \begin{tabular}{ll} References are indicated in the handout. \end{tabular}$

[Prerequisite(s)] Undergraduate courses in geology, geotechnical engineering, and soil mechanics.

【Independent Study Outside of Class】

[Web Sites]

Environmental Geotechnics

環境地盤工学

[Code] 10A055 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 1st [Location] C1-192 / Engineering Bldg.No.8 Kyodo No.1 (Yoshida Campus) [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese/English [Instructor] Takeshi Katsumi, Toru Inui,

[Course Description] Several issues on environmental geotechnics including geoenvironmental contamination and countermeasure, waste containment and reuse are introduced to understand the contribution of geotechnical engineering to global and local environmental issues. Geoenvironmental issues due to the 2011 East Japan Earthquake and Tsunami are also introduced.

[Grading] Continuous assessment including attendance, some assignments, and final report

[Course Goals] Students should understand the geotechnics to solve the following geoenvironmental issues; soil & groundwater contamination, waste disposal and waste utilization, and extend this knowledge to the development of concepts and technologies for creating and preserving the geo-environment.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Introduction to Environmental Geotechnics, including goals, outline and grading policy of the course
Waste geotechnics	3-4	Functions and structures of waste containment facilities Geotechnics on the liner system (Geosynthetics, clay liner, Leachate collection layer) Post-closure utilization of waste landfill
Remediation geotechnics	3-4	Behaviors of contaminants in subsurface Mechanisms of soil and groundwater contamination Remediation of soil and groundwater contamination Case histories
Geo-environmental issues related to construction works, global environmental issues, and natural disasters	2-3	Mechanisms and remediation of geoenvironmental problems and geo-disasters caused by construction works Geoenvironmental issues caused by the 2011 East Japan Earthquake and Tsunami
Reuse of wastes in geotechnical applications	3-4	Engineering properties of recycled materials in geotechnical applications (Incineration ashes, coal ash, surplus soils, dredged soils) Geoenvironmental impact assessment and control of waste utilization Case histories
Presentation and discussion	2-3	Student presentation, discussion, and summary on above topics

[Textbook] Not specified.

Several technical papers related to the course will be distributed.

[Textbook(supplemental)] Geoenvironmental Engineering (Kyoritsu Shuppan Publishing, ISBN: 9784320074293)

Handbook of Geoenvironmental Engineering (Asakura Publishing, ISBN: 9784254261523)

Introduction to Environmental Geotechnics (Japanese Geotechnical Society, ISBN: 9784886444196)

[Prerequisite(s)] Having knowledge on soil mechanics and geotechnical engineering at bachelor level is preferable, but not requirement.

【Independent Study Outside of Class】

[Web Sites]

Disaster Prevention through Geotechnics

地盤防災工学

[Code] 10F109 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Susumu Iai and Kyohei Ueda

[Course Description] The lecture covers methods of numerical analysis for dynamic behavior of the ground and geotechnical structures. In particular, the lecture covers mechanism, failure modes, and mitigation measure to geo-hazards. The lecture ranges from mechanics of granular materials to numerical simulation.

【Grading 】Based on reports to excercises and attendance.

[Course Goals] Successful students will have the ability to initiate their own research work on geo-hazards based on the solid understanding of the mechanics of granular materials and numerical analysis.

[Course Topics]

Theme	Class number of times	Description
		Introduction to the course (objectives, contents, and grading procedure)
Introduction	1	- ABC's of computers
Introduction	1	- Numerical errors
		- Application of numerical analysis to seismic engineering
Fundamentals of	2	- Numerical solution of a simultaneous equation of the 1st order (SOR method)
numerical analysis	<u> </u>	- Numerical integration method of PDEs (finite difference method)
Application to		Seepage analysis
boundary value	1	- Governing equations
•	1	- Boundary conditions
problems		- Numerical solution of boundary value problems
		Nonlinear continuum mechanics 1
Nonlinear continuum	2	- Vector and tensor algebra
mechanics 1		- Kinematics (motion and strain tensors)
		- Concept of stress tensors
		Nonlinear continuum mechanics 2
Nonlinear continuum	2	- Balance Principles
mechanics 2	2	- Objectivity and stress/strain rates
		- Constitutive law
Fundamentals of	3	Learn fundamentals of dyanamics for numerical analysis of geo-hazards during
dynamics		earthquakes
Mechanics of	4	Learn granular materials subject to transient and cyclic loads
granular materials	4	Learn granular materials subject to transfent and cyclic loads

[Textbook] handouts

【Textbook(supplemental)】 Gerhard A. Holzapfel: Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Public Finance

公共財政論

[Code] 10F203 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Kobayashi, Matsushima,

【Course Description】 The concept of public finance will be taught based upon the framework of Macro economics.

【Grading】Final Exam: 60-70%

Mid-term Exam and Attendance: 30-40%

【Course Goals】 Understand the concept of public finance

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Explain the outline of this course
GDP and 2. Circular flow model of macro economics	2	Explain about the circular flow model of macro economics and the definition of GDP
Input Output Table and General Equilibrium Model	2	Explain about the input-output table and its role on general equilibrium model
IS-LM Model	2	Explain about IS-LM model to analyze both goods market and money market
International Economics	2	Explain about the international account balance and IS-LM model with trade
AD-AS Model	2	Explain about AD-AS model which analyze the mid term
Economic Growth Model	2	Explain about economic growth model in which long term economic growth is analyzed
Summary	1	Summarize classes and check whether students could achieved its goal.
feedback	1	Accept feedback from students

[Textbook]

[Textbook(supplemental)] Dornbusch et al., Macroeconomics 10th edition, Mcgrow-hill, 2008

[Prerequisite(s)] Basic Microeconomics

【Independent Study Outside of Class】

[Web Sites] will be notified in the first class.

Urban Environmental Policy

都市社会環境論

[Code] 10F207 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Dai Nakagawa and Ryoji Matsunaka,

[Course Description] This lecture aims to learn urban environmental policy and its fundamental theory and methodology to solve social and environmental problems that occur in urban area as well as to understand the structure of these problems.

[Grading] evaluation by commitment, tests, reports and examination

[Course Goals] to understand the structure of social and environmental problems in urban area and urban environmental policy, its fundamental theory and methodology to solve the problems

[Course Topics]

Theme	Class number of times	Description
Outline	1	
Structure of urban	2	Expansion of urban areas, Increase of Environmental impact, Making compact
problems	3	cities
Basic theory of		
transportation and	2	Downtown activation, Road space re-allocation, Pedestrianisation
environment		
Road traffic and	2	Characteristics of traffic modes, Light Rail Transit, Bus Rapid Transit,
Public transportation	2	Mobility Management
Fundamental theory		
for measurements of	3	Utility, Equivalent Surplus, Compensating Surplus
environmental values		
Methodology to		Transl Cook Make d. Hadania Angara de Cantina ant Valentian Mathad
measure	3	Travel Cost Method, Hedonic Approach, Contingent Valuation Method,
environmental values		Conjoint Analysis
Summary	1	

【Textbook】No textbook

【Textbook(supplemental)】

[Prerequisite(s)] basic knowledge of public economics is required

【Independent Study Outside of Class】

[Web Sites]

Quantitative Methods for Behavioral Analysis

人間行動学

[Code] 10F219 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 5th

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Satoshi Fujii,

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	3	
	3	
	3	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Intelligent Transportation Systems

交通情報工学

[Code] 10F215 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd [Location] C1-173

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] N. Uno, T. Yamada and T. Nakamura,

Course Description 1 This class provides you with the outlines of engineering methodology with information and communication technology as its core element for improving the safety, efficiency and reliability of traffic and transportation systems and reducing the environmental burden. Concretely, we discuss the applicability of countermeasures, such as Travel Demand Management, modal-mix in transportation systems, traffic safety improvement schemes for relieving contemporary problems in traffic and transportation systems, in addition to brief introduction of innovative approaches to collect high-quality of real-time traffic data. Moreover, the methodology for policy evaluation and the related basic theory are explained.

[Grading] Final report: 50-60%, Mid-term report: 30-40% and Attendance: 10%

[Course Goals] Goal of this class is to cultivate basic and critical abilities of students for implementing effective traffic and transportation management using ITS (Intelligent Transportation System).

[Course Topics]

Theme	Class number of times	Description
Basics for Transportation		
Network Analysis	1	
Estimation of OD Traffic		
Volume using Observed	1	
Link Traffic Counts		
Analytical Approaches		
Based on Transportation	3	
Network Equilibrium		
Outlines of ITS	1	
Traffic Management for	2	
Enhancing Efficiency		
Innovative Approaches		
for Data Collection	1	
Using ICT		
Application of ITS for	1	
Enhancing Traffic safety	1	
Travel Demand		
Management and	2	
Congestion Charging		
Application of Traffic	2	
Simulation	<u> </u>	
Examination	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10A805

Remote Sensing and Geographic Information Systems

リモートセンシングと地理情報システム

[Code] 10A805 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture & Exercise [Language] Japanese [Instructor] Junichi Susaki

[Course Description] Geoinformatics is the science and technologies dealing with spatially distributed data acquired with remote sensing, digital photogrammetry, global positioning system, etc, to address the problems in natural phenomena or human activities. This lecture particularly focuses on satellite remote sensing and explains the theory and the technologies for analyzing environmental changes or disaster effects. A free software "MultiSpec" is used in exercises to learn the basic techniques of image processing.

【Grading 】 Grading is based on the achievements in assignments.

[Course Goals] To understand the basic theory and to acquire the basic techniques of satellite remote sensing for observation and analysis of environmental changes and disaster effects.

[Course Topics]

Theme	Class number of times	Description
Introduction	0.5	Introduction to remote sensing and GIS is given, and the software supposed to use is introduced.
Coordinate system and map		Principal coordinate systems and map projection methods used for satellite image and GIS data are
projection	0.5	explained.
Analysis of DEM	1	Analysis of digital elevaltion model (DEM) is explained.
(Analysis 1) Landslid hazard mapping using DEM	1	Thematic maps produced from DEM are presented, and the reliability and applicability are discussed.
Radiation and reflection of		Basic terms on electromagnetic radiation including radiation and reflection are introduced, and
electromagnetic waves, and optical sensor	1	calculation of suface reflectance and temperature is explained. In addition, principles and applications of visible and infrared sensors are introduced.
Land cover classification	1	Theory and procedure of land use/cover classification using satellite images are explained.
(Analysis 2) Land cover classification using reflectance, temperature and elevation data	1	Concept of synthetic aperture radar (SAR) is first introduced, and the image processing, statistical property, speckle filtering and polarimetric SAR are explained.
Property of SAR	1	Theory of Interferometric SAR (InSAR) and differential InSAR (DInSAR) is introduced. Then, long-term monitoring of land deformation by using multi-temporal SAR imagges is explained.
Measurement of topography using SAR data	1	Land cover maps produced from optical satellite images and elevation data are presented, and the classifiers and data used are discussed.
Least square method	1	Least square method (LSM) for generating estimates from observations is explained.
Spatial statistics	1	Spatial auto-correlation observed among spatial data and removal of the effect are explained.
Generation of DEM from airborne LiDAR data and application to landscape analysis	1	Generation of digital surface model (DSM) from airborne light detection and ranging (LiDAR) data is explained. As an application, landscape assessment using airborne LiDAR data is introduced.
Generation of DEM using photogrammetry	1	Generation of DSM by using photogrammetry, and the difference of DSMs between photogrammetry, SAR and airborne LiDAR is explained.
Image correction	1	Geometric and atmospheric corrections necessary for satellite image processing are explained.
(Analysis 3) Assessment of residential environment considering landscape and hazard risk	1	Analysis of areas providing comfortable residential environment, such as vegetation, accessibility to the transport network and disaster risk, is presented, and the validity and applicability to other areas are discussed.
Assessment of understanding	1	Assess students' understanding levels

[Textbook]

【Textbook(supplemental)】 • Junichi Susaki and Michinori Hatayama, Geoinformatics, Corona Publisher, 2013

- W. G. Rees, Physical Principles of Remote Sensing 3rd ed., Cambridge University Press, 2013.
- J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis: An Introduction, 5th ed., Springer-Verlag, 2013.
- · M. Netler and H. Mitasova, Open Source GIS: A GRASS GIS Approach 3rd ed., The International Series in Engineering and Computer Science, 2008.

[Prerequisite(s)] Basic knowledge in computer information processing

【Independent Study Outside of Class】

【Web Sites】 http://www.envinfo.uee.kyoto-u.ac.jp/user/susaki/rsgis.html

Civic and Landscape Design

景観デザイン論

[Code] 10A808 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture and practice

[Language] Japanese [Instructor] Masashi Kawasaki, Yoshiaki Kubota, Keita Yamaguchi, Keiichiro Okabe,

[Course Description]

【Grading 】Reports (Kawasaki: 50%) and design practice (Okabe: 50%)

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
Guidance. Landscape	1	
and image	1	
Architectural Design		
of city and urban	2	
facilities		
Atmosphere and	1	
color of Japan	1	
Design of	1	
waterfronts	1	
Design of bridges	1	
Design of Urban	2	
landscape	<u></u>	
Landscape policy		
and design	1	
management		
Design practice	5	
Feedback	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Risk Management Theory

リスクマネジメント論

[Code] 10F223 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 3rd [Location] C1-173 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture and exercise [Language] English [Instructor] Muneta Yokomatsu,

【Course Description】 The aim of the class is to provide the basic knowledge of risk management methods for various types of risks such as natural disaster, environment and natural resources in urban and rural areas. Students will learn the decision making principle under risks in Economics and asset pricing methods in Financial Engineering as well as have exercises of application on public project problems.

[Grading] 20% of score is valuated on attendance and discussion in classes, and 80% on reports.

[Course Goals] It is targeted to understand 1) representative concepts of risk and risk management process, 2) expected utility theory and 3) foundation of Financial Engineering, and examine 4) public project problems by applying the above knowledge.

[Course Topics]

Theme	Class number of times	Description
Basic framework of	2	1-1 Representative concept of risk
risk management		1-2 Risk management technologies
Decision making	3	2-1 The Bayes' theorem
theory under risks		2-2 The Expected utility theory
		3-1 The Capital Asset Pricing Model
Financial	6	3-2 Option pricing theory
engineering		3-3 The arbitrage theorem
		3-4 The Black-Scholes formula
Decision making	3	4-1 The decision tree analysis
methods for projects		4-2 The real option approach
Comprehension	1	5 Comprehension check
check		

[Textbook]

【Textbook(supplemental)】 1.Ross, S.M.: An Elementary Introduction To Mathematical Finance, Cambridge University Press, 1999

2.Sullivan W.G.: Engineering Economy, Pearson, 2012

[Prerequisite(s)] Fundamental understanding of probability

【Independent Study Outside of Class】

[Web Sites]

Disaster Risk Management

災害リスク管理論

[Code] 10X333 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th [Location] C1-171 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] English [Instructor] TATANO Hirokazu, YOKOMATSU Muneta, [Course Description] Natural disasters have low frequencies but high impacts. It is very important to make an integrated risk management plan that consists of various countermeasures such as prevention, mitigation, transfer, and preparedness. This class will present economic approaches to natural disaster risk management and designing appropriate countermeasures.

[Grading] Evaluate mainly by the presentations in the class as well as end-of-term report, taking active and constructive participation in the class into account.

[Course Goals] Students are expected to understand fundamental ways of economic analyses of disaster prevention such as economic valuation of disaster losses, decision making principle under risks, derivation of benefits of risk management.

[Course Topics]

Theme	Class number of times	Description
Introduction to disaster	1	Let a de la company de la comp
risk management	1	Introduction and Explanation of Course Outline, The Global Trends of Natural Disasters
1. Decision making	1	Davied the areas Eveneted utility function
theory under uncertainty	1	Bayes' theorem, Expected utility function
Methods of disaster risk	1	D' 1
management	1	Risk control and risk finance
Economic valuation of		Cost-Benefit analysis, conventional valuation method, catastrophic risks and economic
catastrophic risk	1	valuation of disaster mitigation
mitigation		valuation of disaster integration
Risk perception bias,		
land-use and risk	2	Risk perception bias, land-use model, risk communication
communication		
Disaster risk finance	2	Recent issues of risk finance market, reinsurance, CAT bond, roles of government,
Disuster Tisk Illiunee		derivatives
Risk curve and risk	1	Fragility curve and risk assessment
assessment		
General equilibrium		
analysis under disaster	1	General equilibrium model under disaster risk
risk		
Macrodynamics under	1	GDP, economic growth
disaster risk		
Disaster accounting	1	Accounting systems
Exercise and	2	Students' exercise and presentation
presentation	-	
Confirmation of the		
learning achievement	1	Confirmation of the learning achievement degree
degree		

【Textbook】Tatano,H., Takagi,A.(ed.):Economic Analysis of disaster prevention, Keiso pub.,2005 (in Japanese).

【Textbook(supplemental)】 Froot ,K.A.(ed) "The Financing of Catastrophic Risk", the University of Chicago Press Kunreuther H. and Rose, A., "The Economics of Natural Hazards", Vol.1 & 2, The International Library of Critical Writings in Economics 178, Edward Elgar publishers, 2004

Okuyama, Y., and Chang, S.T.,(eds.) "Modeling Spatial and Economic Impacts of Disasters" (Advances in Spatial Science), Springer, 2004.

[Prerequisite(s)] Nothing

【Independent Study Outside of Class】

[Web Sites] No web site

Disaster Information

防災情報特論

[Code] 693287 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Hirokazu Tatano(DPRI), Katsuya Yamori(DPRI), Michinori Hatayama(DPRI), Shingo Suzuki(DPRI),

[Course Description] This lecture gives an outline of disaster prevention and reduction countermeasures both inside and outside Japan with special reference to disaster information related topics. Concrete examples of disaster information systems are introduced to show that psychological aspect of information users under critical social conditions is carefully taken into account in such current disaster information systems.

【Grading】 Submit every class reports and end-of-term report Every class reports:

"Point out 3 discoveries for you and 1 request which you want to know more with reasons in this class.

Submit report via Email by the following rules

- 1. Address: disasterinfo@imdr.dpri.kyoto-u.ac.jp
- 2. subject: "Disaster Information Report [Date] Student ID, Name"
- 3. Don't use attached file.
- 4. Dead line: Next Tuesday

[Course Goals]

【Course Topics】

Theme	Class number of times	Description	
What is disaster			
prevention?	1		
Information system in	2		
emergency	<i>L</i>		
Information system in	1		
emergency	1		
Case examples on			
introduction of disaster	1		
information system			
Information system for	1		
evacuation planning,	1		
Information system for	1		
rescue activity	1		
Social psychological			
study of disaster	2		
information			
Disaster information and	2		
evacuation behavior	2		
Gaming approach to			
disaster risk	3		
communication			
Test	1	·	

【Textbook】Nothing

【Textbook(supplemental)】Only Japanese Books

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Office Hours: After Class, Make an appointment immediately after.

Questions via Email: $disaster_info@imdr.dpri.kyoto-u.ac.jp$

Theory & Practice of Environmental Design Research

環境デザイン論

[Code] 10A845 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

【Course Description】

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	7	
	8	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Resources Development Systems

資源開発システム工学

[Code] 10A402 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 1st [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] S. Murata,

【Course Description】 Development of mineral resources and energy resources is essential to the sustainable development of our society. In this class, the exploration and development process of natural resources are reviewed including the problems of environmental conservation. In addition, petrophysics and its application to the resources exploration and fundamentals of reservoir engineering used for evaluating the production behavior and reserves of oil and natural gas are lectured.

【Grading】 Evaluation is made by the average score of the report problems presented by each teacher.

[Course Goals] The goal of this class is to master the fundamentals of petrophysics and reservoir engineering needed for the exploration and development of oil and natural gas resources.

[Course Topics]

Theme	Class number of times	Description
From exploration to		The exploration and development process of mineral resources and energy
development of	1	resources, which are essential to the sustainable development of our society, is
natural resources		reviewed including the environmental conservation.
		To know the elastic properties of sedimentary rocks is essential when we
		consider the exploration and development of oil and natural gas resources. For
Petrophysics used in		the sedimentary rocks, physical variables, a rule of thumb and the pore fluid
natural resources	2	that affect the elastic wave velocity are mainly lectured. For igneous rocks, in
development		addition, the rule of thumb on the physical properties of the rocks affected by
		fractures are lectures, because fractures in the rocks defines their physical
		properties.
Fundamentals of	2	The properties of reservoir fluids and the material balance method to evaluate
reservoir engineering	3	the reserve of oil and natural gas are explained.
Elect of Electric Alectric		Basic equations of fluid flow in the reservoir and the analytical solution for the
Fluid flow in the	7	flow of oil and natural gas around a well are explained, and the concept and
reservoir		the method of well test analysis are also explained.
Enhanced oil and	2	The methods of enhanced oil and natural gas recovery (EOGR) are
natural gas recovery	2	overviewed. The essentials of each EOGR method are explained.

[Textbook] Handouts are delivered.

【Textbook(supplemental)】L.P.Dake, Fundamentals of Reservoir Engineering, Developments in petroleum science Vol.8, Elsevir, ISBN 0-444-41830-X

G.Mavko, T. Mukerji and J. Dvorkin, The rock physics handbook :tools for seismic analysis in porous media, Cambridge University Press, ISBN 0-521-62068-6

[Prerequisite(s)] It is desirable to have knowledge of calculus at the undergraduate level

【Independent Study Outside of Class】

[Web Sites] Web page of this lecture is not specifically provided. When preparing it by need, the information is shown in the class.

【Additional Information】 Not specified

10F053

Applied Mathematics in Civil & Earth Resources Engineering

応用数理解析

[Instructor],

[Code] 10F053 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 3rd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Course Description】

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	5	
	2	
	4	
	5	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Computational Mechanics and Simulation

計算力学及びシミュレーション

[Code] 10K008 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture and Exercises [Language] English [Instructor] Ishida, Lin, Furukawa, Flores,

Course Description 1 The process to obtain numerical solutions for various problems in computational mechanics. Discretization and some solving technique for initial/boundary value problems is to be introduced by the FEM. Fundamental concept of boundary element method (BEM) and its applications in the engineering field will be introduced. Statistical mechanics, molecular dynamics, Monte Carlo method and Multiple scale model will be shortly introduced in order to understand the basic theory of molecular dynamics simulation. Their applications to engineering problems are to be also given by showing some up-to-date examples. Theory of the distinct element method (DEM) will be lectured, and its application in the engineering field will also be explained. Study of contaminant migration in subsurface via groundwater flow modelling coupled with advective-dispersive solute transport. The general groundwater flow and chemical transport in porous media are introduced, then the governing equations for advective-dispersive chemical transport, and the analytical solution of the governing equations are explained. This course will be given in English.

【Grading】 Achievement is evaluated by submitted reports to each topic.

【Course Goals】 【Course Topics】

Theme	Class number of times	Description
Finite difference method	3	Explicit-FDM is explained using an example of unsteady motion of a mass point based on Voigt model. In addition, the numerical simulation results are compared to their theoretical solutions and discussed.
Boundary element method and Molecular dynamics simulation	4	Fundamental concept of boundary element method (BEM) and its applications in the engineering field will be introduced. Monte Carlo method and Multiple scale model will be shortly introduced in order to understand the basic theory of molecular dynamics simulation. Their application to engineering problems are to be also given by showing some up-to-date examples.
Distinct element method and its application	4	Theory of the distinct element method (DEM) will be lectured in this item. The DEM is the numerical analysis method for discontinuum. The application of the DEM in the engineering field will also be explained.
Migration of Contaminants in Subsurface	3	Study of contaminant migration in subsurface via groundwater flow modelling coupled with advective-dispersive solute transport. In this section, we will first introduce the general groundwater flow and chemical transport in porous media, then we will learn about the governing equations for advective-dispersive chemical transport, and finally we will define the parameters and find the analytical solution of the governing equations. Some numerical results will be used as examples to understand the process.
Confirmation of the learning achievement degree	1	Confirmation of the learning achievement degree

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Environmental Geosphere Engineering

地殼環境工学

[Code] 10A405 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd [Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Katsuaki KOIKE, 【Course Description】

【Grading】

[Course Goals]

[Course Topics]			
Theme	Class number of times	Description	
Introduction of	,		
structure and content of	1.5		
this course			
Physics of Earth system	2.5		
Chemistry of Earth	2.5		
system	2.5		
Fundamentals of			
Geoinformatics (1):	2		
Spatical modeling	2		
techniques			
Fundamentals of			
Geoinformatics (2):	1		
Scaling of geological	1		
structure			
Fundamentals of			
Geoinformatics (3):	3		
Remote sensing			
Fundamentals of			
Geoinformatics (4):			
Earth survey and	1		
geochemical			
exploration			
Geosphere			
environments (1):	1		
Weathering process and	1		
geohazards			
Geosphere			
environments (2): CCS	1		
and HLW			
Mineral and energy	1.5		
resources	1.3		

【Textbook】 Handouts will be distributed at each class.

【Textbook(supplemental)】References will be introduced in the handouts.

[Prerequisite(s)] Fundamental knowledges on geology, physics, and chemistry are required.

【Independent Study Outside of Class】

[Web Sites]

Applied Elasticity for Rock Mechanics

応用弾性学

[Code] 10F071 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] S. Murata

Course Description 1 Theory of elasticity relating to the deformation and failure of rock and rock mass and design of rock structures is explained. Specifically, two-dimensional and three-dimensional analysis of elasticity using the basic equations, constitutive equations, and the complex stress function are explained. Several applications of this analysis to rock mechanics, rock engineering, and fracture mechanics are also explained.

[Grading] Evaluation is made by the score of two report problems or homework and semester final exam.

[Course Goals] The goal of this class is to master the theory of elasticity so as to solve the elastic problem in rock mechanics, rock engineering, and fracture mechanics.

[Course Topics]

Theme	Class number of times	Description
Airy 's stress function and complex stress function	2	Airy 's stress function used to solve a two-dimensional elastic problem is first explained, and then the complex stress functions that are the representation of Airy 's stress function by the complex variables are explained.
Two-dimensional elastic analysis using the complex stress function	8	Analytical solutions of two-dimensional elastic problems in fracture mechanics and rock engineering are derived by using the complex stress functions. The mechanical behavior of rock material is also explained based on the derived solutions.
Application of two-dimensional elastic analysis	2	The theory of rock support, ground characteristic curve, theoretical equations used for the evaluation of rock stress, which are derived from the solution of two-dimensional elastic problem, are explained.
Three-dimensional theory of elasticity	2	Stress functions to solve the three-dimensional elastic problem are explained, and some examples of the three-dimensional elasticity solution are explained.
Summary and Achievement check	1	The contnts of this class are summarized. In addition, the achievement of course goals is checked.

【Textbook】 Handouts are delivered.

【Textbook(supplemental)】 J.C. Jaeger, N.G.W. Cook, and R.W. Zimmerman: Fundamentals of Rock Mechanics -4th ed., Blackwell Publishing, 2007, ISBN-13: 978-0-632-05759-7

[Prerequisite(s)] The knowledge and calculation skill of calculus, vector analysis and complex analysis are required.

【Independent Study Outside of Class】

[Web Sites] Web page of this lecture is not specifically provided. When preparing it by need, the information is shown in the class.

【Additional Information】 Not specified

Fundamental Theories in Geophysical Exploration

物理探査の基礎数理

[Code] 10F073 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 5th [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hitosih Mikada, Tada-nori Goto,

[Course Description] We are outlining various basic mathematical principles used for the analysis of the dynamic and kinematic earth-scientific problems in conjunction with wave propagation, mass transfer, etc. in the crust, and presenting examples of such analysis techniques in the area of earth sciences and earth resources engineering.

[Grading] Rating is performed by the combination of exams (40%) and the attendance to the class (60%).

[Course Goals] The aims of the class is to understand various signal-processing theories, the applied seismology, and the applied geo-electromagnetics with respect to exploration geophysics as application tools in seismology and in geo-electromagnetics.

[Course Topics]

Theme	Class number of times	Description
Introduction to exploration geophysics	1	General introduction to the lecture.
Seismic wave propagation and signal processing	8	Acquire knowledge on the propagation phenomena of elastic waves to learn the equivalency of 1D propagation with the theory of system function. The topics included would be, z-transform, Levinson recursion, Hilbert transform, etc.
Fundamentals of geo-electromagnetics and their application to exploration geophysics	5	Learn fundamental theories of magnetotellurics, instantaneous potential, spontaneous potential, and apparent resistivity methods, etc. that deal with geo-electromagnetic phenomena. Case studies are introduced to understand the advantages of geo-electromagnetic exploration schemes.
Wave propagation problem in seismic exploration	1	Discussing fundamental theories of elastic wave propagation, used in subsurface structural surveys, in terms of the actual utilization and the theories of wave phenomena.

[Textbook]

【Textbook(supplemental)】 Claerbout, J.F. (1976): Fundamentals of Geophysical Data Processing (Available online URL: http://sep.stanford.edu/oldreports/fgdp2/)

[Prerequisite(s)] Students should understand exploration geophysics of undergraduate level.

【Independent Study Outside of Class】

[Web Sites] Could be specified by the lecturers if any.

Design of Underground Structures

地下空間設計

[Code] 10F087 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Civil and Earth Resources Engineering, Professor Toshihiro Asakura, Professor Tsuyoshi Ishida, Assistant Professor Naotoshi Yasuda

[Course Description] Outline of the characteristic of underground, the present state and trend of underground development, historical change of underground utilization are explained.

Especially, design and maintenance technology for tunnels and underground opening, and rock stress problem, are lectured in detail.

【Grading】Attendance(50%), class quiz and report(50%)

[Course Goals] Acquire the fundamental technology of underground structure design and maintenance.

[Course Topics]

Theme	Class number of times	Description	
Guidance	1	Course description, Grading and Goals	
Historical change	1	Historical change of underground development	
Environment and	1	Foreign word and Characteristic of and an army	
Characteristic	1	Environment and Characteristic of underground	
Act of deep	1	Carial basis and a fide and an air and a mall and	
underground use	1	Social background of the act and engineering problem	
Rock stress	2	Underground stability and rock stress problems	
Construction(1)	1	Survey technology for tunnelling	
Construction(2)	2	Design technology for tunnelling and feed back system	
Construction(3)	2	Construction work for tunnelling	
Construction(4)	1	Evaluation and utilization of measurement	
Maintenance	2	Maintenance technology, Tunnel deformation, Earthquake disaster of tunnels	
Achievement check	1	Check the understanding	

【Textbook】No set text

【Textbook(supplemental)】Instructed in class

[Prerequisite(s)] Taking Underground Development Engineering and Rock Engineering (when undergraduate) are desirable.

[Independent Study Outside of Class]

[Web Sites]

Lecture on Exploration Geophysics

探查工学特論

[Code] 10A420 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 4th

【Location】C1-117 【Credits】2

[Restriction] The class of "Fundamental theories of geophysical exploration" is recommended to acuire.

[Lecture Form(s)] Lecture [Language] English [Instructor] Hitosih Mikada, Tada-nori Goto

[Course Description] Applied geophysical exploration technologies in disaster mitigation, civil engineering, and earth resources engineering is discussed in terms of seismological and of electromagnetic theories. Students may be asked to process data or design digital filters in the course.

【Grading】Brief explanations on the grading will be given at the time of the lecture.

[Course Goals] Understanding seismiclogical and electromagnetic theories used in geophysical exploration and subsurface-imaging technologies.

[Course Topics]

Theme	Class number of times	Description
Electromagnetic	3	Principles of magnetotelluric methods, electromagnetic sources and noise
signal processing	3	reduction.
Modeling technologies in electromagnetic methods	3	Subsurface structure modeling in EM methods. The effects of surface weathered layers, the identification of spatial dimensions, and modeling methodologies are discussed.
Signal processing in seismics	4	Digital filtering in seismic data processing.
Reflection	3	Fundamental theories of reflection seismic data processing. Seismic migration
seismology		is the one to be briefly discussed.
Petrophysics	2	Fundamental petrophysics, and fundamental measurement theories in geophysical logging are discussed.

【Textbook】 Specified in the course.

【Textbook(supplemental)】 J.F.Claerbout, 1976, Fundamentals of Geophysical Data Processing, (OOP:photocopies to be specified)

[Prerequisite(s)] The credits of "Exploration Geophysics" in undergraduate course and "Fundamental Theories of Geophysical Exploration" in graduate course are requested to obtain before the classes.

【Independent Study Outside of Class】

[Web Sites] Would be specified by the lecturers.

Measurement in the earth's crust environment

地殼環境計測

[Code] 10F085 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Tsuyoshi ISHIDA, Toshihiro ASAKURA, Koji YAMAMOTO,

[Course Description] Necessity of information on the environment in the upper layer of the earth's crust will be explained, as well as measuring methods for it and applications of the measuring results for various engineering projects. Among them, rock stress measurements and their applications will be focused in the relation to the projects of oil field development, underground disposal of high level radio active waste, geological sequestration of CO2, construction of underground power houses and hot dry rock geothermal power extraction. The importance of initial stress conditions on planning and maintenance of tunnels and others also will be discussed.

【Grading 】 Grading will be made from scores of the followings: • Report for classes by Ishida. • Achievement test for classes by Yamamoto. • Report for classes by Asakura. • Number of attendance for the classes.

Course Goals J Goals of this course are the followings. 1) To understand the important effect of initial rock stress on stability of underground chambers and deep underground tunnels. 2) To understand stress relief methods as one of typical methods to measure initial rock stress condition . 3) To understand the principle of a least square method though learning a procedure to determine an initial rock stress condition from released strains measured on a borehole wall. 4) To understand importance and purpose of rock stress measurement for oil field development through borehole breakout problems and others. 5) To understand hydraulic fracturing stress measurement conducted in drill holes for oil field development. 6)To understand history of tunneling technology in Japan. 7) To understand relations between maintenance of tunnels and underground environment. 8) To understand countermeasures against damages of tunnels induced by earthquakes.

[Course Topics]

Theme	Class number of times	Description
Importance of rock stress condition in underground development (by ISHIDA)	3	Necessity of rock stress measurements and their applications for various engineering projects. Among the projects, underground disposal of high level radio active waste, geological sequestration of CO2, construction of underground power houses and hot dry rock geothermal power extraction will be focused.
Stress relief methods to measure rock stress and application of least square method (by ISHIDA)	3	Actual field works of stress relief methods to measure initial rock stress condition will be explained. Though learning a procedure to determine an initial rock stress condition from released strains measured on a borehole wall, the principle of a least square method will be explained. The report subject will be shown in the last week.
Rock stress measurement for oil field development (by YAMAMOTO)	4	Estimation of rock stress condition by hydraulic fracturing and logging, which is conducted at various steps for oil field development, will be explained. Importance of rock stress affecting on borehole stability will be explained as well.
Tunneling technology in relation to underground environment (by ASAKURA)	4	Tunneling technology in Japan is historically reviewed. Relations between maintenance of tunnels and underground environment and countermeasures against damages of tunnels induced by earthquakes will be explained.
Check of understanding	1	Your understanding is checked by a written test.

【Textbook】 None. Printed materials will be given in classes when needed.

【Textbook(supplemental)】1) Amadei, B. & Stephansson, O.: Rock Stress and Its Measurements, Capman & Hall, 1977.

2) Vutukuri, V. S. & Katsuyama, K.: Introduction to Rock Mechanics, Industrial Publishing & Consulting, Inc., Tokyo, 1994.

[Prerequisite(s)] Elasticity, Linear Algebra (Calculation of Matrices) and Computer Literacy (for example, Excel, Word and so on.)

[Independent Study Outside of Class] When you make a report, it is necessary to calculate matrixes by using a Microsoft "Excel" and others.

[Web Sites]

【Additional Information】 This class is made by English.

Earth Resources Engineering

地球資源学

[Code] 10F088 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor]

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	1.5	
	1.5	
	1	
	1	
	1	
	1	
	2	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Urban Infrastructure Management

都市基盤マネジメント論

[Code] 10X311 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd [Location] C1-173 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] English [Instructor] OHTSU Hiroyasu,

【Course Description】 This lecture aims to provide interdisciplinary knowledge associated with how urban infrastructure is comprehensively management, from viewpoints of not only economy but also "human security engineering". In detail, the contents of lectures consist of following topics: Urban Infrastructure Asset Management, Urban Transport/Logistics Management and Urban Food/Water Supply Management.

【Grading】Attendance(20), Report(80)

[Course Goals] Aquisition of interdisciplinary knowledge associated with how urban infrastructure is comprehensively management, from viewpoint of not only economy but also "human security engineering".

[Course Topics]

Theme	Class number of times	Description	
Guidance,			
Introduction of	1	College 9 June 10 dies to III au Infrastructuu Acces Management	
Urban Infrastructure	1	Guidance & Introduction to Urban Infrastructure Asset Management	
Asset Management			
Urban Infrastructure	5	Urban Infrastructure Asset Management on Geotechnical structures, Bridge	
Asset Management	3	and Pavement	
Urban			
Transport/Logistics	4	Urban Transport/Logistics Management	
Management			
Urban Energy	3	Lishon Engagy Cymply Monogomont	
Supply Management		Urban Energy Supply Management	
Report	1	Report	
Feed back	1	Feed back	

[Textbook]

【Textbook(supplemental)】 Hand-out

[Prerequisite(s)]

[Independent Study Outside of Class]

[Web Sites]

Global Survivability Studies

グローバル生存学

[Code] 10F113 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 5th

[Location] Yoshida, Higashi Ichijokan, Shishukan Hall [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] English [Instructor] Kaoru Takara, Junji Kiyono, Satoshi Fujii, Takahiro Sayama, Mika Shimizu

[Course Description] Modern global society is facing risks or social unrests that are caused by huge natural hazards and disasters, man-made disasters and accidents, regional environmental change/degradation including infectious diseases, and food security. Introducing such examples at global and regional scales, this subject lectures how to cope with them at national, local and community levels for making the society sustainable/survivable. Future countermeasures are also discussed under the uncertain circumstances such as climate change, population growth, energy and socio-economic issues.

[Grading] Attendance to lectures (40%) and Presentation and discussion (60 %).

[Course Goals] The objectives of this class are to have basic knowledge about global issues threatening safety and security of the earth society such as catastrophic natural disasters, man-made disasters and accidents, regional environmental change (including infectious diseases) and food security, and to enhance student 's ability to express his/her own ideas and discuss with professors and students from other study areas.

[Course Topics]

Theme	Class number of times	Description
Introduction of Global		Later dusting of Clobal Commissability Ctudies
Survivability Studies	1	Introduction of Global Survivability Studies.
Earthquake disaster	1	
mitigation	1	Discuss on earthquake disaster mitigation focusing on lessons learnt from Tohoku EQ.
Mitigation of earthquake		
damage to historic	1	Discuss on the mitigation of earthquake damage to historic structures.
structures		
Why we need GSS?	1	Discuss on why we need Global Survivability Studies (GSS).
Global agendas for		
sustainable development	1	Discuss on global agendas for sustainable development and resilient societies.
and resilient societies		
Building national	1	D. 198 & 198 1 1 1 1
resilience in Japan	1	Discuss on building national resilience based on Japanese experiences.
Globalism as	1	Discuss on globalism as totalitarianism.
totalitarianism	1	
Public policy and systems		Lecture and group work on public policy and systems approach for global changes in disaster
approach for global	1	risks.
changes in disaster risks		HSKS.
Disaster risk management		
and governance for global	1	Lecture and group work on disaster risk management and governance for global changes.
changes		
Water-related disaster risk	1	
management	1	Discuss on water-related disaster risk management: concept and recent experiences.
Water cycle and climate	1	Di di la
change	1	Discuss on water cycle and climate change.
Presentation by students &	4	Presentation by students related to this lectures and discussions on the presented topics.
discussions	4	

【Textbook】 Nothing special.

【Textbook(supplemental)】 Nothing special.

[Prerequisite(s)] Nothing special.

[Independent Study Outside of Class] If handouts (teaching materials) are distributed (or downloaded from the website), students should read them prior to the class. They may be distributed at the classroom (or put on the website). Students can make use of them after the class for reviewing lectures and preparing presentation materials and discussion sessions which will be organized in the latter half of the semester.

[Web Sites]

[Additional Information] This subject is compulsory for students enrolled in the Inter-Graduate School Program for Sustainable Development and Survivable Societies. Students other than ones in Graduate School of Engineering should submit a registration card for taking this class.

Emergency Management Systems

危機管理特論

[Code] 693291 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st

[Location] Faculty of Engineering Integrated Research Bldg. 213 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Haruo HAYASHI, Norio MAKI, Shingo SUZUKI,

【Course Description】 Damage from disasters is defined by two factors: scale of hazard and social vulnerability. Two strategies exist to reduce damage from disasters — namely, crisis management as a post-event countermeasure and risk management as a pre-event measure. This course introduces students to a system for effective emergency management, consisting of response, recovery, mitigation, and preparedness.

【Grading】 Every after lecture, please submit short report writing following things 1) Three points you could learn in this lecture, and reason 2) What you would like to explain more? Please send your short report to following address by following formats 1.address: disaster.reporti2@drs.dpri.kyoto-u.ac.jp 2.subject: 「Emergency Management Report "date" "ID" "Name" 3.No attach file

【Course Goals】 Learning about Techniques for Business Continuity Management consisted of Risk Assessment, Strategic Planning, Emergency Response, and Training.

[Course Topics]

Theme	Class number of times	Description
Business Continuity	3	What is emergency response, and business continuity management.
Management	3	what is emergency response, and ousmess continuity management.
Risk Assessment	3	Techniques for Risk Identification, and Risk Assessment
Strategic Planning	3	Techniques for Strategic Planning and Evaluation
Emergency Response	3	Incident Command System, and Design of Emergency Operation Center
Training	3	Learning, drill, Exercises for Emergency Response

【Textbook】 Haruo Hayashi et.al., Soshiki no Kikikannri Nyuumon, Maruzen, 2008// Kyodai, NTT Resilience Kennkyuu Group, Shinayakana Syakai no Souzou, Nikkei BP, 2009

【Textbook(supplemental)】 Tom Demarco et.al, Waltzing With Bears: Managing Risk on Software Projects, Dorset House, 2003// Project Management Institute: A Guide to the Project Management Body of Knowledge 2000 Edition, Project Management Institute, Inc., 2000// R. Max Wideman: Risk Management - A guide to Managing Project Risk & Opportunities - , Project Management Institute, Inc., 2000// Memorial Conference in Kobe, 12 sai karano hisaisya gaku, NHK Press, 2005//

[Prerequisite(s)]

[Independent Study Outside of Class]

[Web Sites]

Information Technology for Urban Society

都市社会情報論

[Code] 10F201 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 1st

[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese (English in case of foreign teachers) [Instructor] Related teachers,

[Course Description] The advancement of urban society by the use of information has been realized through the remarkable development of informational communication technology. This seminar has the discussions about the worth and affect in the urban society using engineering and economic estimation method, and lectures about the way of maintenance, operation and management of urban systems in the advanced informational and knowledge-intensive society.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be provided in the first lecture.

Urban Transport Policy

都市交通政策フロントランナー講座

[Code] 10Z001 [Course Year] Master and Doctor Course [Term] 1st term

【Class day & Period】 see the handbook for course registration

[Location] conference room, TPU karasuma office (see the handbook for course registration) [Credits] 1

[Restriction] see the handbook for course registration [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor] Dai Nakagawa, Ryoji Matsunaka, Tetsuharu Oba

[Course Description] This class will provide lectures on the new transport policy carried out in domestic and foreign cities and to understand the difference between the conventional transport policy and the new urban transport policy. Also, it will cover a process to realize the new urban transport policy.

[Grading] evaluation by attendance and class participation

[Course Goals] to understand the difference between the conventional transport policy and the new urban transport policy

[Course Topics]

Theme	Class number of times	Description
Outline	1	
Front runner of urban		
transport policy in	2	Reallocation of road space, Pedestrianisation
the world		
Front runner of urban		Downtown activation, Strategies of sustainable transport for our cities, Climate
transport policy in	1	-
Japan		change
Front runner of urban		
transport policy in	1	Eco model city, Transport demand management, Public transport network
Kyoto		
Basic concept and		
best practices of new	1	Community has Comment situ
urban transport	1	Community bus, Compact city
policy		
Discussion	1	
Presentation	1	

[Textbook] No textbook

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] http://www.upl.kyoto-u.ac.jp/index.html

Policy for Low-Carbon Society

低炭素都市圏政策論

[Code] 10Z002 [Course Year] Master and Doctor Course [Term] 1st term

【Class day & Period】 see the handbook for course registration

[Location] conference room, TPU karasuma office (see the handbook for course registration) [Credits] 1

[Restriction] see the handbook for course registration [Lecture Form(s)] Intensive Lecture [Language] Japanese

【Instructor】 Dai Nakagawa, Masashi Kawasaki

[Course Description] This class will provide lectures on the contents of policies and the methods to realize a low carbon society. Also, it will cover the knowledge and the technical skill to relate to urban activation, reduction of the environmental load, compact city planning, and so on.

【Grading】 evaluation by attendance and class participation

[Course Goals] to understand the knowledge and the technical skill to relate to urban activation, reduction of the environmental load, compact city planning, and so on.

[Course Topics]

Theme	Class number of times	Description
Outline	1	
Direction of urban		
policy for	1	Compact city, Interaction between land-use and transport
low-carbon society		
Urban policy		
management for	1	Eco model city, Guideline for low-carbon city construction
low-carbon society		
Downtown activation		
& urban policy for	1	Downtown activation, Compact city
low-carbon socity		
Landscape &		
environmental	1	Landscape design in public space, View structure
planning		
Urban policy for		
low-carbon society	1	Dublic transport Deductrianisation
and change of urban	1	Public transport, Pedestrianisation
structure		
Roles and issues of		Transport and unban policy Transport policy in EU Dailyvays Light Dial
urban transport	1	Transport and urban policy, Transport policy in EU, Railways, Light Rial
policy		Transit
Discussion	1	

【Textbook 】No textbook

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] http://www.upl.kyoto-u.ac.jp/index.html

Urban Transport Management

都市交通政策マネジメント

[Code] 10Z003 [Course Year] Master and Doctor Course [Term] 1st term

【Class day & Period】 see the handbook for course registration

[Location] conference room, TPU karasuma office (see the handbook for course registration) [Credits] 1

[Restriction] see the handbook for course registration [Lecture Form(s)] Intensive Lecture [Language] Japanese

【Instructor】 Dai Nakagawa, Satoshi Fujii, Nobuhiro Uno

[Course Description] This class will provide lectures on characteristics and problems of transport modes such as car, public transport, and foot. Also, it will cover the technical skill to analyze present urban traffic problems quantitatively.

[Grading] evaluation by attendance and class participation

[Course Goals] to understand characteristics and problems of transport modes such as car, public transport, and foot.

【Course Topics】

Theme	Class number of times	Description
Outline	1	
Plan and practice of	1	City of the city o
public transport	1	City activation and attractiveness, Public transport, Light rail transit, Bus
Basic concept of		Malaille and Adination of the malain terms of December 1
mobility	1	Mobility management, Activation of the public transport, Downtown activation
management		
Investigation,		
interpretation, and	2	
evaluation on urban	3	Person trip survey, Transportation demand management, Cost-benefit analysis
traffic phenomenon		
Exercise and	2	
discussion	2	

【Textbook】No textbook

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] http://www.upl.kyoto-u.ac.jp/index.html

Engineering Seminar for Disaster Resilience in ASEAN countries

強靱な国づくりのためのエンジニアリングセミナー

[Code] 10F380 [Course Year] Master 1st [Term] Late August [Class day & Period] Late August

[Location] School of Engineering, Kasetsart University, Bangkok, Indonesia [Credits] 2

[Restriction] Due to the capacity, students attending "International Course on Approaches for Disaster Resilience" have priority.

[Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] Prof. Hiroyasu Ohtsu, Related lecturers in ASEAN collaborative universities,

【Course Description】 The purpose of this course is to provide practical lessons in ASEAN countries associated with disaster risk mitigation such as early warning and evacuation program, and disaster recovery/restoration from viewpoints of problems-finding/problem-solving through short term intensive lecture and field work. By taking the applied practical programs of shared major classes under the instructions of teachers in charge, the students can improve the ability of resolving issues on practical projects. Topics taught in this seminar are earthquake, flood, landslide, land subsidence, and geo-risk engineering.

[Grading] 40% for course work assignments and reports, 60% for final exam.

【Course Goals】 Course aims to foster international leaders who are able to solve and manage problems concerned about natural disaster, disaster mitigation, health and environmental issues, especially about case studies in ASEAN countries.

[Course Topics]

Theme	Class number of times	Description
Introduction:		
Engineering for	1	
Disaster Resilience		
Earthquake Disaster	2	
Landslide Disaster	2	
Geo-Risk	2	
Engineering	2	
Flood Disaster	2	
Land Subsidence	2	
Site Visit	5	
Evaluation of	1	
understanding	1	

[Textbook] Lecture notes provided by the instructors.

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] Consortium for International Human Resource Development for Disaster-Resilient Countries, Kyoto University http://www.drc.t.kyoto-u.ac.jp/

[Additional Information] Those who want to take this course have to apply for "International Course on Approaches for Disaster Resilience". Refer the website above.

Disaster and Health Risk Management for Liveable City

安寧の都市のための災害及び健康リスクマネジ・メント

[Code] 10F382 [Course Year] Master Course [Term] 1st term [Class day & Period] Intensive course (2 weeks) [Location] Meeting room at Research Bldg. No.5 [Credits] 2 [Restriction] 30 students, priority for DRC course students [Lecture Form(s)] Relay Lecture [Language] English [Instructor] Kiyono, Koyama, Kikuchi, Mitani, Fujii, Kawasaki, Ando, Teo, [Course Description] Various types of disasters constantly attack to Asian countries, and those countries sometimes are very vulnerable to the natural disasters and health risk. The interdisciplinary approach of engineering and medical science is indispensable to construct disaster-resilient countries. The 2011 Tohoku earthquake was one of the worst disasters in recent Japanese history. However many lessons to mitigate and manage the disaster are learnt from the event. In order to solve the related issues, the course provides selected topics about natural disaster, disaster-induced human casualty, emergency response, urban search and rescue, emergency medical service, principle of behavior based on neuroscience, urban search and rescue, reconstruction and rehabilitation policy, social impact of disaster, transportation management, logistics during earthquake disaster and so on.

【Grading】Course work assignments and reports

[Course Goals] Course aims to foster international leaders who are able to solve and manage problems concerned about natural disaster, disaster mitigation, health and environmental issues, logistics and amenity for constructing liveable city.

[Course Topics]

Theme	Class number of times	Description
Guidance and Group		
Work	2	
ORT	3	
Earthquake disaster and	1	
human casualty	1	
Earthquake protection		
and emergency	1	
responses		
Human brain function	1	
and behavior	1	
Disaster medicine and	1	
epidemiology	1	
Resilient society	1	
Transition of the design		
for amenity in the	1	
river-front		
Concern that elderly		
people in rural area have	1	
over health and mobility		
Differences in logistics		
and humanitarian	1	
logistics		
Unique challenges of	1	
humanitarian logistics	1	
Advancement on	1	
humanitarian logistics	1	
Achievement evaluation	1	

【Textbook 】 Textbook for the course is provided by the instructor on the first day.

【Textbook(supplemental)】 Some literatures would be introduced by professors.

[Prerequisite(s)] No special knowledge and techniques are necessary.

【Independent Study Outside of Class】

[Web Sites] Consortium for International Human Resource Development for Disaster-Resilient Countrie, Kyoto University http://www.drc.t.kyoto-u.ac.jp/

[Additional Information] Contact person: Prof.Kiyono < kiyono@quake.kuciv.kyoto-u.ac.jp

10F201

Information Technology for Urban Society

都市社会情報論

[Code] 10F201 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 1st

[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese (English in case of foreign teachers) [Instructor] Related teachers,

[Course Description] The advancement of urban society by the use of information has been realized through the remarkable development of informational communication technology. This seminar has the discussions about the worth and affect in the urban society using engineering and economic estimation method, and lectures about the way of maintenance, operation and management of urban systems in the advanced informational and knowledge-intensive society.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be provided in the first lecture.

Exercise on Project Planning

自主企画プロジェクト

[Code] 10F251 [Course Year] Master 1st [Term] 1st+2nd term

[Class day & Period] 1st term: Thu 3rd, 2nd term: Wed 5th [Location] C1-173 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese and English

[Instructor] Related instructors,

Course Description 1 The purpose of this seminar is to bring out the self-initiative, the planning ability, the creativity of students. From project and to practice, the students set up the goals of projects, go ahead with the projects by themselves, and finally make the presentations of project results. Specifically, about the internship activities in enterprises, the training activities in enterprises or universities at home and abroad, the planning and operation of collaborative projects with citizen, the student makes the perfect plannings including the purposes, the ways, the results and so on. For a final, the students do practice, they write the reports and make the presentations about the project results.

【Grading】Planning, implementation of project and reports are comprehensively evaluated.

[Course Goals] Goals are cultivating ability for self-initiative, planning and creativity.

[Course Topics]

Theme	Class number of times	Description
Course introduction	1	
Proposal of project		
Management of		
project		
Progress report		
Final report		
Presentation		

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details are provided in the first lecture.

10F253

Capstone Project

キャップストーンプロジェクト

[Code] 10F253 [Course Year] Master 1st [Term] 1st+2nd term

【Class day & Period】1st term: Thu 2nd, 2nd term: Thu 4th 【Location】1st term: C1-173, 2nd termC1-171

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese

[Instructor] Related instructors,

Course Description The students make the projects and plannings on various problems in the urban society by widely making use of the basic knowledge which you've gotten in Department or Master Course. Actually, the students simulate the actual problems, and make the collection and analysis of datas. By that, the students evaluate the practice and effect of projects. At the end, the students write the reports about a series of project results and make the presentations about them.

[Grading] Evaluation for each student is made comprehensively based on both report and presentation about the project, and usual contribution of student to the project.

[Course Goals] Goals are to cultivate student 's ability for planning, creativity and communication.

[Course Topics]

Theme	Class number of times	Description
Guidance	1	
Exercises		
Presentation	1	

[Textbook] N/A

【Textbook(supplemental)】 N/A

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be provided in the first lecture.

Integrated Seminar on Urban Management A

都市社会工学総合セミナーA

[Code] 10U201 [Course Year] Doctor 1st year [Term] 1st term [Class day & Period] Fri 5th

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] English

[Instructor] Related instructors,

Course Description The students pick up the various types of influential elements on the development of urban society, and the students make the collection and analysis of datas in detail about these elements by themselves. In addition, on the basis of results of investigation and analysis, the students develop the argument about the ideal style or the future vision of urban society, and the students make the presentation and discussion in English about these results each other.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be provided in the guidance and first lecture.

10U203

Integrated Seminar on Urban Management B

都市社会工学総合セミナーB

[Code] 10U203 [Course Year] Doctor 1st year [Term] 2nd term [Class day & Period] Tue 5th

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] English

[Instructor] Related instructors,

[Course Description] On the investigation of themes by the students, they make the presentation and discussion in English. The themes are about the urban policy on the world-wide viewpoint, the ideal style of urban management, the standardization of project technology for internationalization, the project management such as the contract, the tender, the management technology to country risk and so on, and about the problems on the structure of urban society for internationalization such as the technology movement or the role of Japan in the world on improving urban infrastructure.

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be provided in the guidance and first lecture.

Seminar on Urban Management A

都市社会工学セミナー A

[Code] 10F257 [Course Year] Master Course [Term] 1st+2nd term

[Class day & Period] 1st term: Fri 4&5th, 2nd term: Mon&Tue 5th [Location] [Credits] 4

[Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor] Related instructors,

【Course Description】 This seminar has the lectures about the movement and content of the most advanced research at home and abroad on Urban Management Engineering.. Also, the teachers in this seminar instruct the students individually about the planning of study schedule, the way of collecting datas, doing the research and summarizing the results of research on the concrete and specific themes.

[Grading] Points are allocated for research activities such as a presentation at laboratory seminars, domestic conferences, international conferences, research paper presentation etc. Students are required to obtain the points in total which are more than predefined points.

Students are required to get no less than 10 points in total for two years from M1 to M2, no less than 3 points in each year.

1 point: Presentation at laboratory seminar (only if supervisor agrees), oral presentation in the annual meeting in the Society of Civil Engineers.

- 1 ~ 5 point: Attending the lecture held by Academic Society (Certification is required), number of points is determined by your supervisor in accordance to the level of difficulty for approval.
- 3 point: Presentation in English in international conference. If the papers are peer-reviewed, the points are determined as journal papers (see below).
- 5 ~ 10 point: Fist author or coauthor of published and/or accepted journal papers (e.g., for Journal of Society of Civil Engineers, ASCE Journal, etc.) (Number of points is determined by your supervisor depending on level of journal and/or your contribution.)

Others: Exercise on project or training course (Number of points is determined by your supervisor). However, the activities related to the other courses are not admitted, which are Exercise on Project Planning, Capstone Project, Internship on Infrastructure Engineering, Long-Term Internship, Practice in Infrastructure Engineering or Practice in Urban Management.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	30	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10F259

Seminar on Urban Managemen B

都市社会工学セミナー B

[Code] 10F259 [Course Year] Master Course [Term] 1st+2nd term

[Class day & Period] 1st term: Wed&Thu 5th, 2nd term: Thu&Fri 5th [Location] [Credits] 4

[Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor] Related instructors,

【Course Description】 The students make the collection of datas, research and summarize the research results about the concrete and specific themes on Urban Management Engineering.. In addition, the teachers in this seminar instruct the students individually about the way of presentations of research results through the presentations and questions at the conferences at home and abroad, the ones at laboratory and participation in lecture classes.

[Grading] Points are allocated for research activities such as a presentation at laboratory seminars, domestic conferences, international conferences, research paper presentation etc. Students are required to obtain the points in total which are more than predefined points.

Students are required to get no less than 10 points in total for two years from M1 to M2, no less than 3 points in each year.

1 point: Presentation at laboratory seminar (only if supervisor agrees), oral presentation in the annual meeting in the Society of Civil Engineers.

- 1 ~ 5 point: Attending the lecture held by Academic Society (Certification is required), number of points is determined by your supervisor in accordance to the level of difficulty for approval.
- 3 point : Presentation in English in international conference. If the papers are peer-reviewed, the points are determined as journal papers (see below).
- 5 ~ 10 point: Fist author or coauthor of published and/or accepted journal papers (e.g., for Journal of Society of Civil Engineers, ASCE Journal, etc.) (Number of points is determined by your supervisor depending on level of journal and/or your contribution.)

Others: Exercise on project or training course (Number of points is determined by your supervisor). However, the activities related to the other courses are not admitted, which are Exercise on Project Planning, Capstone Project, Internship on Infrastructure Engineering, Long-Term Internship, Practice in Infrastructure Engineering or Practice in Urban Management.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	30	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Long-Term Internship

長期インターンシップ

[Code] 10F150 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor] Related instructors,

[Course Description] Through the long-term internship outside the university, the students can get the practical techniques, the way of finding and solving the problems, the way of integrating the techniques, the way of summarizing the results and making the presentation in each field of Urban Management.

[Grading] Writing plans, completing internship, final report and presentation are comprehensively evaluated.

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10U210

Practice in Urban Management

都市社会工学実習

[Code] 10U210 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 1st

[Location] C1-173 [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese

[Instructor] Related instructors,

【Course Description】 To develop integrated and holistic understandings on Urban Management and cultivate problem-solving abilities, students are encouraged to attend a practical education and engineering program offered by educational institutes such as universities, international and domestic associations. Students attend a program under the instructions of academic supervisors. Programs are limited to the ones certified by the department.

【Grading】 Attendance and reports are comprehensively evaluated.

[Course Goals] To develop integrated and holistic understandings on Urban Management and cultivate problem-solving abilities by attending a practical education and engineering program offered by educational institutes such as universities, international and domestic associations.

[Course Topics]

Theme Description	times
-------------------	-------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

ORT on Urban Management

都市社会工学ORT

[Code] 10U216 [Course Year] Doctor Course [Term] 1st+2nd term

[Class day & Period] 1st term: Thu 3rd&4th, 2nd term: Thu 4&5th [Location] C1-173 [Credits] 4 [Restriction]

[Lecture Form(s)] [Language] [Instructor] Related instructors,

Course Description 1 By practicing the research themes on Urban Management and making the presentations of research results at the conferences, the students can develop the advanced specialities, the ability of finding out the new fields of research. Also, the students can get the practical ability which is necessary for researchers and engineers. The students can participate in the conferences at home and abroad, the presentations of research at laboratory, some kinds of seminars and symposiums, lecture classes and internship to the enterprises or research organizations at home and abroad. The director of the department and the supervisor totally evaluate the reports made about these activities by the students.

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	30	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 Details will be given in the guidance.

10U224

Practice in Advanced Urban Management A

都市社会工学総合実習 A

[Code] 10U224 [Course Year] Doctor 1st [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	3	
	5	
	2	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Practice in Advanced Urban Management B

都市社会工学総合実習 B

[Code] 10U225 [Course Year] Doctor 1st [Term] 2nd term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	2 00 01 - F 01 011

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10F003

Continuum Mechanics

連続体力学

[Code] 10F003 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Kunitomo Sugiura, Tomomi Yagi,

[Course Description] Continuum mechanics is a unified basis for solid mechanics and fluid mechanics. The aims of this course are to introduce the continuum mechanics from their basics to the some forms of constitutive law and also to provide students with mathematical way of understanding the continuum mechanics. This course contains the fundamentals of vector and tensor calculus, the basic equations of continuum mechanics, the tensor expressions of elastic problems and further applications.

【Grading】 Assessment will be based on exam, report and participation.

[Course Goals] Fundamental theorems on structural mechanics and design will be learned, and ability to judge the proprieties of each computational structural analysis will be acquired.

【Course Topics】

Theme	Class number of times	Description
T . 1	1	- Outline of Structural Analysis
Introductions	1	- Mathematical Preliminaries(Vectors and Tensors)
M-+	1	- Summation Convention
Matrices and tensors	1	- Eigenvalues and Eigenvectors
differential and integral	1	- Quotient Laws
calculus of tensors	1	- Divergence Theorem
		- Material Description
Kinematics	1	- Spatial Description
		- Material derivative
Deformation and strain	2	- Strain tensors
Deformation and strain	2	- Compatibility conditions
Stress and equilibrium	1	- Stress Tensors
equation	1	- Equilbrium Equations
Conservation law and		- Conservation of Mass
governing equation	1	- Conservation of Linear Momentum
		- Conservation of Energy
Constitutive equation of	1	- Perfect Fluid
idealized material	1	- Linear Elastic Material(Isotropic)
Elastic-plastic behavior		- Yield Criteria
and constitutive equation	1	- Flow Rule
of construction materials		- Hardening Rule
		- Governing Equations and Unknowns
Boundary value problem	1	- Navier-Stokes Equation
		- Navier Equation
Variational principle	4	- Principle of Virtual Work
variational principle	1	- Principle of Complementary Virtual Work
Various kinds of	2	- Weighted Residual Method
numerical analyses		- Finite Element Method
Confirmation of the		
attainment level of	1	Feedback based on the Final Examination
learning		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge for structural mechanics, soil mechanics and fluid mechanics are required.

[Independent Study Outside of Class] As appropriate, the assignments are given based on the content of Lecture.

[Web Sites]

Structural Stability

構造安定論

[Code] 10F067 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd [Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Hiromichi SHIRATO, Kunitomo SUGIURA,

Course Description I Fundamental concept of static and dynamic stability of large-scale structures such as bridges is to be introduced in addition to the way to keep/improve their safety and to evaluate their performance. Basic concept of structural stability and its application and technical subjects to improve safety will be lectured systematically. Furthermore, the practical solutions to the subjects are to be introduced to assure the safety of structures.

[Grading] Grading will be evaluated by written examination, reports and attendance.

[Course Goals] The class aims to cultivate the understanding of static and dynamic stability problems for structural system and make understand the methodology to clarify the limit state. To get knowledge on countermeasures to assure the stability which is applicable to practical design and manufacturing will be also required.

[Course Topics]

Theme	Class number of times	Description
		Stability of Structures and Failures
		Basis of Structural Stability
Electic Stability		Elastic Buckling of Columns
Elastic Stability	7	Elastic Buckling of Beams & Frames
under Static Loading		Elastic Buckling of Plates
		Elasto-plastic Buckling
		Buckling Analysis
		The stability around the equilibrium points based on the state equation of
Basic theory of dynamic stability and its application	7	motion in which the nonlinearity of external, damping and restring forces are
		taken into account. Wind-induced vibration of a square prism (Galloping) and
		1dof system with nonlinear spring will be introduced as practical examples.
		Chaotic motion of a pendulum subjected to periodic external force is also
		explained as an introduction of chaos theory.
Achievement Check	1	Summary and Achievement Check.

[Textbook] Not specified.

【Textbook(supplemental)】Introduced in class if necessary.

[Prerequisite(s)] It is desired for participants to master structural mechanics, continuum mechanics, mathematical analysis as well as vibration theory.

[Independent Study Outside of Class]

[Web Sites] none

Material and Structural System & Management

材料・構造マネジメント論

[Code] 10F068 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English [Instructor] Hirotaka Kawano, Atsushi Hattori, Takashi Yamamoto,

Course Description With regard to the maintenance of concrete structures, the deterioration prediction procedures in material and structural properties are discussed based on durability and deterioration processes of concrete structures. Repair materials and methods are also introduced. Note: strengthening materials and methods are discussed in Concrete Structural Engineering, provided in the second semester. In the later half of this lecture, structures are focused as groups rather than an individual structure to understand the difference between asset management and maintenance. By taking into consideration the economic aspect and human resources aspect as well as the physical aspect, the flow of the asset management for structures' groups with view points of the life cycle cost and the budget is provided.

【Grading】Reports ,presentations and other activities are inclusively considered.

[Course Goals] To understand the maintenance for a single structure and the asset management for structures' group.

[Course Topics]

Theme	Class number of times	Description
1. Outline of		
maintenance for	1	
concrete structures		
2. Deterioration		
mechanisms of		
concrete structures	4	
and deterioration		
prediction		
3. Repair materials		
and methods for	1	
concrete structures		
4. Maintenance and	2	
asset management		
5. Maintenance for	2	
structures' group		
6. Management for	2	
structures' group		
7. Presentations and	3	
discussions		

【Textbook】Not specified. Some materials may be provided.

【Textbook(supplemental)】Not specified.

[Prerequisite(s)] Basic knowledge on Construction Materials and Concrete Engineering.

[Independent Study Outside of Class] Check the handouts. Additional studies will also be instructed.

[Web Sites]

[Additional Information] Positive presence in the lecture is expected by joining discussions for example.

Earthquake Engineering/Lifeline Engineering

地震・ライフライン工学

[Code] 10F261 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 4th [Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Kiyono, Igarashi,

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	1	
	1	
	1	
Principles of seismic	2	Fundamental thories on dynamic response of nonlinear elastoplastic structural
design of structures	2	systems and representative seismic design principles
Seismic performance of concrete and steel structures	1	Essentials and current issues related to seismic performance and design of RC and steel structures
Seismic response control and seismic retrofit of structures	1	Idea and current issues on seismic isolation, seismic response control techniques for enhancement of seismic performance of structures, and seismic retrofit and rehabilitation of existing structures
	1	
	2	
	1	
	1	
Achievement evaluation	1	Students' achievements in understanding of the course material are evaluated.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Infrastructural Structure Engineering

社会基盤構造工学

[Code] 10W001 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] English [Instructor] Related Faculty members,

[Course Description] Structural engineering problems related to planning, design, construction and maintenance of the infrastructures are discussed. Topics concerning structural engineering and management are widely taken up including latest advanced knowledge and technology, future view and/or international topics. Special lectures by extramural lecturers are carried out if necessary.

【Grading】Coursework will be graded based on the reports.

[Course Goals] To grasp problems related to structural engineering and their specific solutions.

To understand applicability of advanced technologies and development prospects.

[Course Topics]

Theme	Class number of times	Description
Structural Materials,	4	Steel materials, Concrete materials, mechanical behavior of structures,
Structural Mechanics	4	Problems related to design, construction and maintenance
Applied Mechanics	1	Numerical analysis for structure performance evaluation
Earthquake and		Infrastructure and natural disaster,
Wind Resistance of	7	Trends of disaster prevention technology,
Structures		Problems related to Earthquake and wind resistant design
Maintenance of		International technology,
structure	3	Scenario design,
		International technological education and collaboration

【Textbook 】 The textbook is not required. Materials will be supplied by instructors.

【Textbook(supplemental)】 Supplemental text books will be introduced by instructors.

[Prerequisite(s)] Structural Mechanics, Wind Resistant Design, Construction Materials, Dynamics of Structures, etc.

【Independent Study Outside of Class】

[Web Sites]

Structural Design

構造デザイン

[Code] 10F009 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Yoshiaki Kubota, Yoshikazu Takahashi, Masahide Matsumura

[Course Description] This course provides the knowledge of the structural planning and design for civil infrastructures. Fundamentals of the reliability of structures based on the probability and statistics are given. Emphasis is placed on the reliability index and the calibration of partial safety factors in the LRFD design format. Furthermore, the relationship between structure and form is discussed with various examples.

【Grading 】 Assessed by term-end examination, reports and quizes

【Course Goals】 To understand the structural planning and design for civil infrastructures.

To understand the reliability-based design of structures.

To deepen the understanding of the relationship between structure and form.

[Course Topics]

Theme	Class number of times	Description
		Structural Planning of civil infrastructures is introduced. The concept, significance
Structural Planning	2	of planning, characteristics of civil infrastructures are discussed. Practical planning
	_	process of a bridge is explained.
		The bridge types such as girder, truss, arch and suspension bridge that have been
		regarded individually are explained as an integrated concept from the viewpoint of
Structure and Form	3	acting forces to understand the structural systems which have continuous or
		symmetrical relationships. Furthermore, various examples are discussed based on
		the understanding of the structural systems.
Standard Davies and	3	Design theory of civil infrastructures is introduced. The allowable stress design
Structural Design and		method and the limit state design method are explained. The basic of earthquake
Performance-based		resistant design is discussed based on the dynamic response of structures.
Design		Performance-based design is also introduced.
Random Variables		Fundamentals of random variables, functions of random variables, probability of
and Functions of	1	Fundamentals of random variables, functions of random variables, probability of
Random Variables		failure and reliability index in their simplest forms are lectured.
Structural Safety	2	Limit states, probability of failure, FOSM reliability index, Hasofer-Lind reliability
Analysis	3	index, Monte Carlo method are lectured.
Davier Codes	2	Code format as Load and Resistance Factors Design (LRFD) method, calibration
Design Codes		of partial safety factors based on the reliability method are given.
Assessment of the	1	Assess the level of attainment.
Level of Attainment	1	Assess the level of attainment.

[Textbook] Reliability of Structures, A. S. Nowak & K. R. Collins, McGraw-Hill, 2000

[Textbook(supplemental)] U.Baus, M.Schleich, "Footbridges", Birkhauser, 2008 (Japanese ver.:

"Footbridges"(translated by Kubota, et al.), 鹿島出版会, 2011)

久保田善明,『橋のディテール図鑑』, 鹿島出版会, 2010

Other books will be given in the lectures as necessary.

[Prerequisite(s)] Fundamental knowledge on Probability and Statistics, and Structural Mechanics

[Independent Study Outside of Class] N/A

Web Sites

[Additional Information] Structural planning and design will be given by Y. Takahashi, Structure and form by Y. Kubota, and Structural reliability analysis by M. Matsumura.

Bridge Engineering

橋梁工学

[Code] 10F010 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 3rd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】 Hiromichi Shirato, Kunitomo Sugiura, Tomomi Yagi, Masahide Matsumura

Course Description The subject matter of bridge engineering can be divided into two main parts, which are steel structure and wind loading/wind resistant structure. The aim of this course is to provide details of mechanical behaviors, maintenance and design of bridge structures. The former part of this course contains the static instability of steel structures and the problems of corrosion, fatigue, brittleness, weldability on steel bridges. In the latter part, the basics of wind engineering, bridge aerodynamics and wind-resistant design including current problems to be solved are provided are provided. [Grading] Assessment will be based on exam, reports and participation.

Course Goals

Also, the basic knowledge for wind engineering and aerodynamic instabilities, which are necessary for the wind resistant design of bridges, will be acquired.

[Course Topics]

Theme	Class number of times	Description
		- Fundamental knowledge on steel structures
Introduction	1	- Types of steel structures
		- Future trend of steel structures
		- Construction of steel structures
Material behavior, Initial	1	- Residual stresses and initial deformations
imperfections and Damages		- Damages
		- Yield surfaces
C4		- Bauschinger effect
Stress-strain relationship, Joints	1	- Hardening effect
JOINTS		- Welded joint
		- Bolted joint
		- S-N design curve
Fatigue fracture, fatigue life	1	- Fatigue crack growth, stress intensity factor
and fatigue design	1	- Miner's rule on damage accumulation
		- Repair of fatigue damage
C4		- Structural instability and accident
Structural stability and	1	- Theory of Stability
design for buckling		- Compressive members, etc.
		- Mechanism of corrosion
Corrosion and anti-corrosion	4	- Micro- and Macro- cells
of steel structures	1	- Anti-corrsion
		- Life-cycle costs
		- Natural winds due to Typhoon, Tornado and so on
Wind resistant design of	2	- Evaluation and estimation of strong winds
structures	3	- Wind resistant design methods
		- Various kinds of design codes
		- Introduction of aerodynamic instabilities (ex. vortex-induced vibration, galloping, flutter, buffeting,
Aerodynamic instabilities of	2	cable vibrations)
structures	3	- Mechanisms of aerodynamic instabilities
		- Evaluation methods and Countermeasures
W. 1. 1. 1. 1	1	- Accidents on structures due to strong winds
Wind-induced disaster		- Disaster prevention
Topics	1	Introduction of current topics on bridge engineering by a visiting lecturer
Confirmation of the attainment level of learning	1	Confirm the attainment level of learning

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)] Basic knowledge for construction materials, structural mechanics and fluid mechanics are required.

【Independent Study Outside of Class】

[Web Sites]

Concrete Structural Engineering

コンクリート構造工学

[Code] 10A019 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Yoshikazu Takahashi, Takashi Yamamoto, Satoshi Takaya, Katsuhiko Mizuno (Sumitomo Mitsui Construction Co., LTD.)

【Course Description】 Concrete is one of the most useful construction materials employed for an infrastructure. The structural properties of a reinforced concrete including a prestressed concrete are introduced among the various structural components of concrete. The engineering techniques in design, execution, diagnosis, repair, strengthening and management of reinforced and/or prestressed concrete structures are discussed from the point of view of the performance based system.

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	6	
	6	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Structural Dynamics

構造ダイナミクス

[Code] 10F227 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Igarashi, Furukawa

Course Description This course deals with dynamics of structural systems and related topics, to provide the theoretical basis to deal with the problems of vibration, safety under dynamic loads and health monitoring associated with infrastructures. The students will study the dynamic response, properties of natural modes and methods of eigenvalue analysis for multi-DOF systems. The topics on the numerical time integration schemes, probabilistic evaluation of structural response to random excitation, and dynamic response control techniques for structures are also studied.

[Grading] Based on the results of a final examination, plus homework assignments

【Course Goals】(1) To aquire the knowledge on theories and principles of analysis of MDOF systems (2) Systematic understanding of frequency-domain structural response analysis (3) Concept of analysis of numerical time integration schemes (4) Understanding of fundamentals of the random vibration theory

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Fudamental concepts, harmonic motion
Dynamics of Multi-Degree-Of-Free Systems	edom 2	Formulation of Eq. of Motion / Lagrange's method / Normal Modes / Modal Analysis / Modeling of System Damping
Frequency-Domain Analysis of System Response	1	Frequency Response Funcs. / Fourier Transform
Numerical Time Integration	2	Formulation / Stability and Accuracy Analysis of Integration
Random Vibration	6	Overview / Probability Theory / Sequence of i.i.d. Random Variables / Concept of Random Processes / Correlation Funcs. / White Noise / Stochastic Differential Eq. / Lyapunov Eq. / Response to White Noise Excitation / Covariance Matrix Approach / Correlation Funcs. of Random Response / Spectral Representation of Random Processes / Spectral Representation of Structural Response / Application
Structural Response Control	2	Active Control / Semi-Active Control
Achievement Evaluation	1	Students' achievements in understanding of the course material are evaluated.

【Textbook】Not used; Class hand-outs are distributed when necessary.

【Textbook(supplemental)】

【Prerequisite(s)】 Mechanical vibration (undergraduate level), Complex calculus (integration of analytic functions, Fourier transform, etc.), Probability theory, Linear algebra

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] There will be homework assignments at the end of most of the lectures.

Seismic Engineering Exercise

サイスミックシミュレーション

[Code] 10F263
 [Course Year] Master and Doctor Course
 [Term] 2nd term
 [Class day & Period] Mon 4th
 [Location] C1-192
 [Credits] 2
 [Restriction] No Restriction
 [Lecture Form(s)] Lecture and Exercise
 [Language] Japanese
 [Instructor] Sawada, Takahashi, Goto

[Course Description] This course provides the knowledge of simulation methods for earthquake engineering. Small groups of students are exercised in the prediction of ground motion generated by a specified seismic fault and the response analysis of structure selected by themselves considering soil-structure interaction.

[Grading] Based on the performance during the course (including homework) and the results of presentation and reports.

[Course Goals] At the end of this course, students will be required to have a good understanding of: - Prediction of ground motion generated by a specified seismic fault - Dynamic response analysis of structures and foundation (linear/nonlinear)

[Course Topics]

Theme	Class number of times	Description
Frequency domain	1	Davis of Francis at the office of the david
analysis	1	Basics of Fourier transformation is introduced.
Modeling of		
structure - soil	1	Equation of motion of SR model is introduced and the integration method of
system and time	1	the equation in time domain is explained.
domain analysis		
Exercise of linear		Small arround of students are everyised in electic modeling of structures and
seismic response	2	Small groups of students are exercised in elastic modeling of structures and
analysis		linear response analysis in time domain and frequency domain.
Prediction of ground		
motion by empirical	3	Empirical Green's function method is introduced to predict large earthquakes
Green's function		based on observed small earthquakes.
method		
Seismic analysis	2	Seismic analysis method of layered half-space based on equivalent
method of soil	2	linearization method is introduced.
Nonlinear seismic		Nonlinear modeling of structures and the integration and iterative methods of
analysis method of	2	
structures		the nonlinear equation of motion in time domain are introduced.
Exercise of nonlinear		Small groups of students are exercised in the prediction of ground motion
seismic response	3	generated by a specified seismic fault and the nonlinear response analysis of
analysis		structures and foundation.
Achievement Check	1	All students give presentations and discussions.

【Textbook】Not used; Class hand-outs are distributed when necessary.

【Textbook(supplemental)】

[Prerequisite(s)] Earthquake Engineering/Lifeline Engineering (10F261), Structural Dynamics (10F227) Independent Study Outside of Class] Students require to review and analyze in preparation for final presentations.

[Web Sites]

Ecomaterial and Environment-friendly Structures

環境材料設計学

[Code] 10F415 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hirotaka KAWANO, Atsushi HATTORI, Toshiyuki ISHIKAWA,

[Course Description] Lecture on outline of impact of construction materials to environment and influence on materials and structures from environment. Discuss how to use materials sustainably. Keywords are concrete, steel, composite materials, CO2, durability, recycle and reuse, life-cycle assessment.

Grading Attendance(%), Report(%), Presentation(%)

[Course Goals] To understand the limit of resources and effect of material use to environment, and to understand the basic theory to make environmental-friendly infrastructures from the view point of materials use.

[Course Topics]

Theme	Class number of times	Description
Guidance	1	Object of the Course, Grading and Goals
product of materials and impact to environment	1	Product of cement, steel, concrete CO2 product and its influence
recycle and reuse of	3	Recycle and reuse of steel, metals, concrete, asphalt, plastics Technology
materials	3	development of construction materials
deterioration of	1	Mechanism of deterioration of concrete structures: carbonation, salt attack,
concrete structures	1	alkali-aggregate reaction Maintenance and retrofit methods
deterioration of steel	1	Mechanism of deterioration of steel structures: corrosion, fatigue Maintenance
structures	1	and retrofit methods
deterioration of	1	Mechanism of deterioration of composite structures: Maintenance and retrofit
composite structures	1	methods
life-cycle assessment	1	Life-cycle assessment of structures considering initial cost as well as
of structures	1	maintenance cost
topics and discussion	2	Recent topics on construction materials and discussion
presentation by		Presentation by students on the individual topics Discussion on the topics.
students and	4	"Feedback" at the last class
discussion / feedback		recuback at the fast class

[Textbook] No set text

【Textbook(supplemental)】Instructed in class

[Prerequisite(s)] Basic knowledge of construction materials, concrete engineering

[Independent Study Outside of Class] Check the handouts. Additional studies will also be instructed.

[Web Sites]

[Additional Information] Questions and discusions are welcome

Infrastructure Safety Engineering

社会基盤安全工学

[Code] 10F089 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 3rd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Tomoyasu Sugiyama, Tsutomu Iyobe

[Course Description] The issues concerning the safety and reliability of infrastructures such as tunnels and bridges and also the issues on natural disaster are reviewed in the lecture.

[Grading] This lecture involves reports (70%) and attendance(30%)

[Course Goals] To understand the basic technologies to enhance the safety of structures and also the fundamentals on disaster prevention.

[Course Topics]

Class number of times	Description
1	Introduction on the safety of infrastructures
1	Planning, investigation, evaluation and repair in maintenance for mainly
1	railway structures is generally explained
	Overview of weather information for disaster prevention and its monitoring
2	system, the evaluation method for climatological statistics and extreme value
	statistics.
	To sustain the users' safety in railway system, it is necessary to maintain the
1	structures properly but also to consider the prevention against disaster. Thus
	herein disasters in railway structures and its counteractions are explained
1	The need for regulation in railway operation at rainfall is explained
1	Risk assessment for rainfall disaster is described and also some practical cases
1	are introduced
3	Prevention technologies against natural disaster
	Warning system for earthquake and the algorithm of earthquake early
1	detection, which is one of the regulations for Super expressway in earthquake,
	is explained
2	Physical phenomenon of snow hydrology and its relationship with natural and
2	social environment
1	Disorder caused by snow and ice and the countermeasures in railways
1	Report
	1 1 2 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1 1 1

[Textbook]

【Textbook(supplemental)】

【Prerequisite(s)】 Basic knowledge on statistics is required. Students should have taken the course of geo-mechanics, structural mechanics and concrete engineering.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] confirm the attendance at every lecture

Hydraulics & Turbulence Mechanics

水理乱流力学

[Code] 10F075 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd

[Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Toda, Sanjou, Okamoto,

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description	
Guidance	1	Guidance and entrance level lecture about fluid dynamics and turbulence	
Theories of	2	Lectures about momentum equation, boundary layer, energy transport, vortex	
turbulence	3	dynamics and spectrum analysis	
Turbulence in natural	4	I at the state of	
rivers	4	Lectures about diffusion and dispersion phenomena observed in natural rivers.	
Vegetation and	2	Lecture about turbulence transport in vegetation canopy together with	
turbulence	3	introduction of recent researches	
Practical topics in			
natural rivers	2	Lectures about compound channel and sediment transport	
Practical topics in			
hydraulic	2	Lectures about drifting object in flood and fish way	
engineering			

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Hydraulics

【Independent Study Outside of Class】

[Web Sites]

Hydrology

水文学

[Code] 10A216 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Yasuto TACHIKAWA, Yutaka ICHIKAWA and Kazuaki YOROZU

【Course Description】 Physical mechanisms of the hydrologic cycle are described from the engineering viewpoint. The rainfall-runoff modeling and its prediction method are emphasized. Physical hydrological processes explored are surface flow, saturated-unsaturated subsurface flow, streamflow routing, and evapotranspiration. Physical mechanism of each hydrological process and its numerical modeling method are explained. The basic equations and numerical simulation methods are provided. Then, detail of distributed hydrological modeling is explained through exercise.

【Grading 】 Examination and report

[Course Goals] The goals of the class are to understand the physical mechanism of hydrological processes, their basic equations, and numerical simulation methods.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The hydrologic cycle and the hydrological processes are explained.
		The physical process of the surface flow and its numerical modeling method
Surfaceflow	2	are described. The basic equations of the surface flow and the numerical
		simulation methods are explained.
		The physical process of the streamflow routing and its numerical modeling
Streamflow routing	2	method are described. The basic equations of the streamflow routing and the
		numerical simulation methods are explained.
Channel network and	1	Numerical representations of channel networks and catchments are explained.
watershed modeling	1	Numerical representations of channel networks and catchinents are explained.
Distributed	5	A physically-based distributed hydrological model is described, which is
		constructed with numerical representations of channel networks and
hydrological model		catchments.
Climate change and	1	Data analysis of the latest GCM simulation is presented and the impact of
hydrologic cycle	1	climate change on the hydrologic cycle is discussed.
	2	The physical process of the evapotranspiration and its numerical modeling
Evapotranspiration		method are described. The basic equations of the evapotranspiration and the
		numerical simulation methods are explained.
Feedback of study	1	Feedback of study achievement is conducted.
achievement	1	recuback of study achievement is conducted.

[Textbook] Handouts are distributed at each class.

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge of hydraulics and hydrology

[Independent Study Outside of Class] Read the textbook and/or related documents in advance and work on assignments to improve understanding of the lecture contents.

[Web Sites] http://hywr.kuciv.kyoto-u.ac.jp/lecture/lecture.html

[Additional Information] This course is open in English every other year. In 2016, the course will be open.

River Engineering and River Basin Management

河川マネジメント工学

[Code] 10F019 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hosoda, Kishida, Onda [Course Description] It is important to consider about rivers comprehensively from the various points of view based on natural & social sciences and engineering & technology. The fundamental knowledge to consider rivers and to make the plans for river basins is explained with the following contents: various view points to consider rivers, long term environmental changes of rivers and its main factors, river flows and river channel processes, the ecological system of rivers and lakes, flood & slope failure disasters, the integrated river basin planning(flood defense, environmental improvement planning, sediment transport system), functions of dam reservoir and management.

【Grading】Reports & Attendance

[Course Goals] Students are requested to understand the fundamental knowledge to consider rivers and river basins comprehensively from the various points of view based on natural & social sciences and engineering & technology.

[Course Topics]

Theme	Class number of times	Description
Various view points to		Various viewpoints to consider rivers and river basins, Various rivers on the earth,
consider rivers and river	1	Formation processes of river basins, long term environmental changes of rivers and its main
basins		factors
Ecological system in	2	
rivers	2	The fundamental knowledge on river ecologycal system
Applications of		The following items are lectured: Computational method to predict river flows and river
computational methods	2	channel processes with sediment transport and river bed deformation, Hydrodynamics in
to environmental	2	Lake Biwa.
problems		Lake biwa.
Recent flood disasters &		Characteristics of recent flood and slope failure disasters, the Fundamental river
Integrated river basin	2	management plan and the River improvement plan based on the River Law, Procedures to
planning		make the flood control planning, Flood invasion analysis and hazard map.
Groundwater and its	2	Simulation technology of groundwater, Geo-environmental issues, Reservoir Engineering,
related field		Contaminant Transport Processes.
Sustainable development	2	Needs of dam dayalanment and history of dam construction. Maintanage of Dam reservoir
of dam		Needs of dam development and history of dam construction, Maintenace of Dam reservoir.
Economic evaluation of		Evaluation of people's awareness & WTP to river improvement projects by means of CVM,
environmental	1	Conjoint Analysis, etc.
improvement projects		Conjoint Analysis, etc.
Dam structure and	2	Domestweeting foundation agenting Decicles of Auch Domes and Curviety Dome
maintenance	2	Dam structure, foundation, grouting. Desighn of Arch Dam and Graviety Dam.
Achievement		
Confirmation and	1	Comprehension check of course contents (Reports & Quiz)
Feedback		

【Textbook】 Printed materials regarding the contents of this class are distributed in the class.

【Textbook(supplemental)】

[Prerequisite(s)] Fundamental knowledge of Hydraulics, Hydrology and Ecology

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students can contact with professors by visiting their rooms and sending e-mails.

Prof. Hosoda: hosoda.takashi.4w@kyoto-u.ac.jp Prof. Kishida: kishida.kiyoshi.3r@kyoto-u.ac.jp

Assistant. Prof. Onda: onda.shinichiro.2e@kyoto-u.ac.jp

Sediment Hydraulics

流砂水理学

[Code] 10A040 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd [Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hitoshi Gotoh and Eiji Harada,

Course Description Natural flows in river and coast are movable bed phenomena with the interaction of flow and sediment. At a river and a coast, a current and a wave activate a sediment transport and bring the topographical change of a bed such as sedimentation or erosion. This lecture provides an outline about the basics of sediment (or movable bed) hydraulics, and detail of the computational mechanics of sediment transport, which has been developed on the basis of dynamics of flow and sediment by introducing a multiphase flow model and a granular material model. Furthermore, about sediment and water-environment relationship, some of frontier technologies, such as an artificial flood, removal works of dam sedimentation, coastal protection works, and sand upwelling work for covering contaminated sludge on flow bottom etc., are mentioned.

【Grading 】 Grading is based on student 's activities in lectures and written examination.

[Course Goals] Students understand the basics of sediment hydraulics and outline of advanced models for computational sediment hydraulics, such as multiphase flow model and granular material model. Students understand the present conditions of sediment control works.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The purpose and constitution of the lecture, the method of the scholastic evaluation are explained.
Basics of sediment hydraulics	5	Physical characteristic of a movable bed and a non-equilibrium sediment transport process and its description are explained. Furthermore, the prediction technique of topographical change due to current and waves is outlined.
Computational mechanics of sediment transport: The state of the art	8	Essential parts of numerical models of the movable bed phenomena, which has been developed by introducing dynamic models such as a granular material model to describe a collision of sediment particles and a multiphase flow model to describe a fluid-sediment interaction, are described. In comparison with the conventional movable bed computation, the points on which has been improved to enhance the applicability of the models are concretely mentioned. Some frontier studies of sediment transport mechanics are also introduced.
Achievement cofirmation	1	Comprehension check of course contents.

【Textbook】 Hitoshi Gotoh: Computational Mechanics of Sediment Transport, Morikita Shuppan Co., Ltd., p.223, 2004 (in Japanese).

【Textbook(supplemental)】Non

[Prerequisite(s)] Undergraduate-level Hydraulics or Hydrodynamics is required. Because a commentary easy as possible is kept in mind by lectures, students without these prerequisite are welcomed.

[Independent Study Outside of Class] Review fundamental items of hydraulics or hydrodynamics.

[Web Sites] Non

Hydrologic Design and Management

水工計画学

[Code] 10F464 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd [Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Yasuto TACHIKAWA and Yutaka ICHIKAWA

Course Description Hydrologic design and real-time rainfall-runoff prediction methods are described. The frequency analysis of hydrologic extreme values and the time series analysis of hydrologic variables are described, and then a procedure to determone an external force for the hydrologic design are explained. Next, a physically based hydrologic model which includes various processes of human activities for the hydrologic cycle is described. A flood control planning and water resources management with the use of innovative hydrologic simulation tools is described. Then, A real-time rainfall runoff prediction method with the use of Kalman filter theory is described.

【Grading】Final report (100)

[Course Goals] The class aims to understand the probabilistic and statistical analysis of hydrologic variables to determine the external force of hydrologic designs, applications of hydrologic simulations for hydrologic designs, and real-time rainfall and runoff prediction methods for water resources management.

	- •
Course	Onice
r Course	LUULUGA

Theme	Class number of times	Description
Introduction	1	A flood control planning and water resources planning are introduced.
Frequency analysis	3	The frequency analysis of hydrologic extreme values is described. The methods to
and hydrologic design	3	set the external force for the hydrologic design are explained.
		The time series analysis of hydrologic variables is described. The methods to
Time series analysis	2	develop time series models, time serried data generation methods, spatiotemporal
and hydrologic design	2	variation of hydrologic variables and a random field model, disaggregation
		methods are explained.
		Hydrologic models which include the process of human activities for the
II-duala dia mandalina	2	hydrologic cycle is described. Then, hydrologic predictive uncertainty is explained,
Hydrologic modeling		which is inevitable coming from model structure uncertainty, parameter
and predictive		identification uncertainty and model input uncertainty. Especially, the relation
uncertainty		between spatiotemporal scales of hydrologic modeling and model parameter values
		is described.
Hydrologic modeling	2	A hydrologic modeling system which helps to develop complicated hydrologic
system	2	simulation models and its importance for a flood control planning is also described.
Watershed		Wetanahad management to mitigate flood dispeture is described. A cost banefit
management for flood	2	Watershed management to mitigate flood disasters is described. A cost-benefit
disaster		analysis of flood control measures is discussed.
Real-time rainfall	2	A real-time rainfall runoff prediction method with the use of Kalman filter theory
runoff prediction		and a new filter theory is described.
Feedback of study	1	Foodbook of study sobjevement is conducted
achievement	1	Feedback of study achievement is conducted.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge of hydrology, probability and statistics are required.

[Independent Study Outside of Class] Read the textbook and/or related documents in advance and work on assignments to improve understanding of the lecture contents.

[Web Sites] http://hywr.kuciv.kyoto-u.ac.jp/lecture/lecture.html

Open Channel Hydraulics

開水路の水理学

[Code] 10F245 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 1st [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] HOSODA, Takashi and ONDA, Shinichiro

Course Description Hydraulic engineers and river engineers are requested to understand Open Channel Hydraulics to handle practical problems properly. In this class, the basic theory on open channel hydraulics is lectured showing various applications in Hydraulic Engineering Field. The contents include the following items: Application of a singular point theory to water surface profile analysis, Derivation of 2-D depth averaged flow model, 1-D analysis of unsteady open channel flows based on the method of characteristics, Plane 2-D analysis of steady high velocity flows, Plane 2-D analysis of unsteady flows, Higher order theories such as Boussinesq equation, etc.

【Grading】 the regular examination

[Course Goals] Students are requested to understand the basic theory of Open Channel Hydraulics and to learn how to apply the basic theory to practical problems in hydraulic engineering field.

【Course Topics】

Theme	Class number of times	Description	
Cuidanaa	1	The contents of this subject are introduced showing the whole framework of Open	
Guidance	1	Channel Hydraulics with several theoretical and computational results.	
Derivation of 2-D	1		
depth averaged model	1	Derivation procesures of plane 2-D depth averaged flow model are expalined in details.	
Application of singular		The application of a singular point theory to water surface profile analysis for steady	
point theory to water	1	open channel flows is explained.	
surface profile analysis		open channel nows is explained.	
1-D analysis of		The following items are lectured: Fundamental characteristics of 1-D unsteady open	
unsteady open channel	3	channel flows, Method of Characteristics, Dam break flows, Computational methods	
flows		for shallow water equations.	
Fundamentals of	1	basic theory of numerical simulation is explained by means of finite difference method,	
numerical simulation		finite element method, etc. Applications of these method to unsteady open channel flow	
numerical simulation		equations are also shown with some practical applications in river engineering.	
Plane 2-D analysis of		Characteristics of steady plane 2-D flows are explained based on the method of characteristics.	
steady high velocity	1		
flows		characteristics.	
		The following items are lectured: The propagation of a characteristic surface, the shear	
Plance 2-D analysis of	3	layer instability in 2-D flow fields, the application of a generalized curvilinear	
unsteady flows	3	coordinate system to river flow computation, the application of a moving coordinate	
		system, etc.	
		Boussinesq equation with the effect of vertical acceleration, full/partially full	
Higher order theory	3	pressurized flows observed in a sewer network, traffic flow theory based on a dynamic	
		wave model and its application	
Achievement		Understanding of the contents on Open Channel Hydraulics is confirmed through the	
Confirmation &	1	regular examination.	
Feedback		regulai examination.	

【Textbook】 Printed materials on the contents of this class are distributed in class.

【Textbook(supplemental)】

[Prerequisite(s)] The Basic knowledge on fluid dyanamics and hydraulics

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students can contact with Hosoda by sending e-mail to hosoda.takashi.4w@kyoto-u.ac.jp.

Coastal Wave Dynamics

海岸波動論

[Code] 10F462 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 3rd

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Hitoshi Gotoh, Khayyer Abbas, Eiji Harada and Hiroyuki Ikari

【Course Description】 Wave motion, which is the main driving force in coastal zone, is explained focusing on wave transformation theory and computational fluid dynamics, and design for coastal structures of their engineering applications is illustrated. As for the computational fluid dynamics for waves, methodology of free-surface wave based on the Navier-Stokes equation, which has been significantly developed in recent years, is explained in detail.

【Grading 】 Grading is based on student 's activities in lectures and written examination.

[Course Goals] Goal of this course is a detailed understanding of fundamental of wave transformation theory and computational fluid dynamics related to wave motion, and is also acquiring a design concept for coastal structures as their engineering applications.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The purpose and constitution of the lecture the method of the scholastic evaluation are explained.
Conservation laws of	4	Fundamentals of fluid mechanics, liner / non-liner wave theories and
fluid	4	numerical mathematics are explained.
Modeling of surf zone dynamics	6	Several methodologies against free-surface wave including breaking waves (i.e. VOF, MPS, SPH) are illustrated. Especially advanced approaches of MPS and SPH are explained in detail.
Introduction of turbulence models	1	Reynolds averaging models and large eddy simulation are outlined.
Modeling of rock	2	Method for tracking of armor blocks under high waves using Distinct Element
mound dynamics		Method is described.
Achievement Confirmation	1	Comprehension check of course contents.

【Textbook】Computational Wave Dynamics by Hitoshi Gotoh, Akio Okayasu and Yasunori Watanabe 234pp, ISBN: 978-981-4449-70-0

【Textbook(supplemental)】Non

[Prerequisite(s)] Non. It is desiarable to have knowledge about hydraulics, fluid mechanics.

[Independent Study Outside of Class] Review fundamental items of hydraulics or hydrodynamics.

[Web Sites]

【Additional Information】 If there are any questions, please send e-mail to the staff. This course will be offered in 2015.

Hydro-Meteorologically Based Disaster Prevention

水文気象防災学

[Code] 10F267 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Kaoru Takara, Eiichi Nakakita, Takahiro Sayama

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	1	
	2	
	2	
	2	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Water Resources Systems

水資源システム論

[Code] 10A222 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hori, T.(DPRI) and Tanaka, K.(DPRI)

[Course Description] Systems approach to natural and social phenomena associated to water resources is introduced in terms of planning and design of sustainable water resources systems.

【Grading 】 Grading is done based on examination and commitment to classes.

[Course Goals] Deep understanding of fundamentals for systems modeling of water-related natural and social processes and ability to perform data collection, analyses and design of sustainable water management systems.

[Course Topics]

Theme	Class number of times	Description
Optimum design of		
water resources	3	
systems		
desicion support for		
water resources	3	
management		
Recent topics on	1	
water management	1	
Water management	3	
practices in the world		
Land surface model		
and its application to	4	
water management		
achievement check	1	

【Textbook 】Not specified.

【Textbook(supplemental)】Supplemental documents will be introduced in classes.

[Prerequisite(s)] Fundamentals of hydrology and water resources engineering.

[Independent Study Outside of Class] Review work based on handouts and report work for issues given in the classes are required.

[Web Sites]

[Additional Information] Open every two years. Not available in 2016.

River basin management of flood and sediment

流域治水砂防学

[Code] 10F077 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 1st

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] (DPRI) Nakagawa, H., (DPRI) Sumi, T., (DPRI) Takebayashi, H. and (DPRI) Kawaike, K.,

【Course Description】 In a river basin, various kinds of disasters such as debris flow, land slide, flood inundation, storm surge, and etc. sometimes happen from the origin to the mouth. This lecture presents occurrence examples, mechanisms, theory and methods of prediction and prevention/mitigation methods against those disasters. Also this lecture mentions comprehensive management in a sediment routing system focusing on sediment management strategy in dam reservoirs.

【Grading】 Grading is based on 2 reports out of 4 topics and attendance.

[Course Goals] The goals of the class are to understand phenomena within a river basin and to have wide knowledge of problems of flood and sediment disasters and countermeasures against them.

[Course Topics]

Theme	Class number of times	Description
About Sabo Works	4	About Sabo works, sediment disasters, countermeasures against sediment
	•	disasters, Sabo projects.
About Reservoir		Reservoir sediment management focusing on reservoir sustainability and
Sediment	3	comprehensive management in a sediment routing system is overviewed
Management		including worldwide perspective and Japanese advanced case studies.
About basin-wide		About the one dimensional bed deformation analysis and the sediment runoff
sediment routing	4	model are introduced. Furthermore, some examples of the application of those
sediffent fouting		models are introduced.
About basin-wide	4	Flood disasters and countermeasures against them are overviewed along the
flood management	4	history of flood management in Japan.

[Textbook] No designation. Printed materials regarding the contents of this class are distributed in class.

【Textbook(supplemental)】Instructed in class

[Prerequisite(s)] Fundamental knowledge of Hydraulics and river engineering

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This class is held biennially and is not held in 2014. Attendance is taken every time.

Coastal and Urban Water Disasters Engineering

沿岸・都市防災工学

[Code] 10F269 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] C1-192 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】H. Mase, A. Igarashi, N. Yoneyama, Nobuhito Mori,

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
Out line of coastal	1	Introduction of coastal and urban disasters will be lectured. The type and cause
and urbarn disasters	1	of coastal and urban disasters will be explained for sequential lectures.
Modeling of tsunami,		The fundamental physics and governing equations of tsunami, storm surge and
storm surge and	3	ocean waves will be described and applications and historical events will be
waves		explained in detail.
Reduction of coastal		Characteristics of historical tsunamis, storms surges and coastal erosion will be
	3	presented with countermeasures by engineering approaches. Reliability design
disasters		for coastal structures will be explained following Japanese standard.
Earthquake Disaster	4	Review of recent earthquake disasters in urban areas in Japan and other
in Urban Areas	1	counries
Principle of Strucural		Fundamental Principles of sofaty and performance of structures against
Design against	3	Fundamental Principles of safety and performance of structures against
Disasters		extreme events, including earthquakes and tsunami
	1	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Basin Environmental Disaster Mitigation

流域環境防災学

[Code] 10F466 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

【Course Description】

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	3	
	3	
	3	
	3	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Computational Fluid Dynamics

数值流体力学

[Code] 10F011 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 4th [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Satoru Ushijima, Hitoshi Gotoh, Abbas Khayyer

【Course Description】 Computational Fluid Dynamics (CFD) is largely developed according to the progress of computer technology in recent years. It is the powerful and effective technique to predict the various fluid phenomena, which show the complicated behaviors due to the non-linearity and other conditions. This course provides the dynamics of fluids and eddies as well as the discretization and numerical techniques, such as finite difference, finite volume and particle methods.

[Grading] The grading will be based on homework assignments.

[Course Goals] Course goal is to understand the basic theory and numerical techniques for CFD.

[Course Topics]

Theme	Class number of times	Description	
		The course introduces the MAC algorithm, which is generally used for	
computational		incompressible Newtonian fluids on the basis of finite difference and finite	
method for	7	volume methods (FDM and FVM). The outline of numerical methods is also	
		discussed for parabolic, hyperbolic or elliptic partial differential equations, in	
incompressible fluids		terms of the numerical stability and accuracy. Homework will be assigned	
		each week.	
	7	To simulate violent flow with gas-liquid interface which is characterized by	
		fragmentation and coalescence of fluid, particle method shows excellent	
		performance. Firstly, basics of the particle method, namely discretization and	
Donti ala matha d		algorithm, which is common to SPH(Smoothed Particle Hydrodynamics) and	
Particle method -		MPS(Moving Particle Semi-implicit) methods, are explained. Particle method	
basic theory and		is superior in robustness for tracking complicated interface behavior, while it	
improvements		suffers from existence of unphysical fluctuation of pressure. By revisiting the	
		calculation principle of particle method, various improvements have been	
		proposed in recent years. In this lecture, the state-of-the-art of accurate particle	
		method is also described.	
E - 4b1-	1	Discuss the contents of all classes and assignments. The details will be	
Feedback		introduced in the course.	

[Textbook] No textbook assigned to the course

[Textbook(supplemental)] Recommended books and papers will be introduced in the course.

[Prerequisite(s)] Basic knowledge of fluid dynamics, continuum mechanics and computational technique

[Independent Study Outside of Class]

[Web Sites]

Hydraulic Engineering for Infrastructure Development and Management 水域社会基盤学

[Code] 10F065 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Hosoda Takashi, Toda Keiichi, Gotoh Hitoshi, Tachikawa Yasuto, Kisihida Kiyoshi, Ichikawa Yutaka, Harada Eiji, Sanjou Michio, Khayyer Abbas and Kim Sunmin,

Course Description 1 This lecture picks up various water-related problems and provides their explanation and solution methodology related to hydrodynamic and hydrological infrastructure improvements, maintenance, disaster prevention against flood and damage of water environment, interweaving several leading-edge cases in the real world. Turbulent flow and CFD, sediment transport system and design/planning of hydraulic structure are described on the basis of the integrated management of river-and-coast systems with sediment control and these relationship with infrastructure improvement. Perspective from the viewpoint of public environmental infrastructure on water environment is presented.

【Grading 】 Grading is based on students activities in lectures and reports.

[Course Goals] Students learn about case-based practical solutions against various problems related to hydraulic engineering, and students acquire academic preparation of how to approach to public environmental infrastructure on water area.

[Course Topics]

Theme	Class number of times	Description
Turkus dasakinas	1	The purpose and constitution of the lecture, the method of the scholastic
Introduction		evaluation are explained.
Hydraulics in	3	Several problems and exciting topics related to hydraulics in open-channel
open-channel flows	3	flows are discussed with advanced practical examples.
River basin		Introduction of flood disasters during a few decades in the world, flood control
	3	planning in Japan, Economic evaluation and analysis of people 's awareness
management		to river improvement projects with dam construction.
	3	Several problems and their solution methodology against sediment transport
Beach erosion		process in coastal zone are explained. Advanced approaches for sediment
		control are overviewed.
Rainfall-runoff	3	Weter resources issues related to reinfell runoff prediction and hydrologic
prediction and		Water resources issues related to rainfall-runoff prediction and hydrologic
hydrologic design		design are discussed with advanced practical examples.
Numerical		
simulation for	1	Recent numerical simulation development and related state-of-the-art
Hydraulic	1	technologies are overviewed.
engineering		
Achievement	1	Comprehension check of course contents. The exercises to the given subjects
Confirmation		are performed.

【Textbook】Non

【Textbook(supplemental)】Non

[Prerequisite(s)] hydraulics, fluid mechanics, river engineering, coastal engineering, hydrology, etc.

[Independent Study Outside of Class]

[Web Sites] Non

Applied Hydrology

応用水文学

[Code] 10F100 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Hori(DPRI), Sumi(DPRI), S.Tanaka(DPRI), Takemon(DPRI), K.Tanaka(DPRI), Kantoush(DPRI)

【Course Description】 Applied and integrated approach to the problems closely related to the water circulation system, such as floods, droughts, water contamination, ecological change, and social change is introduced mainly from the hydrological viewpoint with reference to water quantity, quality, ecological and socio-economic aspects. In the course, several actual water problems are taken up and solving process of each problem which comprises of problem-identification and formulation, impact assessment, countermeasures design and performance evaluation is learned through the lectures ' description and also investigation and discussion among the students.

【Grading 】 Grading is based on student activities in lectures, presentation and reports.

【Course Goals】 To obtain fundamental Knowledge and skills to perform problem definition, survey amd countermeasure design on problems about water use, water hazard mitigation and water environment.

[Course Topics]

Theme	Class number of times	Description
Water disasters and	2	Risk assessment of water disasters, countermeasures and adaptation design,
risk management		wataer disasters and human security
Reservoir Systems	2	Reservoir system and its environmental impacts, Sustainable management of
and Sustainability	2	reservoir system
Hydrological	2	Basic theory and application of Hydrological Frequency Analysis, which is the
Frequency Analysis	3	basis for hydrologic design.
Land Surface	2	M-1-11:
Proceses	2	Modelling of land surface processes, Application of land surface model
Hydrological		Deits and second of head-alasia languages and second in languages.
Measurements of	2	Design and management of hydrological measurement system in large river
Large River Basins		basins
Hydro oo Cystems	2	Ecohydrological management of habitats in river ecosystems, Ecohydrological
Hydro-eco Systems	2	management of biodiversity in wetland ecosystems
Presentation and	2	study and aversize for siven tonics
Discussion		study and exersize for given topics

【Textbook】Printed materials on the contents of this class are distributed in class.

【Textbook(supplemental)】None

[Prerequisite(s)] Elementary knowledge of hydrology and water resources engineering.

[Independent Study Outside of Class] Review work based on handouts and report work for issues given in the classes are required.

[Web Sites]

Case Studies Harmonizing Disaster Management and Environment

Conservation

環境防災生存科学

[Code] 10F103 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th [Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English

【Instructor】K. TAKARA(DPRI), H. NAKAGAWA(DPRI), E. NAKAKITA(DPRI), H. MASE(DPRI), N. MORI(DPRI), T. SAYAMA(DPRI)

[Course Description] Environmental impacts by infrastructure for disaster prevention and mitigation are discussed. Introducing various examples of natural disasters, degradation of the environment, and harmonizing disaster management and environmental conservation in the world, this classroom carries on a dialogue about effective measures for reducing negative environmental impacts and serious disasters.

[Grading] Considering both the number of attendances and the score of final test at the end of the semester.

[Course Goals] Conservation of the environment and prevention/mitigation of natural disasters, which are very important for human's survivability, often conflict with each other. This course introduces various examples. Students will learn many examples harmonizing these two issues, and shall consider technical and social countermeasures fitting to the regional characteristics.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Introduction
Disaster due to heavy		
rainfall utilization of	3	Disaster due to heavy minfell sutilization of weether under and alchel alimete shanes
weather radar and global	3	Disaster due to heavy rainfall utilization of weather radar and global climate change
climate change		
Flood disaster prevention	2	Flood disaster prevention and the environment
and the environment	Δ	Flood disaster prevention and the environment
River environment and	3	River environment and disaster management
disaster management	s	Kivei environment and disaster management
Hydrological processes		
and water disaster	2	Hydrological processes and water disaster predictions
predictions		
Coastal disasters due to		
tsunamis and storm	2	Coastal disasters due to tsunamis and storm surges
surges		
Projection of climate and		
coastal environmental	2	Projection of climate and coastal environmental change
change		

【Textbook】 No particular textbook for this course. Necessary documents and literature introduction are provided in the class room from time to time.

Lecture material for "Coastal disasters due to tsunamis and storm surges"

http://urx3.nu/t4sq

http://urx3.nu/t4sA

http://urx3.nu/t4sC

【Textbook(supplemental)】 Some literature would be introduced by professors.

[Prerequisite(s)] No special knowledge and techniques are necessary, but requires reading, writing and discussing in English in the class.

[Independent Study Outside of Class] No specific requirement for independent study. Collect information broadly regarding environment and disaster related topics.

[Web Sites]

[Additional Information] Contact Prof. Takara at <takara.kaoru.7v@kyoto-u.ac.jp> if you have any query.

Integrated Disasters and Resources Management in Watersheds

流域管理工学

[Code] 10F106 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 1st

[Location] Katsura Campus, Ujigawa Open Laboratory, Shirahama Oceanographic Observatory and Hodaka Sedimentation Observatory

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture and Exercise [Language] English

[Instructor] Masaharu FUJITA(DPRI), Tetsuya HIRAISHI(DPRI), Nozomu YONEYAMA(DPRI), Kenji KAWAIKE(DPRI), Hiroshi TAKEBAYASHI(DPRI), Daizo TSUTSUMI(DPRI), Yasuyuki BABA(DPRI),

[Course Description] Mechanism and countermeasures of sediment disasters, flood disasters, urban flood disasters and coastal disasters are explained. An integrated watershed management of these disasters and water/sediment resources is also introduced. This lecture will be open at Katsura Campus, Ujigawa Open Laboratory, Shirahama Oceanographic Observatory and Hodaka Sedimentation Observatory. Students attending this lecture must take one of the intensive experiment/field study courses offered in Ujigawa Open Laboratory and these observatories.

【Grading】Presentation, Discussion and Report

[Course Goals] Learn an integrated basin management system for natural disasters (sediment disasters, food disasters, coastal disasters, urban flood disasters) mitigation and water/sediment resources utilization considering environmental conservation.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Contents of this lecture are explaned.
		We review urban floods from the viewpoint of river basins, flood causes, and features,
Urban flood disaster	2	together with the results of recent studies. Based on these studies, we propose comprehensive
managemnet	2	measures against urban floods, including underground inundations. In addition, we discuss
		on prediction methods of the tsunami disaster in urban area.
Flood disaster	2	Prevention / mitigation measures against flood disasters and flood prediction methods are
management	2	explained as well as examples of recent flood disasters in Japan.
Sediment disaster	2	Showing the problems on sediment disasters and sediment resources, I explain an integrated
management	2	sedimnet management system both for sediment disasters and sediment resources.
Coastal disaster	2	Coastal erosion and tsunami hazard become remarkable in these days in Japanese coast. In a
management	2	lecture, we discuss on characteristics of such coastal disasters.
Exercise on flood	C / 售由 2	
disaster at Ujigawa Open	6 (集中2	Experiment and analysis on debris flows, riverbed variation and flooding at Ujigawa Open
Laboratory (Selective)	日間)	Laboratory, Fushimi-ku, Kyoto city.
Exercise on sediment		The Hodaka Sedimentation Observatory is located at Okuhida region, Gifu Prefecture. In the
related disaster at	6 (集中2	field exercise, observation methods of rainfall-runoff and sediment movement processes will
Hodaka Sedimentation	日間)	be explained. Field investigations into several types of erosion control facilities, sediment
Observatory (Selective)		producing sites, debris flow sites and sediment related disaster sites will be carried out.
Exercise on coastal		The Chinehama Oceano anombia Obsamustamuia located in Chinehama Williams Parfecture
disaster at Shirahama	6 (集中2	The Shirahama Oceanographic Observatory is located in Shirahama, Wakayama Prefecture.
Oceanographic	日間)	In the lecture, the observatory, waves, currents and tide levels monitoring system is
Observatory (Selective)		demonstrated as well as the observation tower and the observation boat.

【Textbook】None

【Textbook(supplemental)】None

[Prerequisite(s)] Hydraulics, River Engineering, Coastal Engineering, Sediment Transport Hydraulics

【Independent Study Outside of Class】

[Web Sites]

Geomechanics

地盤力学

[Code] 10F025 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Mamoru Mimura, Sayuri Kimoto,

[Course Description] Mechanical behavior of soils and problems of its deformation and failure will be covered based on the multiphase mixture theory and the mechanics of granular materials.

[Grading] Final examination (70) and hormeworks, class performance (30)

[Course Goals] The objectives of this course are to understand the basics of geomechanics, and the advanced theories.

[Course Topics]

Theme	Class number of times	Description
Deformation of	1	Mechanical property of geomaterials, critical state soil mechanics, Failure
geomaterils		criteria, modelling of geomaterials (by Prof.Mimura)
Field equations and constitutive model	2	Framework and field equations for continum, stress-strain ralations for soils, elastic model, elasto-plastic model, plasticity theory (by Prof.Mimura)
elasto-plastic	3	Constitutive model for geomaterials, elasto-plastic model, Cam clay model (by
constitutive model		Prof. Mimura)
Theory of viscosity and viscoplasticity	3	Viscoelasticity, viscoplasticity, Elasto-viscoplastic mode, Adachi-Oka model, Microstructure of soils, Temperature dependent behavior, Applications of constitutive models (by Prof. Mimura)
Consolidation analysis	3	Biot's consolidation theory and its application, Consolidation of embankment (by Assoc.Prof. Kimoto)
Liquefaction of soils	2	Liquefaction of sandy soil, Damage and failure due to liquefaction, Remedial measures for liquefaction (by Assoc.Prof. Kimoto)
Confirmation of achievement	1	

【Textbook】 Handout will be given.

Soil mechanics, Fusao Oka, Asakura Publishing (in Japaneses)

【Textbook(supplemental)】 An elasto-viscoplastic constitutive model, Fusao Oka, Morikita Publishing (in Japanese)

[Prerequisite(s)] Soil mechanics, Fundamentals of continuum mechanics

【Independent Study Outside of Class】

[Web Sites]

Computational Geotechnics

計算地盤工学

[Code] 10K016 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] English [Instructor],

Course Description The course provides students with the numerical modeling of soils to predict the behavior such as consolidation and chemical transport in porous media. The course will cover reviews of the constitutive models of geomaterials, and the development of fully coupled finite element formulation for solid-fluid two phase materials. Students are required to develop a finite element code for solving boundary valueproblems. At the end of the term, students are required to give a presentation of the results.

【Grading】Presentation and home works

[Course Goals] Understanding the numerical modeling of soils to predict the mechanical behavior of prous media, such as, deformation of two-phase mixture and chemical transportation.

[Course Topics]

Theme	Class number of times	Description
Guidance and	1	Fundamental concept in continuum mechanics such as deformation, stresses,
Introduction	1	and motion.
Governing equations		Motion, conservation of mass, balance of linear momeutum for fluid-solid
for fluid-soid	2	two-phase materials. Constitutive models for soils, including elasticity,
two-phase materials		plasticity, and visco-plasticity.
Ground water flow		
and chemical	5	Chemical transport in porous media, advective-dispersive chemical transport.
transport		
Doundamy volue		The virtual work theorem and finite element method for two phase material are
Boundary value	~	described for quasi-static and dynamic problems within the framework of
problem, FEM	5	infinitesimal strain theory. Programing code for consolidation analysis is
programming		presented.
Presentation	2	Students are required to give a presentation of the results.

【Textbook】 Handout will be given.

【Textbook(supplemental)】

[Prerequisite(s)] Fundamental geomechanics and numericalmethods

[Independent Study Outside of Class]

[Web Sites]

Geo-Risk Management

ジオリスクマネジメント

[Code] 10F238 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Ohtsu

【Course Description】 This lecture aims to provide interdisciplinary knowledge associated with geo-risk engineering, the topics of risk analysis focusing on geotechnical structures. In detail, the contents of lectures consist of following topics: Introduction to risk analysis, Mathematical background of geo-risk evaluation, Examples of risk evaluation mainly focusing on slopes and Risk management on road slopes.

【Grading】Attendance(10%), Report(30%), Examination(60%)

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
G : 1		Guidance
Guidance	1	Introduction of Geo-Asset Management
Basic	4	Basics of Risk Analysis (3)
Probability theory	7	Evaluation of Slope Risk
Case Studies in	2	Natural Disasters in Asian Countries
Asian Countries		Natural Disasters in Asian Countries
Feed back	1	Feed back

【Textbook】 Hiroyasu Ohtsu, Project Management, Corona Publishing, 2010. (in Japanese)

【Textbook(supplemental)】C. Chapman and S. Ward, Project Risk Management, John Wiley & Sons, 1997. R. Flanagan and G. Norman, Risk Management and Construction, Blackwell Science

V.M. Malhotra & N.J. Carino, CRC Handbook on Nondestructive Testing of Concrete, CRC Press, 1989.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 Additional information is available by visiting the following professors. Appointment shall be made in advance by e-mail.

ohtsu.hiroyasu.6n@kyoto-u.ac.jp

Construction of Geotechnical Infrastructures

ジオコンストラクション

[Code] 10F241 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 1st [Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Kimura, Kishida

[Course Description] Advanced construction technology of geo infrastructures, such as tunnel, large underground cavern, foundation, culvert, retaining wall, is introduced and explained. And, the practical projects applied by the advanced construction technology are also introduced.

【Grading】 Attendance and Report (20 %), Examination (80 %)

[Course Goals] To learn to the advanced construction technology and to propose the project and design through the advanced construction technology.

[Course Topics]

Theme	Class number of times	Description
Guidance,		
Introduction of		
construction of	1	Guidance, Introduction of construction of geotechnical infrastructures
geotechnical		
infrastructures		
Geo-investigation		Total destination of the advanced and infection and account to hairman
and survey	2	Introduction of the advanced geo-infestation and survey techniques.
techniques		Explanation of inversion theory and technique.
		Introduction of NATM for construction of tunnel and underground cavern. In
Auxiliary mthods of	2	addition, the role of auxiliary methods, auxiliary method for safety in tunnel
mountain tunnel	2	constrcution, axiliary methods for preservation of the surrounding environment
		are explained
Dools physics and its		Introduction of the constitutive law of rock material and rock physics (pressure
Rock physics and its	2	solution) and its application fields, such as special projects of underground
applications		space, namely, nuclear waste disposal, and Carbon Capture and Storage.
Field visit or special	1	Visit the construction field or invite special lecture who is the expert engieer
lecture	1	on the construction of geotechnical infrastructures.
Foundation	2	Design and construction of piles foundation and steel pipe sheet piles
Culvert	2	Design and construction of box type and arch type culverts
Retaining wall	2	Design and construction of retaining wall
Examination of	1	
understanding	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Soil mechanics, Rock mechanics

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Office hour will be explained at the guidance. Students can contact with professors as an e-mail.

kimura.makoto.8r@kyoto-u.ac.jp

kishida.kiyoshi.3r@kyoto-u.ac.jp

Fundamental Geofront Engineering

ジオフロント工学原論

[Code] 10F405 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st [Location] C1 Jin-Yu Hall [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Prof. Mamoru MIMURA, Prof. Makoto KIMURA, Assoc. Prof. Yosuke HIGO

[Course Description] This course deals with near-surface quaternary soft soil deposits that are the most important in the engineering sense.

Physical properties and the mechanical characteristics of partially saturated and fully saturated soils are explained, and then various problems in terms of disaster prevention and infrastructure construction are discussed.

[Grading] Performance grading will be provided based on quality of assigned reports and presentations, etc.

[Course Goals] The aim of this course is to understand engineering problems and their mechanical background in the following points:

- Physical properties and mechanical characteristics of quaternary soft soil deposits and relevant engineering problems in terms of disaster prevention
- Fundamentals of unsaturated soil mechanics and engineering problems of earth structures in terms of disaster prevention
- Concepts of innovative underground foundations and structures and engineering problems during construction

【Course Topics】

Theme	Class number of times	Description
Outline of the course, introduction to quaternary deposits	1	Introduction to quaternary deposits. Types and mechanisms of geotechnical disasters relevant to quaternary deposits.
Geo-informatic database	1	Geo-informatic database and its application to modelling soft alluvial soils, liquefaction hazard map, etc.
Evaluation of subsurface structure based on GID	1	Scheme to evaluate subsurface structures using Geo-informatic database including boring logs, geophysical exploration, geological structures. Application to Kyoto basin is given.
Evaluation of liquefaction for near-surface sand depoits	1	Evaluation of liquefaction for near-surface sand deposits using Geo-informatic database is explained. Applications to the 1995 Hyogo-ken Nanbu Earthquake and the 2011 Off the Pacific Coast of Tohoku Earthquake are given, through which open questions are discussed.
Problems of soft clay deposits	1	Deformation characteristics and stability of soft clay deposits and their evaluation methods are explained, e.g., effectiveness and limitation of ground improvement, long term settlement problem, and case histories of large scale reclamation.
Concept of innovative underground structures	1	Citizen-participate-type renovation technique for unpaved roads using sandbags.
Concept of innovative underground structures	1	New construction method of embankments using consecutive precast arch culvert.
Concept of innovative underground structures	2	Technical problems of steel pipe sheet pile. Development of consecutive steel pipe sheet pile and its application.
Outline of earth structures, Unsaturated soil mechanics	2	Roles of earth structures as an infrastructure. Unsaturated soil mechanics.
Damage of earth structures caused by rainfall and earthquake	1	Case examples and their mechanisms of the damages of earth structures caused by rainfall and earthquake.
Methods to evaluate and improve stability of earth structures subjected to rainfall and earthquake	1	Design methods of earth structures and their problems are outlined.
Site visit	1	Visit construction site relevant to the issues of this course.
Evaluation and feedback	1	Evaluation of achievement by assigned reports and its feedback are given.

【Textbook】 Handout will be distributed.

 $\label{thm:condition} \begin{tabular}{ll} Textbook (supplemental) \begin{tabular}{ll} References are indicated in the handout. \end{tabular}$

[Prerequisite(s)] Undergraduate courses in geology, geotechnical engineering, and soil mechanics.

【Independent Study Outside of Class】

[Web Sites]

Environmental Geotechnics

環境地盤工学

[Code] 10A055 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 1st [Location] C1-192 / Engineering Bldg.No.8 Kyodo No.1 (Yoshida Campus) [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese/English [Instructor] Takeshi Katsumi, Toru Inui,

[Course Description] Several issues on environmental geotechnics including geoenvironmental contamination and countermeasure, waste containment and reuse are introduced to understand the contribution of geotechnical engineering to global and local environmental issues. Geoenvironmental issues due to the 2011 East Japan Earthquake and Tsunami are also introduced.

[Grading] Continuous assessment including attendance, some assignments, and final report

[Course Goals] Students should understand the geotechnics to solve the following geoenvironmental issues; soil & groundwater contamination, waste disposal and waste utilization, and extend this knowledge to the development of concepts and technologies for creating and preserving the geo-environment.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Introduction to Environmental Geotechnics, including goals, outline and grading policy of the course
Waste geotechnics	3-4	Functions and structures of waste containment facilities Geotechnics on the liner system (Geosynthetics, clay liner, Leachate collection layer) Post-closure utilization of waste landfill
Remediation geotechnics	3-4	Behaviors of contaminants in subsurface Mechanisms of soil and groundwater contamination Remediation of soil and groundwater contamination Case histories
Geo-environmental issues related to construction works, global environmental issues, and natural disasters	2-3	Mechanisms and remediation of geoenvironmental problems and geo-disasters caused by construction works Geoenvironmental issues caused by the 2011 East Japan Earthquake and Tsunami
Reuse of wastes in geotechnical applications	3-4	Engineering properties of recycled materials in geotechnical applications (Incineration ashes, coal ash, surplus soils, dredged soils) Geoenvironmental impact assessment and control of waste utilization Case histories
Presentation and discussion	2-3	Student presentation, discussion, and summary on above topics

【Textbook 】Not specified.

Several technical papers related to the course will be distributed.

[Textbook(supplemental)] Geoenvironmental Engineering (Kyoritsu Shuppan Publishing, ISBN: 9784320074293)

Handbook of Geoenvironmental Engineering (Asakura Publishing, ISBN: 9784254261523)

Introduction to Environmental Geotechnics (Japanese Geotechnical Society, ISBN: 9784886444196)

[Prerequisite(s)] Having knowledge on soil mechanics and geotechnical engineering at bachelor level is preferable, but not requirement.

【Independent Study Outside of Class】

[Web Sites]

Disaster Prevention through Geotechnics

地盤防災工学

[Code] 10F109 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Susumu Iai and Kyohei Ueda

[Course Description] The lecture covers methods of numerical analysis for dynamic behavior of the ground and geotechnical structures. In particular, the lecture covers mechanism, failure modes, and mitigation measure to geo-hazards. The lecture ranges from mechanics of granular materials to numerical simulation.

【Grading 】Based on reports to excercises and attendance.

[Course Goals] Successful students will have the ability to initiate their own research work on geo-hazards based on the solid understanding of the mechanics of granular materials and numerical analysis.

【Course Topics】

Theme	Class number of times	Description
		Introduction to the course (objectives, contents, and grading procedure)
T. 4 d	1	- ABC's of computers
Introduction	1	- Numerical errors
		- Application of numerical analysis to seismic engineering
Fundamentals of	2	- Numerical solution of a simultaneous equation of the 1st order (SOR method)
numerical analysis	2	- Numerical integration method of PDEs (finite difference method)
Application to		Seepage analysis
Application to	1	- Governing equations
boundary value	1	- Boundary conditions
problems		- Numerical solution of boundary value problems
		Nonlinear continuum mechanics 1
Nonlinear continuum	2	- Vector and tensor algebra
mechanics 1		- Kinematics (motion and strain tensors)
		- Concept of stress tensors
		Nonlinear continuum mechanics 2
Nonlinear continuum	2	- Balance Principles
mechanics 2	2	- Objectivity and stress/strain rates
		- Constitutive law
Fundamentals of	3	Learn fundamentals of dyanamics for numerical analysis of geo-hazards during
dynamics		earthquakes
Mechanics of	4	Learn granular materials subject to transient and cyclic loads
granular materials		Learn grantial materials subject to transfer and eyene loads

[Textbook] handouts

【Textbook(supplemental)】 Gerhard A. Holzapfel: Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Public Finance

公共財政論

[Code] 10F203 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Kobayashi, Matsushima,

[Course Description] The concept of public finance will be taught based upon the framework of Macro economics.

【Grading】Final Exam: 60-70%

Mid-term Exam and Attendance: 30-40%

【Course Goals 】 Understand the concept of public finance

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Explain the outline of this course
GDP and 2. Circular flow model of macro economics	2	Explain about the circular flow model of macro economics and the definition of GDP
Input Output Table and General Equilibrium Model	2	Explain about the input-output table and its role on general equilibrium model
IS-LM Model	2	Explain about IS-LM model to analyze both goods market and money market
International Economics	2	Explain about the international account balance and IS-LM model with trade
AD-AS Model	2	Explain about AD-AS model which analyze the mid term
Economic Growth Model	2	Explain about economic growth model in which long term economic growth is analyzed
Summary	1	Summarize classes and check whether students could achieved its goal.
feedback	1	Accept feedback from students

[Textbook]

[Textbook(supplemental)] Dornbusch et al., Macroeconomics 10th edition, Mcgrow-hill, 2008

[Prerequisite(s)] Basic Microeconomics

【Independent Study Outside of Class】

[Web Sites] will be notified in the first class.

Urban Environmental Policy

都市社会環境論

[Code] 10F207 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Dai Nakagawa and Ryoji Matsunaka,

[Course Description] This lecture aims to learn urban environmental policy and its fundamental theory and methodology to solve social and environmental problems that occur in urban area as well as to understand the structure of these problems.

【Grading 】 evaluation by commitment, tests, reports and examination

[Course Goals] to understand the structure of social and environmental problems in urban area and urban environmental policy, its fundamental theory and methodology to solve the problems

[Course Topics]

Theme	Class number of times	Description
Outline	1	
Structure of urban	3	Expansion of urban areas, Increase of Environmental impact, Making compact
problems		cities
Basic theory of		
transportation and	2	Downtown activation, Road space re-allocation, Pedestrianisation
environment		
Road traffic and	2	Characteristics of traffic modes, Light Rail Transit, Bus Rapid Transit,
Public transportation		Mobility Management
Fundamental theory		
for measurements of	3	Utility, Equivalent Surplus, Compensating Surplus
environmental values		
Methodology to		Transl Cost Maked Heden's Aggreed Cogtion of Volunting Maked
measure	3	Travel Cost Method, Hedonic Approach, Contingent Valuation Method, Conjoint Analysis
environmental values		
Summary	1	

【Textbook】No textbook

【Textbook(supplemental)】

[Prerequisite(s)] basic knowledge of public economics is required

【Independent Study Outside of Class】

[Web Sites]

10F219

Quantitative Methods for Behavioral Analysis

人間行動学

[Code] 10F219 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 5th

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Satoshi Fujii,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	3	
	3	
	3	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Intelligent Transportation Systems

交通情報工学

[Code] 10F215 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd [Location] C1-173

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] N. Uno, T. Yamada and T. Nakamura,

Course Description 1 This class provides you with the outlines of engineering methodology with information and communication technology as its core element for improving the safety, efficiency and reliability of traffic and transportation systems and reducing the environmental burden. Concretely, we discuss the applicability of countermeasures, such as Travel Demand Management, modal-mix in transportation systems, traffic safety improvement schemes for relieving contemporary problems in traffic and transportation systems, in addition to brief introduction of innovative approaches to collect high-quality of real-time traffic data. Moreover, the methodology for policy evaluation and the related basic theory are explained.

【Grading】Final report: 50-60%, Mid-term report: 30-40% and Attendance: 10%

[Course Goals] Goal of this class is to cultivate basic and critical abilities of students for implementing effective traffic and transportation management using ITS (Intelligent Transportation System).

[Course Topics]

Theme	Class number of times	Description
Basics for Transportation	_	
Network Analysis	1	
Estimation of OD Traffic		
Volume using Observed	1	
Link Traffic Counts		
Analytical Approaches		
Based on Transportation	3	
Network Equilibrium		
Outlines of ITS	1	
Traffic Management for	2	
Enhancing Efficiency	<u></u>	
Innovative Approaches		
for Data Collection	1	
Using ICT		
Application of ITS for	1	
Enhancing Traffic safety	1	
Travel Demand		
Management and	2	
Congestion Charging		
Application of Traffic	2	
Simulation	<u> </u>	
Examination	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Remote Sensing and Geographic Information Systems

リモートセンシングと地理情報システム

[Code] 10A805 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture & Exercise [Language] Japanese [Instructor] Junichi Susaki

[Course Description] Geoinformatics is the science and technologies dealing with spatially distributed data acquired with remote sensing, digital photogrammetry, global positioning system, etc, to address the problems in natural phenomena or human activities. This lecture particularly focuses on satellite remote sensing and explains the theory and the technologies for analyzing environmental changes or disaster effects. A free software "MultiSpec" is used in exercises to learn the basic techniques of image processing.

【Grading 】 Grading is based on the achievements in assignments.

[Course Goals] To understand the basic theory and to acquire the basic techniques of satellite remote sensing for observation and analysis of environmental changes and disaster effects.

[Course Topics]

Theme	Class number of times	Description	
Introduction	0.5	Introduction to remote sensing and GIS is given, and the software supposed to use is introduced.	
Coordinate system and map		Principal coordinate systems and map projection methods used for satellite image and GIS data are	
projection	0.5	explained.	
Analysis of DEM	1	Analysis of digital elevaltion model (DEM) is explained.	
(Analysis 1) Landslid hazard mapping using DEM	1	Thematic maps produced from DEM are presented, and the reliability and applicability are discussed.	
Radiation and reflection of		Basic terms on electromagnetic radiation including radiation and reflection are introduced, and	
electromagnetic waves, and optical sensor	1	calculation of suface reflectance and temperature is explained. In addition, principles and applications of visible and infrared sensors are introduced.	
Land cover classification	1	Theory and procedure of land use/cover classification using satellite images are explained.	
(Analysis 2) Land cover classification using reflectance, temperature and elevation data	1	Concept of synthetic aperture radar (SAR) is first introduced, and the image processing, statistical property, speckle filtering and polarimetric SAR are explained.	
Property of SAR	1	Theory of Interferometric SAR (InSAR) and differential InSAR (DInSAR) is introduced. Then, long-term monitoring of land deformation by using multi-temporal SAR imagges is explained.	
Measurement of topography using SAR data	1	Land cover maps produced from optical satellite images and elevation data are presented, and the classifiers and data used are discussed.	
Least square method	1	Least square method (LSM) for generating estimates from observations is explained.	
Spatial statistics	1	Spatial auto-correlation observed among spatial data and removal of the effect are explained.	
Generation of DEM from airborne LiDAR data and application to landscape analysis	1	Generation of digital surface model (DSM) from airborne light detection and ranging (LiDAR) data is explained. As an application, landscape assessment using airborne LiDAR data is introduced.	
Generation of DEM using photogrammetry	1	Generation of DSM by using photogrammetry, and the difference of DSMs between photogrammetry, SAR and airborne LiDAR is explained.	
Image correction	1	Geometric and atmospheric corrections necessary for satellite image processing are explained.	
(Analysis 3) Assessment of residential environment considering landscape and hazard risk	1	Analysis of areas providing comfortable residential environment, such as vegetation, accessibility to the transport network and disaster risk, is presented, and the validity and applicability to other areas are discussed.	
Assessment of understanding	1	Assess students' understanding levels	

[Textbook]

【Textbook(supplemental)】 • Junichi Susaki and Michinori Hatayama, Geoinformatics, Corona Publisher, 2013

- W. G. Rees, Physical Principles of Remote Sensing 3rd ed., Cambridge University Press, 2013.
- J. A. Richards and X. Jia, Remote Sensing Digital Image Analysis: An Introduction, 5th ed., Springer-Verlag, 2013.
- M. Netler and H. Mitasova, Open Source GIS: A GRASS GIS Approach 3rd ed., The International Series in Engineering and Computer Science, 2008.

[Prerequisite(s)] Basic knowledge in computer information processing

【Independent Study Outside of Class】

【Web Sites】 http://www.envinfo.uee.kyoto-u.ac.jp/user/susaki/rsgis.html

Civic and Landscape Design

景観デザイン論

[Code] 10A808 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture and practice

[Language] Japanese [Instructor] Masashi Kawasaki, Yoshiaki Kubota, Keita Yamaguchi, Keiichiro Okabe,

[Course Description]

【Grading】Reports (Kawasaki: 50%) and design practice (Okabe: 50%)

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Guidance. Landscape	1	
and image	1	
Architectural Design		
of city and urban	2	
facilities		
Atmosphere and	1	
color of Japan	1	
Design of	1	
waterfronts	1	
Design of bridges	1	
Design of Urban	2	
landscape	<u></u>	
Landscape policy		
and design	1	
management		
Design practice	5	
Feedback	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Risk Management Theory

リスクマネジメント論

[Code] 10F223 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 3rd [Location] C1-173 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture and exercise [Language] English [Instructor] Muneta Yokomatsu,

【Course Description】 The aim of the class is to provide the basic knowledge of risk management methods for various types of risks such as natural disaster, environment and natural resources in urban and rural areas. Students will learn the decision making principle under risks in Economics and asset pricing methods in Financial Engineering as well as have exercises of application on public project problems.

【Grading】 20% of score is valuated on attendance and discussion in classes, and 80% on reports.

[Course Goals] It is targeted to understand 1) representative concepts of risk and risk management process, 2) expected utility theory and 3) foundation of Financial Engineering, and examine 4) public project problems by applying the above knowledge.

[Course Topics]

Theme	Class number of times	Description	
Basic framework of		1-1 Representative concept of risk	
risk management	2	1-2 Risk management technologies	
Decision making	2	2-1 The Bayes' theorem	
theory under risks	3	2-2 The Expected utility theory	
		3-1 The Capital Asset Pricing Model	
Financial	6	3-2 Option pricing theory	
engineering		3-3 The arbitrage theorem	
		3-4 The Black-Scholes formula	
Decision making	3	4-1 The decision tree analysis	
methods for projects	3	4-2 The real option approach	
Comprehension	1	5 Comprehension check	
check	1	Comprehension check	

[Textbook]

【Textbook(supplemental)】 1.Ross, S.M.: An Elementary Introduction To Mathematical Finance, Cambridge University Press, 1999

2.Sullivan W.G.: Engineering Economy, Pearson, 2012

[Prerequisite(s)] Fundamental understanding of probability

【Independent Study Outside of Class】

[Web Sites]

Disaster Risk Management

災害リスク管理論

[Code] 10X333 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th [Location] C1-171 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] English [Instructor] TATANO Hirokazu, YOKOMATSU Muneta, [Course Description] Natural disasters have low frequencies but high impacts. It is very important to make an integrated risk management plan that consists of various countermeasures such as prevention, mitigation, transfer, and preparedness. This class will present economic approaches to natural disaster risk management and designing appropriate countermeasures.

[Grading] Evaluate mainly by the presentations in the class as well as end-of-term report, taking active and constructive participation in the class into account.

[Course Goals] Students are expected to understand fundamental ways of economic analyses of disaster prevention such as economic valuation of disaster losses, decision making principle under risks, derivation of benefits of risk management.

[Course Topics]

Theme	Class number of times	Description	
Introduction to disaster	1	Introduction and Explanation of Course Outline, The Global Trends of Natural Disasters	
risk management	1		
1. Decision making	1	De la Company de	
theory under uncertainty	1	Bayes' theorem, Expected utility function	
Methods of disaster risk	1	Risk control and risk finance	
management	1		
Economic valuation of		Cost-Benefit analysis, conventional valuation method, catastrophic risks and economic	
catastrophic risk	1	valuation of disaster mitigation	
mitigation		valuation of disaster infugation	
Risk perception bias,			
land-use and risk	2	Risk perception bias, land-use model, risk communication	
communication			
Disaster risk finance	2	Recent issues of risk finance market, reinsurance, CAT bond, roles of government,	
Disaster fisk finance	<u> </u>	derivatives	
Risk curve and risk	1	Fragility curve and risk assessment	
assessment			
General equilibrium			
analysis under disaster	1	General equilibrium model under disaster risk	
risk			
Macrodynamics under	1	GDP, economic growth	
disaster risk			
Disaster accounting	1	Accounting systems	
Exercise and	2	Charles and annual annual and annual and annual	
presentation	<u> </u>	Students' exercise and presentation	
Confirmation of the			
learning achievement	1	Confirmation of the learning achievement degree	
degree			

【Textbook(supplemental)】 Froot ,K.A.(ed) "The Financing of Catastrophic Risk", the University of Chicago Press Kunreuther H. and Rose, A., "The Economics of Natural Hazards", Vol.1 & 2, The International Library of Critical Writings in Economics 178, Edward Elgar publishers, 2004

Okuyama, Y., and Chang, S.T.,(eds.) "Modeling Spatial and Economic Impacts of Disasters" (Advances in Spatial Science), Springer, 2004.

[Prerequisite(s)] Nothing

【Independent Study Outside of Class】

[Web Sites] No web site

693287

Disaster Information

防災情報特論

[Code] 693287 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Hirokazu Tatano(DPRI), Katsuya Yamori(DPRI), Michinori Hatayama(DPRI), Shingo Suzuki(DPRI),

[Course Description] This lecture gives an outline of disaster prevention and reduction countermeasures both inside and outside Japan with special reference to disaster information related topics. Concrete examples of disaster information systems are introduced to show that psychological aspect of information users under critical social conditions is carefully taken into account in such current disaster information systems.

【Grading】 Submit every class reports and end-of-term report Every class reports:

"Point out 3 discoveries for you and 1 request which you want to know more with reasons in this class.

Submit report via Email by the following rules

- 1. Address: disaster,nfo@imdr.dpri.kyoto-u.ac.jp
- 2. subject: "Disaster Information Report [Date] Student ID, Name"
- 3. Don't use attached file.
- 4. Dead line: Next Tuesday

[Course Goals]

[Course Topics]

Theme	Class number of	Description
	times	•
What is disaster	1	
prevention?	1	
Information system in	2	
emergency	Z	
Information system in	1	
emergency	1	
Case examples on		
introduction of disaster	1	
information system		
Information system for	1	
evacuation planning,	1	
Information system for	1	
rescue activity	1	
Social psychological		
study of disaster	2	
information		
Disaster information and	2	
evacuation behavior		
Gaming approach to		
disaster risk	3	
communication		
Test	1	
		·

【Textbook】Nothing

【Textbook(supplemental)】Only Japanese Books

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Office Hours: After Class, Make an appointment immediately after.

Questions via Email: $disaster_info@imdr.dpri.kyoto-u.ac.jp$

Theory & Practice of Environmental Design Research

環境デザイン論

[Code] 10A845 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

【Course Description】

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	7	
	8	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Resources Development Systems

資源開発システム工学

[Code] 10A402 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 1st [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] S. Murata,

【Course Description】 Development of mineral resources and energy resources is essential to the sustainable development of our society. In this class, the exploration and development process of natural resources are reviewed including the problems of environmental conservation. In addition, petrophysics and its application to the resources exploration and fundamentals of reservoir engineering used for evaluating the production behavior and reserves of oil and natural gas are lectured.

【Grading】 Evaluation is made by the average score of the report problems presented by each teacher.

[Course Goals] The goal of this class is to master the fundamentals of petrophysics and reservoir engineering needed for the exploration and development of oil and natural gas resources.

[Course Topics]

Theme	Class number of times	Description	
From exploration to		The exploration and development process of mineral resources and energy	
development of	1	resources, which are essential to the sustainable development of our society, is	
natural resources		reviewed including the environmental conservation.	
		To know the elastic properties of sedimentary rocks is essential when we	
		consider the exploration and development of oil and natural gas resources. For	
Petrophysics used in		the sedimentary rocks, physical variables, a rule of thumb and the pore fluid	
natural resources	2	that affect the elastic wave velocity are mainly lectured. For igneous rocks, in	
development		addition, the rule of thumb on the physical properties of the rocks affected by	
		fractures are lectures, because fractures in the rocks defines their physical	
		properties.	
Fundamentals of	2	The properties of reservoir fluids and the material balance method to evaluate	
reservoir engineering	3	the reserve of oil and natural gas are explained.	
Elect of Electric Alectric		Basic equations of fluid flow in the reservoir and the analytical solution for the	
Fluid flow in the	7	flow of oil and natural gas around a well are explained, and the concept and	
reservoir		the method of well test analysis are also explained.	
Enhanced oil and	2	The methods of enhanced oil and natural gas recovery (EOGR) are	
natural gas recovery	2	overviewed. The essentials of each EOGR method are explained.	

[Textbook] Handouts are delivered.

【Textbook(supplemental)】L.P.Dake, Fundamentals of Reservoir Engineering, Developments in petroleum science Vol.8, Elsevir, ISBN 0-444-41830-X

G.Mavko, T. Mukerji and J. Dvorkin, The rock physics handbook :tools for seismic analysis in porous media, Cambridge University Press, ISBN 0-521-62068-6

[Prerequisite(s)] It is desirable to have knowledge of calculus at the undergraduate level

【Independent Study Outside of Class】

[Web Sites] Web page of this lecture is not specifically provided. When preparing it by need, the information is shown in the class.

【Additional Information】Not specified

Applied Mathematics in Civil & Earth Resources Engineering

応用数理解析

[Code] 10F053 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 3rd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	2	
	4	
	5	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Computational Mechanics and Simulation

計算力学及びシミュレーション

[Code] 10K008 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture and Exercises [Language] English [Instructor] Ishida, Lin, Furukawa, Flores,

Course Description 1 The process to obtain numerical solutions for various problems in computational mechanics. Discretization and some solving technique for initial/boundary value problems is to be introduced by the FEM. Fundamental concept of boundary element method (BEM) and its applications in the engineering field will be introduced. Statistical mechanics, molecular dynamics, Monte Carlo method and Multiple scale model will be shortly introduced in order to understand the basic theory of molecular dynamics simulation. Their applications to engineering problems are to be also given by showing some up-to-date examples. Theory of the distinct element method (DEM) will be lectured, and its application in the engineering field will also be explained. Study of contaminant migration in subsurface via groundwater flow modelling coupled with advective-dispersive solute transport. The general groundwater flow and chemical transport in porous media are introduced, then the governing equations for advective-dispersive chemical transport, and the analytical solution of the governing equations are explained. This course will be given in English.

【Grading】 Achievement is evaluated by submitted reports to each topic.

【Course Goals】 【Course Topics】

Theme	Class number of times	Description	
Finite difference method	3	Explicit-FDM is explained using an example of unsteady motion of a mass point based on Voigt model. In addition, the numerical simulation results are compared to their theoretical solutions and discussed.	
Boundary element method and Molecular dynamics simulation	4	Fundamental concept of boundary element method (BEM) and its applications in the engineering field will be introduced. Monte Carlo method and Multiple scale model will be shortly introduced in order to understand the basic theory of molecular dynamics simulation. Their application to engineering problems are to be also given by showing some up-to-date examples.	
Distinct element method and its application	4	Theory of the distinct element method (DEM) will be lectured in this item. The DEM is the numerical analysis method for discontinuum. The application of the DEM in the engineering field will also be explained.	
Migration of Contaminants in Subsurface	3	Study of contaminant migration in subsurface via groundwater flow modelling coupled with advective-dispersive solute transport. In this section, we will first introduce the general groundwater flow and chemical transport in porous media, then we will learn about the governing equations for advective-dispersive chemical transport, and finally we will define the parameters and find the analytical solution of the governing equations. Some numerical results will be used as examples to understand the process.	
Confirmation of the learning achievement degree	1	Confirmation of the learning achievement degree	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Environmental Geosphere Engineering

地殼環境工学

[Code] 10A405 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd [Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Katsuaki KOIKE, [Course Description]

【Grading】

[Course Goals]

[Course Topics]

[Course Topics]		
Theme	Class number of times	Description
Introduction of		
structure and content of	1.5	
this course		
Physics of Earth system	2.5	
Chemistry of Earth	2.5	
system	2.3	
Fundamentals of		
Geoinformatics (1):	2	
Spatical modeling	2	
techniques		
Fundamentals of		
Geoinformatics (2):	1	
Scaling of geological	1	
structure		
Fundamentals of		
Geoinformatics (3):	3	
Remote sensing		
Fundamentals of		
Geoinformatics (4):		
Earth survey and	1	
geochemical		
exploration		
Geosphere		
environments (1):	1	
Weathering process and	1	
geohazards		
Geosphere		
environments (2): CCS	1	
and HLW		
Mineral and energy	1.5	
resources	1.J	

【Textbook】 Handouts will be distributed at each class.

【Textbook(supplemental)】References will be introduced in the handouts.

[Prerequisite(s)] Fundamental knowledges on geology, physics, and chemistry are required.

【Independent Study Outside of Class】

[Web Sites]

Applied Elasticity for Rock Mechanics

応用弾性学

[Code] 10F071 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] S. Murata

Course Description 1 Theory of elasticity relating to the deformation and failure of rock and rock mass and design of rock structures is explained. Specifically, two-dimensional and three-dimensional analysis of elasticity using the basic equations, constitutive equations, and the complex stress function are explained. Several applications of this analysis to rock mechanics, rock engineering, and fracture mechanics are also explained.

【Grading】 Evaluation is made by the score of two report problems or homework and semester final exam.

[Course Goals] The goal of this class is to master the theory of elasticity so as to solve the elastic problem in rock mechanics, rock engineering, and fracture mechanics.

[Course Topics]

Theme	Class number of times	Description
Airy 's stress function and complex stress function	2	Airy 's stress function used to solve a two-dimensional elastic problem is first explained, and then the complex stress functions that are the representation of Airy 's stress function by the complex variables are explained.
Two-dimensional elastic analysis using the complex stress function	8	Analytical solutions of two-dimensional elastic problems in fracture mechanics and rock engineering are derived by using the complex stress functions. The mechanical behavior of rock material is also explained based on the derived solutions.
Application of two-dimensional elastic analysis	2	The theory of rock support, ground characteristic curve, theoretical equations used for the evaluation of rock stress, which are derived from the solution of two-dimensional elastic problem, are explained.
Three-dimensional theory of elasticity	2	Stress functions to solve the three-dimensional elastic problem are explained, and some examples of the three-dimensional elasticity solution are explained.
Summary and Achievement check	1	The contnts of this class are summarized. In addition, the achievement of course goals is checked.

【Textbook】 Handouts are delivered.

【Textbook(supplemental)】 J.C. Jaeger, N.G.W. Cook, and R.W. Zimmerman: Fundamentals of Rock Mechanics -4th ed., Blackwell Publishing, 2007, ISBN-13: 978-0-632-05759-7

[Prerequisite(s)] The knowledge and calculation skill of calculus, vector analysis and complex analysis are required.

【Independent Study Outside of Class】

[Web Sites] Web page of this lecture is not specifically provided. When preparing it by need, the information is shown in the class.

【Additional Information】 Not specified

Fundamental Theories in Geophysical Exploration

物理探査の基礎数理

[Code] 10F073 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 5th [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hitosih Mikada, Tada-nori Goto,

[Course Description] We are outlining various basic mathematical principles used for the analysis of the dynamic and kinematic earth-scientific problems in conjunction with wave propagation, mass transfer, etc. in the crust, and presenting examples of such analysis techniques in the area of earth sciences and earth resources engineering.

[Grading] Rating is performed by the combination of exams (40%) and the attendance to the class (60%).

[Course Goals] The aims of the class is to understand various signal-processing theories, the applied seismology, and the applied geo-electromagnetics with respect to exploration geophysics as application tools in seismology and in geo-electromagnetics.

[Course Topics]

Theme	Class number of times	Description
Introduction to exploration geophysics	1	General introduction to the lecture.
Seismic wave propagation and signal processing	8	Acquire knowledge on the propagation phenomena of elastic waves to learn the equivalency of 1D propagation with the theory of system function. The topics included would be, z-transform, Levinson recursion, Hilbert transform, etc.
Fundamentals of geo-electromagnetics and their application to exploration geophysics	5	Learn fundamental theories of magnetotellurics, instantaneous potential, spontaneous potential, and apparent resistivity methods, etc. that deal with geo-electromagnetic phenomena. Case studies are introduced to understand the advantages of geo-electromagnetic exploration schemes.
Wave propagation problem in seismic exploration	1	Discussing fundamental theories of elastic wave propagation, used in subsurface structural surveys, in terms of the actual utilization and the theories of wave phenomena.

[Textbook]

【Textbook(supplemental)】 Claerbout, J.F. (1976): Fundamentals of Geophysical Data Processing (Available online URL: http://sep.stanford.edu/oldreports/fgdp2/)

[Prerequisite(s)] Students should understand exploration geophysics of undergraduate level.

【Independent Study Outside of Class】

[Web Sites] Could be specified by the lecturers if any.

Design of Underground Structures

地下空間設計

[Code] 10F087 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Civil and Earth Resources Engineering, Professor Toshihiro Asakura, Professor Tsuyoshi Ishida, Assistant Professor Naotoshi Yasuda

[Course Description] Outline of the characteristic of underground, the present state and trend of underground development, historical change of underground utilization are explained.

Especially, design and maintenance technology for tunnels and underground opening, and rock stress problem, are lectured in detail.

【Grading】 Attendance(50%), class quiz and report(50%)

[Course Goals] Acquire the fundamental technology of underground structure design and maintenance.

[Course Topics]

Theme	Class number of times	Description
Guidance	1	Course description, Grading and Goals
Historical change	1	Historical change of underground development
Environment and	1	Environment and Characteristic of underground
Characteristic	1	Environment and Characteristic of underground
Act of deep	1	Social healterwayed of the set and engineering problem
underground use		Social background of the act and engineering problem
Rock stress	2	Underground stability and rock stress problems
Construction(1)	1	Survey technology for tunnelling
Construction(2)	2	Design technology for tunnelling and feed back system
Construction(3)	2	Construction work for tunnelling
Construction(4)	1	Evaluation and utilization of measurement
Maintenance	2	Maintenance technology, Tunnel deformation, Earthquake disaster of tunnels
Achievement check	1	Check the understanding

【Textbook】No set text

【Textbook(supplemental)】Instructed in class

[Prerequisite(s)] Taking Underground Development Engineering and Rock Engineering (when undergraduate) are desirable.

【Independent Study Outside of Class】

[Web Sites]

Lecture on Exploration Geophysics

探查工学特論

[Code] 10A420 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 4th

【Location】C1-117 【Credits】2

[Restriction] The class of "Fundamental theories of geophysical exploration" is recommended to acuire.

[Lecture Form(s)] Lecture [Language] English [Instructor] Hitosih Mikada, Tada-nori Goto

[Course Description] Applied geophysical exploration technologies in disaster mitigation, civil engineering, and earth resources engineering is discussed in terms of seismological and of electromagnetic theories. Students may be asked to process data or design digital filters in the course.

【Grading 】Brief explanations on the grading will be given at the time of the lecture.

[Course Goals] Understanding seismiclogical and electromagnetic theories used in geophysical exploration and subsurface-imaging technologies.

[Course Topics]

Theme	Class number of times	Description
Electromagnetic	2	Principles of magnetotelluric methods, electromagnetic sources and noise
signal processing	3	reduction.
Modeling technologies in electromagnetic methods	3	Subsurface structure modeling in EM methods. The effects of surface weathered layers, the identification of spatial dimensions, and modeling methodologies are discussed.
Signal processing in seismics	4	Digital filtering in seismic data processing.
Reflection	3	Fundamental theories of reflection seismic data processing. Seismic migration
seismology		is the one to be briefly discussed.
Petrophysics	2	Fundamental petrophysics, and fundamental measurement theories in geophysical logging are discussed.

【Textbook 】 Specified in the course.

【Textbook(supplemental)】 J.F.Claerbout, 1976, Fundamentals of Geophysical Data Processing, (OOP:photocopies to be specified)

[Prerequisite(s)] The credits of "Exploration Geophysics" in undergraduate course and "Fundamental Theories of Geophysical Exploration" in graduate course are requested to obtain before the classes.

【Independent Study Outside of Class】

[Web Sites] Would be specified by the lecturers.

10F085

Measurement in the earth's crust environment

地殼環境計測

[Code] 10F085 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Tsuyoshi ISHIDA, Toshihiro ASAKURA, Koji YAMAMOTO,

[Course Description] Necessity of information on the environment in the upper layer of the earth's crust will be explained, as well as measuring methods for it and applications of the measuring results for various engineering projects. Among them, rock stress measurements and their applications will be focused in the relation to the projects of oil field development, underground disposal of high level radio active waste, geological sequestration of CO2, construction of underground power houses and hot dry rock geothermal power extraction. The importance of initial stress conditions on planning and maintenance of tunnels and others also will be discussed.

【Grading 】 Grading will be made from scores of the followings: • Report for classes by Ishida. • Achievement test for classes by Yamamoto. • Report for classes by Asakura. • Number of attendance for the classes.

Course Goals I Goals of this course are the followings. 1) To understand the important effect of initial rock stress on stability of underground chambers and deep underground tunnels. 2) To understand stress relief methods as one of typical methods to measure initial rock stress condition. 3) To understand the principle of a least square method though learning a procedure to determine an initial rock stress condition from released strains measured on a borehole wall. 4) To understand importance and purpose of rock stress measurement for oil field development through borehole breakout problems and others. 5) To understand hydraulic fracturing stress measurement conducted in drill holes for oil field development. 6)To understand history of tunneling technology in Japan. 7) To understand relations between maintenance of tunnels and underground environment. 8) To understand countermeasures against damages of tunnels induced by earthquakes.

【Course Topics】

Theme	Class number of times	Description
Importance of rock stress condition in underground development (by ISHIDA)	3	Necessity of rock stress measurements and their applications for various engineering projects. Among the projects, underground disposal of high level radio active waste, geological sequestration of CO2, construction of underground power houses and hot dry rock geothermal power extraction will be focused.
Stress relief methods to measure rock stress and application of least square method (by ISHIDA)	3	Actual field works of stress relief methods to measure initial rock stress condition will be explained. Though learning a procedure to determine an initial rock stress condition from released strains measured on a borehole wall, the principle of a least square method will be explained. The report subject will be shown in the last week.
Rock stress measurement for oil field development (by YAMAMOTO)	4	Estimation of rock stress condition by hydraulic fracturing and logging, which is conducted at various steps for oil field development, will be explained. Importance of rock stress affecting on borehole stability will be explained as well.
Tunneling technology in relation to underground environment (by ASAKURA)	4	Tunneling technology in Japan is historically reviewed. Relations between maintenance of tunnels and underground environment and countermeasures against damages of tunnels induced by earthquakes will be explained.
Check of understanding	1	Your understanding is checked by a written test.

【Textbook】 None. Printed materials will be given in classes when needed.

【Textbook(supplemental)】1) Amadei, B. & Stephansson, O.: Rock Stress and Its Measurements, Capman & Hall, 1977.

2) Vutukuri, V. S. & Katsuyama, K.: Introduction to Rock Mechanics, Industrial Publishing & Consulting, Inc., Tokyo, 1994.

[Prerequisite(s)] Elasticity, Linear Algebra (Calculation of Matrices) and Computer Literacy (for example, Excel, Word and so on.)

[Independent Study Outside of Class] When you make a report, it is necessary to calculate matrixes by using a Microsoft "Excel" and others.

[Web Sites]

【Additional Information】 This class is made by English.

Earth Resources Engineering

地球資源学

[Code] 10F088 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	1.5	
	1.5	
	1	
	1	
	1	
	1	
	2	
	1	
	1	
·	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Urban Infrastructure Management

都市基盤マネジメント論

[Code] 10X311 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd [Location] C1-173 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] English [Instructor] OHTSU Hiroyasu,

【Course Description】 This lecture aims to provide interdisciplinary knowledge associated with how urban infrastructure is comprehensively management, from viewpoints of not only economy but also "human security engineering". In detail, the contents of lectures consist of following topics: Urban Infrastructure Asset Management, Urban Transport/Logistics Management and Urban Food/Water Supply Management.

【Grading】Attendance(20), Report(80)

[Course Goals] Aquisition of interdisciplinary knowledge associated with how urban infrastructure is comprehensively management, from viewpoint of not only economy but also "human security engineering".

[Course Topics]

Theme	Class number of times	Description	
Guidance,			
Introduction of	1		
Urban Infrastructure	1	Guidance & Introduction to Urban Infrastructure Asset Management	
Asset Management			
Urban Infrastructure	5	Urban Infrastructure Asset Management on Geotechnical structures, Bridge	
Asset Management	5	and Pavement	
Urban			
Transport/Logistics	4	Urban Transport/Logistics Management	
Management			
Urban Energy	3	Habon Engagy Cyanly Managamant	
Supply Management		Urban Energy Supply Management	
Report	1	Report	
Feed back	1	Feed back	

[Textbook]

【Textbook(supplemental)】 Hand-out

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Global Survivability Studies

グローバル生存学

[Code] 10F113 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 5th

[Location] Yoshida, Higashi Ichijokan, Shishukan Hall [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] English [Instructor] Kaoru Takara, Junji Kiyono, Satoshi Fujii, Takahiro Sayama, Mika Shimizu

[Course Description] Modern global society is facing risks or social unrests that are caused by huge natural hazards and disasters, man-made disasters and accidents, regional environmental change/degradation including infectious diseases, and food security. Introducing such examples at global and regional scales, this subject lectures how to cope with them at national, local and community levels for making the society sustainable/survivable. Future countermeasures are also discussed under the uncertain circumstances such as climate change, population growth, energy and socio-economic issues.

[Grading] Attendance to lectures (40%) and Presentation and discussion (60 %).

[Course Goals] The objectives of this class are to have basic knowledge about global issues threatening safety and security of the earth society such as catastrophic natural disasters, man-made disasters and accidents, regional environmental change (including infectious diseases) and food security, and to enhance student 's ability to express his/her own ideas and discuss with professors and students from other study areas.

【Course Topics】

Theme	Class number of times	Description
Introduction of Global		
Survivability Studies	1	Introduction of Global Survivability Studies.
Earthquake disaster	1	D'anne de la l'anne d'anne d'anne de la lance de la Company de la Compan
mitigation	1	Discuss on earthquake disaster mitigation focusing on lessons learnt from Tohoku EQ.
Mitigation of earthquake		
damage to historic	1	Discuss on the mitigation of earthquake damage to historic structures.
structures		
Why we need GSS?	1	Discuss on why we need Global Survivability Studies (GSS).
Global agendas for		
sustainable development	1	Discuss on global agendas for sustainable development and resilient societies.
and resilient societies		
Building national	1	Discourse leading and an extraction of the state of the s
resilience in Japan	1	Discuss on building national resilience based on Japanese experiences.
Globalism as	1	Discuss on globalism as totalitarianism.
totalitarianism	1	
Public policy and systems		Lecture and group work on public policy and systems approach for global changes in disaster
approach for global	1	risks.
changes in disaster risks		115A5.
Disaster risk management		
and governance for global	1	Lecture and group work on disaster risk management and governance for global changes.
changes		
Water-related disaster risk	1	Discuss on water-related disaster risk management: concept and recent experiences.
management	1	Discuss on water-related disaster risk management, concept and recent experiences.
Water cycle and climate	1	Discuss on water cycle and climate change.
change		Discuss on water eyere and enmate ename.
Presentation by students & discussions	4	Presentation by students related to this lectures and discussions on the presented topics.

【Textbook】 Nothing special.

【Textbook(supplemental)】 Nothing special.

[Prerequisite(s)] Nothing special.

[Independent Study Outside of Class] If handouts (teaching materials) are distributed (or downloaded from the website), students should read them prior to the class. They may be distributed at the classroom (or put on the website). Students can make use of them after the class for reviewing lectures and preparing presentation materials and discussion sessions which will be organized in the latter half of the semester.

[Web Sites]

[Additional Information] This subject is compulsory for students enrolled in the Inter-Graduate School Program for Sustainable Development and Survivable Societies. Students other than ones in Graduate School of Engineering should submit a registration card for taking this class.

Emergency Management Systems

危機管理特論

[Code] 693291 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st

[Location] Faculty of Engineering Integrated Research Bldg. 213 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Haruo HAYASHI, Norio MAKI, Shingo SUZUKI,

【Course Description】 Damage from disasters is defined by two factors: scale of hazard and social vulnerability. Two strategies exist to reduce damage from disasters — namely, crisis management as a post-event countermeasure and risk management as a pre-event measure. This course introduces students to a system for effective emergency management, consisting of response, recovery, mitigation, and preparedness.

【Grading】 Every after lecture, please submit short report writing following things 1) Three points you could learn in this lecture, and reason 2) What you would like to explain more? Please send your short report to following address by following formats 1.address: disaster.reporti2@drs.dpri.kyoto-u.ac.jp 2.subject: 「Emergency Management Report "date" "ID" "Name" 3.No attach file

【Course Goals】 Learning about Techniques for Business Continuity Management consisted of Risk Assessment, Strategic Planning, Emergency Response, and Training.

[Course Topics]

Theme	Class number of times	Description
Business Continuity	3	What is emergency response, and business continuity management.
Management	3	what is emergency response, and business continuity management.
Risk Assessment	3	Techniques for Risk Identification, and Risk Assessment
Strategic Planning	3	Techniques for Strategic Planning and Evaluation
Emergency Response	3	Incident Command System, and Design of Emergency Operation Center
Training	3	Learning, drill, Exercises for Emergency Response

【Textbook】 Haruo Hayashi et.al., Soshiki no Kikikannri Nyuumon, Maruzen, 2008// Kyodai, NTT Resilience Kennkyuu Group, Shinayakana Syakai no Souzou, Nikkei BP, 2009

【Textbook(supplemental)】 Tom Demarco et.al, Waltzing With Bears: Managing Risk on Software Projects, Dorset House, 2003// Project Management Institute: A Guide to the Project Management Body of Knowledge 2000 Edition, Project Management Institute, Inc., 2000// R. Max Wideman: Risk Management - A guide to Managing Project Risk & Opportunities - , Project Management Institute, Inc., 2000// Memorial Conference in Kobe, 12 sai karano hisaisya gaku, NHK Press, 2005//

[Prerequisite(s)]

[Independent Study Outside of Class]

[Web Sites]

Urban Transport Policy

都市交通政策フロントランナー講座

[Code] 10Z001 [Course Year] Master and Doctor Course [Term] 1st term

【Class day & Period】 see the handbook for course registration

[Location] conference room, TPU karasuma office (see the handbook for course registration) [Credits] 1

[Restriction] see the handbook for course registration [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor] Dai Nakagawa, Ryoji Matsunaka, Tetsuharu Oba

[Course Description] This class will provide lectures on the new transport policy carried out in domestic and foreign cities and to understand the difference between the conventional transport policy and the new urban transport policy. Also, it will cover a process to realize the new urban transport policy.

[Grading] evaluation by attendance and class participation

[Course Goals] to understand the difference between the conventional transport policy and the new urban transport policy

[Course Topics]

Theme	Class number of times	Description
Outline	1	
Front runner of urban		
transport policy in	2	Reallocation of road space, Pedestrianisation
the world		
Front runner of urban		Downtown activation Stratagies of systemable transport for our cities Climate
transport policy in	1	Downtown activation, Strategies of sustainable transport for our cities, Climate
Japan		change
Front runner of urban		
transport policy in	1	Eco model city, Transport demand management, Public transport network
Kyoto		
Basic concept and		
best practices of new	1	Community bus, Compact city
urban transport	1	Community bus, Compact city
policy		
Discussion	1	
Presentation	1	

[Textbook] No textbook

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] http://www.upl.kyoto-u.ac.jp/index.html

Policy for Low-Carbon Society

低炭素都市圏政策論

[Code] 10Z002 [Course Year] Master and Doctor Course [Term] 1st term

【Class day & Period】 see the handbook for course registration

[Location] conference room, TPU karasuma office (see the handbook for course registration) [Credits] 1

【Restriction】 see the handbook for course registration 【Lecture Form(s)】 Intensive Lecture 【Language】 Japanese

[Instructor] Dai Nakagawa, Masashi Kawasaki

[Course Description] This class will provide lectures on the contents of policies and the methods to realize a low carbon society. Also, it will cover the knowledge and the technical skill to relate to urban activation, reduction of the environmental load, compact city planning, and so on.

【Grading】 evaluation by attendance and class participation

[Course Goals] to understand the knowledge and the technical skill to relate to urban activation, reduction of the environmental load, compact city planning, and so on.

[Course Topics]

Theme	Class number of times	Description
Outline	1	
Direction of urban		
policy for	1	Compact city, Interaction between land-use and transport
low-carbon society		
Urban policy		
management for	1	Eco model city, Guideline for low-carbon city construction
low-carbon society		
Downtown activation		
& urban policy for	1	Downtown activation, Compact city
low-carbon socity		
Landscape &		
environmental	1	Landscape design in public space, View structure
planning		
Urban policy for		
low-carbon society	1	Dublic transport Dedectrionisation
and change of urban	1	Public transport, Pedestrianisation
structure		
Roles and issues of		Transport and urban policy Transport policy in EU Dailyaya Light Diel
urban transport	1	Transport and urban policy, Transport policy in EU, Railways, Light Rial
policy		Transit
Discussion	1	

【Textbook】No textbook

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] http://www.upl.kyoto-u.ac.jp/index.html

Urban Transport Management

都市交通政策マネジメント

[Code] 10Z003 [Course Year] Master and Doctor Course [Term] 1st term

【Class day & Period】 see the handbook for course registration

[Location] conference room, TPU karasuma office (see the handbook for course registration) [Credits] 1

[Restriction] see the handbook for course registration [Lecture Form(s)] Intensive Lecture [Language] Japanese

【Instructor】 Dai Nakagawa, Satoshi Fujii, Nobuhiro Uno

[Course Description] This class will provide lectures on characteristics and problems of transport modes such as car, public transport, and foot. Also, it will cover the technical skill to analyze present urban traffic problems quantitatively.

[Grading] evaluation by attendance and class participation

[Course Goals] to understand characteristics and problems of transport modes such as car, public transport, and foot.

[Course Topics]

Theme	Class number of times	Description
Outline	1	
Plan and practice of	1	City activation and attractiveness Dublic transport Light will transit Due
public transport	1	City activation and attractiveness, Public transport, Light rail transit, Bus
Basic concept of		Malaille and Adination of the malain terms of December 1
mobility	1	Mobility management, Activation of the public transport, Downtown
management		activation
Investigation,		
interpretation, and	2	Demonstration of the second se
evaluation on urban	3	Person trip survey, Transportation demand management, Cost-benefit analysis
traffic phenomenon		
Exercise and	2	
discussion	2	

【Textbook】No textbook

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] http://www.upl.kyoto-u.ac.jp/index.html

10F380

Engineering Seminar for Disaster Resilience in ASEAN countries

強靱な国づくりのためのエンジニアリングセミナー

[Code] 10F380 [Course Year] Master 1st [Term] Late August [Class day & Period] Late August

[Location] School of Engineering, Kasetsart University, Bangkok, Indonesia [Credits] 2

[Restriction] Due to the capacity, students attending "International Course on Approaches for Disaster Resilience" have priority.

[Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] Prof. Hiroyasu Ohtsu, Related lecturers in ASEAN collaborative universities,

【Course Description】 The purpose of this course is to provide practical lessons in ASEAN countries associated with disaster risk mitigation such as early warning and evacuation program, and disaster recovery/restoration from viewpoints of problems-finding/problem-solving through short term intensive lecture and field work. By taking the applied practical programs of shared major classes under the instructions of teachers in charge, the students can improve the ability of resolving issues on practical projects. Topics taught in this seminar are earthquake, flood, landslide, land subsidence, and geo-risk engineering.

[Grading] 40% for course work assignments and reports, 60% for final exam.

[Course Goals] Course aims to foster international leaders who are able to solve and manage problems concerned about natural disaster, disaster mitigation, health and environmental issues, especially about case studies in ASEAN countries.

[Course Topics]

Theme	Class number of	Description
	times	
Introduction:		
Engineering for	1	
Disaster Resilience		
Earthquake Disaster	2	
Landslide Disaster	2	
Geo-Risk	2	
Engineering	2	
Flood Disaster	2	
Land Subsidence	2	
Site Visit	5	
Evaluation of	1	
understanding	1	

[Textbook] Lecture notes provided by the instructors.

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] Consortium for International Human Resource Development for Disaster-Resilient Countries, Kyoto University http://www.drc.t.kyoto-u.ac.jp/

[Additional Information] Those who want to take this course have to apply for "International Course on Approaches for Disaster Resilience". Refer the website above.

Disaster and Health Risk Management for Liveable City

安寧の都市のための災害及び健康リスクマネシ・メント

[Code] 10F382 [Course Year] Master Course [Term] 1st term [Class day & Period] Intensive course (2 weeks) [Location] Meeting room at Research Bldg. No.5 [Credits] 2 [Restriction] 30 students, priority for DRC course students [Lecture Form(s)] Relay Lecture [Language] English [Instructor] Kiyono, Koyama, Kikuchi, Mitani, Fujii, Kawasaki, Ando, Teo, [Course Description] Various types of disasters constantly attack to Asian countries, and those countries sometimes are very vulnerable to the natural disasters and health risk. The interdisciplinary approach of engineering and medical science is indispensable to construct disaster-resilient countries. The 2011 Tohoku earthquake was one of the worst disasters in recent Japanese history. However many lessons to mitigate and manage the disaster are learnt from the event. In order to solve the related issues, the course provides selected topics about natural disaster, disaster-induced human casualty, emergency response, urban search and rescue, emergency medical service, principle of behavior based on neuroscience, urban search and rescue, reconstruction and rehabilitation policy, social impact of disaster, transportation management, logistics during earthquake disaster and so on.

【Grading】Course work assignments and reports

[Course Goals] Course aims to foster international leaders who are able to solve and manage problems concerned about natural disaster, disaster mitigation, health and environmental issues, logistics and amenity for constructing liveable city.

Course	

Theme	Class number of times	Description
Guidance and Group	2	
Work	2	
ORT	3	
Earthquake disaster and	1	
human casualty	1	
Earthquake protection		
and emergency	1	
responses		
Human brain function	1	
and behavior	1	
Disaster medicine and	1	
epidemiology	1	
Resilient society	1	
Transition of the design		
for amenity in the	1	
river-front		
Concern that elderly		
people in rural area have	1	
over health and mobility		
Differences in logistics		
and humanitarian	1	
logistics		
Unique challenges of	1	
humanitarian logistics		
Advancement on	1	
humanitarian logistics	1	
Achievement evaluation	1	

【Textbook 】 Textbook for the course is provided by the instructor on the first day.

【Textbook(supplemental)】 Some literatures would be introduced by professors.

[Prerequisite(s)] No special knowledge and techniques are necessary.

[Independent Study Outside of Class]

[Web Sites] Consortium for International Human Resource Development for Disaster-Resilient Countrie, Kyoto University http://www.drc.t.kyoto-u.ac.jp/

[Additional Information] Contact person: Prof.Kiyono < kiyono@quake.kuciv.kyoto-u.ac.jp

Environmental Risk Analysis

環境リスク学

[Code] 10F439 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Yoneda, Takano, Matsuda, Shimada, Matsui,

[Course Description] Paying attention to the environment of children in particular, students themselves study, make presentation, and debate about the environmental risk. Students learn the backgound, the actual situation, and the theory for quantitative risk analysis through practice of investigation and discussion by themselves.

[Grading] Grading based on the participation and performance in presentation and discussion.

[Course Goals] To understand or master the necessity of environmental risk analysis, its practical exampls, framework for solving problems concerning to risk evaluation, technical and basic knowledge for environmental risk analysis, and the way of thinking for risk analysis

[Course Topics]

Theme	Class number of times	Description	
Introduction			
Framework of risk	2	Introduction of lecture and grading. Framework of risk analysis for children of	
analysis		WHO.	
Children and health	1	1) When thildren 2) Children are not little adults	
risk	1	1) Why children 2) Children are not little adults	
Children and	1	2) The modification and and health history () Clobal shores and shilling	
environmental change	1	3) The paediatric environmental and health history 4) Global change and children	
Air pollution	1	5) Outdoor air pollution 6) Indoor air pollution	
Lead and pesticide	1	7) Pesticides 8) Lead	
Heavy metal	1	9) Mercury 10) Other heavy metals	
Various risk	1	11) Noise 12) Water 13) Food safety	
Chemicals	1	14) Children and chemicals 15) Persistent Organic Pollutants	
Tobacco and natural	1	16) Second hand tobacco smake 17) Mysotovins, plants, funci and derivates	
toxin	1	16) Second-hand tobacco smoke 17) Mycotoxins, plants, fungi and derivates	
Occupational risk and	1	18) Injuries 19) Ionizing and non-ionizing radiations 20) Occupational risks	
radiation	1	16) Hijuries 19) foliizing and hon-foliizing fadiations 20) Occupational fisks	
Respiratory diseases	1	21) Respiratory diseases 22) Childhood cancer	
and cancer	1	21) Respiratory diseases 22) Childhood Cancer	
Innume disorders and	1	22) Immuno disorders 24) Neurobahavioral and neurodevelonmental disorders	
neural system	1	23) Immune disorders 24) Neurobehavioral and neurodevelopmental disorders	
Endocrine system and			
environmental	1	25) Endocrine disorders 26) Bio-monitoring and environmental monitoring	
monitoring			
D evelopmental	1	27) Forth developmental and environmental enions of disease 20) In disease	
toxicity and indicators	1	27) Early developmental and environmental origins of disease 28) Indicators	

【Textbook 】 Necessary files are supplied.

【Textbook(supplemental)】 To be introduced if necessary.

[Prerequisite(s)] Not necessary in particular.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] The contents may be changed according to the progress of lecture.

Urban Metabolism Engineering

都市代謝工学

[Code] 10A632 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 3rd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] English / Japanese [Instructor] Masaki Takaoka, Gakuji Kurata, Kazuyuki Oshita,

【Course Description】 Much energy and resources are consumed to maintain various activities in urban city. As the result, various environmental loads such as exhaust gas, wastewater and waste generate and should be reduced to levels natural environment can accept .To establish sustainable urban metabolism, concept, elements, control, optimization and management of urban metabolism are explained.

【Grading 】 Small tests and reports are evaluated.

[Course Goals] To understand technological measures by learning about current trend and issue of urban metabolism and related engineering principles.

[Course Topics]

Theme	Class number of times	Description	
Introduction	1	Concept of urban metabolism and its system are explained	
Elements of urban metabolic system	8	Planning and selection of urban metabolic system, Transportation & collection, Engineering principles on Recycling, Thermal recovery, Engineering principles on flue gas treatment and Landfill management are explained.	
Control, optimization and management of urban metabolic system and environmental equipment	3	Fundamentals of control theory, optimization, system identification and simulation of urban metabolic system and environmental equipment	
Design of sewage treatment system in urban area Feedback and summary	Properties and chemical compositions of sewage and sludge. Introduced developing trend of sewage treatment system. Elemental and heat analysis of sedimentation, aeration tank, anaerobic fermentation a incineration. 1 Feedback of small tests and summary		

【Textbook 】Recent paper and/or books will be used.

【Textbook(supplemental)】

[Prerequisite(s)] Environmental plant engineering

[Independent Study Outside of Class]

[Web Sites]

Systems Approach on Sound Material Cycles Society

循環型社会システム論

[Code] 10F454 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese/English [Instructor] Shinichi Sakai, Yasuhiro Hirai,

[Course Description] It has become a major political/ social issue to establish a Sound Material-Cycle Society in order to save the earth resources and energy and to preserve environmental conservation. This course mainly covers the following topics: 1) History, current status, and future prospect of waste issues and establishment of a sound material-cycles society. 2) Basic concepts and current conditions/ challenges of the following items: The Basic Law for Establishing the Material Cycles Society and the Basic Plan for accomplishing it; Containers and Packaging Recycling Law; Home Appliance Recycling Law; End-of-Life Vehicle Recycling Law and others. 3) Basic concept and application of material flow analysis and life cycle assessment; these tools are important to grasp the whole flow of each recycling, resource use, product consumption, recycle and disposal of waste electrical and electronic equipment, for which it is required to take Clean Cycle & Control concepts in relation to chemical substances. Along with above topics, source origin, behavior, and decomposition of persistent organic pollutants, which should be inevitably linked to the realization of a Sound Material-Cycle Society, will also be discussed in the class.

[Grading] Evaluation will be done based on the test scores and learning attitude in class.

[Course Goals] The goal of this class is to help students understand the systems and technologies for establishing a Sound Material Cycles Society; students learn how to think about material flow analysis and life cycle assessment in order to develop deep understanding of the whole system of material flow (i.e., resource use, product consumption, cycles and disposal of waste).

[Course Topics]

Theme	Class number of times	Description
The Basic Law for		
Establishing the Material		Lean the frame work and three indices of this basic plan in detail, and examine recent
Cycles Society and the	1	globally developed "3R Initiative" activities and status of material cycles in Asian
Basic Plan for Material		countries.
Cycles		
Development of Each		Learn the following items separately designated as effective measures under The Basic Law
Recycling System	3	for Establishing the Material Cycles Society: 1) Containers and packaging 2) Home
- Recycling Bystem		Appliance 3) End-of-Life Vehicle 4) Construction Material 5) Food Material
Each Recycling System		Examine application of the following strategic concepts for waste electrical and electronic
and Clean, Cycles &	3	equipment, end-of-life vehicles, and battery waste. 1) Clean: Avoid the use of hazardous
Control Concepts		waste and chemical substances. 2) Cycle: Apply cycle concept when use effects are expected
Control Concepts		but no alternatives are available.
Basic concept and		
application of material	5	Lean about basic concept of Material Flow Analysis (MFA) and Life Cycle Assessment
flow and life cycle	3	(LCA). Examine food waste recycling using these analyses as a case study.
analyses		
Environmental Transport		
Model and Behavior of	2	Learn basic concept and application of the model. Examine case studies of global mobility of
Persistent Organic	2	POPs and behavior of PCB on regional and global scales.
Pollutants (POPs)		
Confirmation of	1	Confirm students ' levels of understanding on the course topics, and make sure of the points
Attainment	1	of MFA, LCA, and systems and techniques for establishing a sound material-cycle society.

[Textbook] Not specified. Materials and references will be distributed when needed.

【Textbook(supplemental)】Introduced in class when necessary.

[Prerequisite(s)] Solid Waste Management

【Independent Study Outside of Class】

[Web Sites]

Water Quality Engineering

水環境工学

[Code] 10F441 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd [Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hiroaki TANAKA, Fumitake NISHIMURA, Naoyuki YAMASHITA, Makoto YASOJIMA, Sei-ichiro OKAMOTO

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	5	
	5	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Water Sanitary Engineering

水質衛生工学

[Code] 10F234 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] English/Japanese [Instructor] Sadahiko Itoh, Shinya Echigo, Yasuhiro Asada

[Course Description] The ultimate goal of this course is to understand "Sanitary Engineering" quantitatively. Students will learn methods to quantify chemical and microbial risk in drinking water and realize concept and methods of risk management and control.

【Grading】 Evaluated by assignments.

【Course Goals 】 To quantify chemical and microbial risk in drinking water and to realize methodologies of risk management and control.

[Course Topics]

Theme	Class number of times	Description	
Environmental risk	1	Introduction and goal of the class. Concept of "Sanitation". Environmental risk	
and quantification	1	and quantification. Safety of drinking water and acceptable risk level.	
Risk assessment and		Risk assessment of hazardous chemicals. Drinking water quality standards.	
control of hazardous chemicals	3	Derivation of drinking water quality standards. The benchmark dose method.	
Quantitative microbial risk		Coexistence and competition between human and microbes. Quantitative microbial risk assessment (QMRA). Comparison of the risk assessment and	
assessment and	5	management methods between chemicals and microbes. Disability adjusted	
management		life years (DALYs).	
Perspectives of water treatment technology	5	Development of advanced water treatment processes. Water supply technology and its prospects. Water reuse and health risk. Access to safe drinking water in developing countries and global burden of disease.	
Feedback and summary	1	Feedback of assignments and summary.	

[Textbook] Class handouts

【Textbook(supplemental)】 Itoh, S., Echigo, S.: Disinfection By-products in Water, GIHOUDOU SHUPPAN Co., Ltd., 2008 (in Japanese).

[Prerequisite(s)] General understanding of water quality and water treatment process

[Independent Study Outside of Class]

[Web Sites] Data for assignments will be at http://www.urban.env.kyoto-u.ac.jp

Nuclear Environmental Engineering, Adv.

原子力環境工学

[Code] 10F461 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] Japanese [Instructor] Yoko Fujikawa, Satoshi Fukutani, Maiko Ikegami [Course Description] Various wastes are generated from the use of nuclear energy, one of the key technologies to overcome the global warming, and the associated industrial activity. This course is inended to understand the type and origin of radioactive wastes, as well as the management, treatment, and final disposal of these wastes, from the viewpoint of environmental engineering.

【Grading】 Attendance to the lecture plus report

[Course Goals] By providing the students with the knowledge on various radioactive wastes generated by the use on neclear energy as well as the radiological risk of such wastes, the course will enable the students to consider the future of nuclear industries based on their own judgement.

	~	_		4
ı	Course	10	nice	1
	Course	10	pico	4

Theme	Class number of times	of Description	
Course Introduction	1	Course Introduction	
Nuclear disaster action program	1	uclear disaster action program	
Nuclear reactors	1	Nuclear reactors	
Treatment of liquid radioactive waste	1	Treatment of liquid radioactive waste	
Treatment of gaseous and solid radioactive waste	1	Treatment of gaseous and solid radioactive waste	
Legislation of radioactive wastes	1	Legislation of radioactive wastes	
Decomissining and clearance	1	ecomissining and clearance	
Radiological risk	1	The risk of radiation exposure, history of radiation dose limit set by international organizations, and dose limit under different situations are discussed	
Fukushima Daiichi Nuclear Power Plant (F1) accident and nuclear disaster prevention	1	Discuss the relation between the events in F1 and the radiation dose in the environment as well as pollution of environment. The evacuation activity conducted in Fukushima and the related lessons are summarized.	
Problems of designated waste	1	In the aftermath of the F1 accident, municipal solid waste contaminated with radioactive cesium has been produced in 12 Prefectures, some of these wastes were classified as designated wastes (DSW). The concept of DSW is compared with that of conventional radioactive wastes.	
Geological disposal of high level radioactive wastes (HLW) and the safety assessment	1	Inventory, the method of disposal (critical path and nuclides), philosophy of radiological protection, etc. are discussed.	
Behavior of radionuclides in the environment and mathematical modeling of nuclide migration	1	Behavior of radionuclides in the geosphere has governing effect on the safety of geological disposal of HLW. The behavior based on the chemical characteristics of each nuclides and mathematical modeling of their behavior are discussed.	
Behavior and qualitative/ quantitative analysis of radionuclides in the environment	1	Behavior and qualitative/ quantitative analysis of radioactive Cs, Co, Sr, I, Se, U, Pu and Ra in the environment, and events of radioactive pollution of the environment in the past, are introduced.	
The risk of radiation and the society	1	After the F1 accident, the risk of radiation has drawn intense attention from citizens. The risk communication methodology to facilitate the understanding of radiation is discussed.	
Discussion with /between students	1	Discussion on issues such as lifestyle in the contaminated environment (under existing exposure situation), whether residents should return to the contaminated areas, and how to deal with siting problems of final disposal of HLW, etc	

【Textbook】 Related papers etc. will be distributed in each lecture.

【Textbook(supplemental)】Related literature will be notified in each lecture.

[Prerequisite(s)] Basic knowledge on health physics, chemistry and earth science.

【Independent Study Outside of Class】 NOt specified.

[Web Sites] None

Atmospheric and Global Environmental Engineering, Adv.

大気・地球環境工学特論

[Code] 10F446 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese/English [Instructor] Gakuji KURATA,

【Course Description】 The contents of the lecture are as follows. (1) History of Global Warming problem, Radiative forcing, Green house gas emission, Carbon cycle, Mechanism of Climate Change, Mitigation measures, Social and Natural impact of Climate change (2) Mechanism of formation of Photochemical oxidant and Acid rain, Global scale transportation of atmospheric pollutants, Deposition and its impact of air pollutants, control measure of air pollution. Also, students make presentation and discussion on the related papers.

[Grading] Points are allocated for the quiz at every lectures, the presentation and discussion, report.

[Course Goals]

【Course Topics】

Theme	Class number of times		Description
Guidance, IPCC,			
Observation of a	1	(Kurata)	
climate change			
Radiative forcing	1	(Kurata)	
Greenhouse gas	1	(Kurata)	
Carbon cycle and	1	(Kurata)	
response of climate	1	(Kurata)	
Impact of Climate	1	(Kurata)	
Change	1	(Kurata)	
Energy system and			
mitigation of climate	1	(Kurata)	
change			
Cross-border			
transportation and the	1	(Vuroto)	
international measure	1	(Kurata)	
against air pollution			
Urban Air pollution	1	(Kurata)	
Acid Deposition and its	1	(Kurata)	
impact	1	(Kurata)	
Simulation of advection	1	(Kurata)	
and diffusion	1	(Kurata)	
Simulation of	1	(Kurata)	
Atmospheric Chemistry	1	(Isuraia)	
Indoor air pollution and	1	(Kurata)	
health impact	1	(Isuraia)	
Practice	2	(Kurata)	
Achievement test	1		

【Textbook 】 Handout

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10F400

Seminar on Urban and Environmental Engineering A

都市環境工学セミナーA

[Code] 10F400 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	unies	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10F402

Seminar on Urban and Environmental Engineering B

都市環境工学セミナーB

[Code] 10F402 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	umes	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10U401

Advanced Seminar on Urban and Environmental Engineering A

都市環境工学特別セミナーA

[Code] 10U401 [Course Year] Doctor Course [Term] 1st+2nd term

[Class day & Period] First: Thu 3rd and 4th, Second: Wed 1st and 2nd [Location] C1-226 [Credits] 4

[Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10U403

Advanced Seminar on Urban and Environmental Engineering B

都市環境工学特別セミナーB

[Code] 10U403 [Course Year] Doctor Course [Term] 1st+2nd term

[Class day & Period] First: Fri 3rd and 4th, Second Thu 3rd and 4th [Location] C1-226 [Credits] 4 [Restriction]

[Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Environmental Microbiology, Adv.

環境微生物学特論

[Code] 10A643 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 1st [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Hiroshi TSUNO, Hiroaki TANAKA, Fumitake NISHIMURA, Naoyuki YAMASHITA,

【Course Description】

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	2	
	2	
	1	
	1	
	1	
	1	
	3	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Environmental Health

環境衛生学特論

[Code] 10A626 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 3rd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor] Hirohisa Takano, Kayo Ueda,

[Course Description] Environmental factors and genetic factors are responsible for our health and diseases. This seminar has the lecture on the relationships between environmental factors and our health. Also, Students make presentation and discussion on the previous and recent environmental problems, with special emphasis on their relation with health concerns.

【Grading】 Points are allocated for the activities on the presentation and discussion.

[Course Goals] Students learn about the fundamentals of environmental health and make use of the knowledge for the development of related areas.

[Course Topics]

Theme	Class number of times	Description
Environment and	1	Lasture on the relationships between environmental factors and our health
health	1	Lecture on the relationships between environmental factors and our health
Seminar on the		
previous and recent	1.4	Presentation and discussion on the previous and recent environmental
environmental	14	problems, with special emphasis on their relation with health concerns
problems		

[Textbook] on demand

【Textbook(supplemental)】 on demand

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H424

Environmental-friendly Technology for Sound Material Cycle

環境資源循環技術

[Code] 10H424 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 3rd [Location] C1-192 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

Course Description I Global warming, ecosystem crisis, and depletion of natural resources are of great concern today. To solve these problems, we have to build the sustainable society where low carbon dioxide emission, low environmental burdens, and the reduction of wastes by recycling are realized. It is possible to utilize municipal wastes, wastewaters, and unused biomass as resources instead of the natural resources used at present. Recycling-oriented technologies that enable sustainable utilization of those wastes and the concept to develop those technologies are introduced.

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	5	
	3	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Geohydro Environment Engineering. Adv.

地圏環境工学特論

[Code] 10A622 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 1st

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10X321

Lecture on Environmental Management Leader

環境リスク管理リーダー論

[Code] 10X321 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 5th [Location] C1-171 [Credits] 2 [Restriction]

[Lecture Form(s)] Relay Lecture [Language] English [Instructor] TANAKA Hiroaki, SHIMIZU Yoshihisa, FUJII Shigeo,

[Course Description] In this class, we 'll give lectures on theory of risk analysis, risk identification, risk assessment, risk evaluation, and risk reduction and avoidance in the field of urban human security including human health risk and ecological risk. The main purpose of this lecture is to provide students basic viewpoint and knowledge required for environmental leaders who can practically solve environmental issues occurring in developing countries, showing several international environmental projects as practical case works.

【Grading 】 Participation, Oral and Poster Presentation, and Report

[Course Goals] The main purpose of this lecture is to provide students with the basic viewpoint and knowledge required for environmental leaders able to practically solve environmental issues occurring in developing countries, focusing on several international environmental projects as practical case works.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	In this introductory lecture, the current situation and problems of the environment in Asian developing countries are explained, and basic ideas for their improvement measures are given together with fundamental terminologies.
Energy and Environment	1	
View point and commitment to rural environmental issues	1	
Disaster Risk Management		
and Grass-roots International	1	
Cooperation		
Environmental Risk		
Assessment and Risk	1	
Communication		
Water, Sanitation and Solid		
Waste Management for	1	
Developing Countries		
Presentations and Discussions	2	
Japan's Lessens on Economy	1	
& Development	1	
Solid Waste Management	1	
Ensuring Sustainability in		
Water Supply and Sewerage	1	
Sector		
Water Supply and Human	1	
Security	1	
Impending Issues in Lake		
Biwa-Yodo River Water	1	
Management and the Basin	1	
Governance		
Environment & Sanitary		
Engineering Research	1	
International Session		
Poster Presentation in		
Environment & Sanitary	1	
Engineering Research	1	
Symposium		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] To be announced at class about poster presentation in Environment & Sanitary Engineering Research Symposium.

New Environmental Engineering I, Advanced

新環境工学特論 I

[Code] 10F456 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 5th

[Location] Reserch Bldg.No.5-Lecture Room(2nd floor)/C1-171 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Relay Lecture [Language] English [Instructor] Y. Shimizu (Prof), H. Tanaka (Prof), and S. Fujii (Prof),

[Course Description] This course provides various kinds of engineering issues related to the water environment in English, which cover fundamental knowledge, the latest technologies and regional application examples. These lectures, English presentations by students, and discussions enhance English capability and internationality of students.

The course is conducted in simultaneous distance-learning from Kyoto University, or from remote lecture stations in University of Malaya, and Tsinghua University of China. For the distance-learning, a hybrid system is used, which consists of prerecorded lecture VIDEO, VCS (Video conference system) and SS (slide sharing system).

[Grading] Evaluated by class attendance, Q&A and presentation.

[Course Goals] Each student is requested to give a short presentation in English in the end of the course. The students will understand the present circumstance of environments in the world, and the students may improve their English skill and international senses through these lectures, presentations, and discussions.

[Course Topics]

Theme	Class number of times	Description
Wastewater Treatment	1.4	Guidance & Self Introduction of Students & Lecturer on "Wastewater Treatment
in Japan	1.4	Plants Case Study in Japan (Fujii)
Ecological Sanitation	1.4	From Ecotoilets to Ecotowns (Shimizu)
Wastewater Treatment in China and Nutrient	1.4	Wastewater Treatment Plant: Case Study in China, Biological Nutrient Removal (BNR)
Removal		(Prof. Wen, Tsinghua University)
Wastewater Reuse	1.3	Wastewater Reuse & Disinfection (Tanaka)
Wastewater Treatment in Malaysia	1.4	History of Water Pollution in Malaysia (Prof. Ghufran, University of Malaya) Case studies of wastewater treatment plants design & operation (Prof. Nuruol, University of Malaya)
Anaerobic Treatment	1.3	Anaerobic Biological Treatment Technologies (Prof. Shaliza, University of Malaya)
Membrane Technology	1.3	Treatment Technologies (Practical & Advanced Technology I): Membrane Technology (MT) (Prof. Huang, Tsinghua University)
Advanced Oxidation Processes	1.3	Advanced Oxidation Processes (Prof. Zhang, Tsinghua University)
Student Presentation	1.4	Student Presentations /Discussions I (all)
Student Presentation	1.4	Student Presentations /Discussions II (all)
Student Presentation	1.4	Student Presentations /Discussions III (all)

[Textbook] Class handouts

【Textbook(supplemental)】Introduced in the classes

[Prerequisite(s)] General understanding of water environmental issues

[Independent Study Outside of Class] The students should study the PPT file used in the lectures. Students also need to enough literature review and related prior to their presentation.

Web Sites

[Additional Information] PowerPoint slides are main teaching materials in the lectures, and their hard copies are distributed to the students. In addition, a list of technical terms and difficult English words is given to the students with their explanation and Japanese translation.

New Environmental Engineering II, Advanced

新環境工学特論 II

[Code] 10F458 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 5th

[Location] Reserch Bldg.No.5-Lecture Room(2nd floor)/C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Prof. Shimidzu, Prof. Takaoka, Associate Prof. Kurata, Prof. Fujii,

Course Description This course provides various kinds of engineering issues related to atmospheric environment and solid wastes management in English, which cover fundamental knowledge, the latest technologies and regional application examples. These lectures, English presentations by students, and discussions enhance English capability and internationality of students. The course is conducted in simultaneous distance-learning from Kyoto University, or from remote lecture stations in University of Malaya, and Tsinghua University. For the distance-learning, a hybrid system is used, which consists of prerecorded lecture VIDEO, VCS (Video conference system) and SS (slide sharing system). The students are requested to give a short presentation in English in the end of the lecture course. This course may improve students 'English skill and international senses through these lectures, presentations, and discussions.

【Grading 】 Evaluate by class attendance, Q&A and presentation.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Global warming and Low carbon society	1.4	Global warming and Low carbon society
Atmospheric diffusion and modeling	1.4	Atmospheric diffusion and modeling (Prof. S Wang, Tsinghua University)
Air Pollution, Its Historical Perspective from Asian Countries (I),China	1.4	Air Pollution, Its Historical Perspective from Asian Countries (I), China (Prof. Hao, Tsinghua University)
Air Pollution, Its Historical Perspective from Asian Countries (II), Malaysia	1.4	Air Pollution, Its Historical Perspective from Asian Countries (II), Malaysia (Prof. Nik, University of Malaya)
Air Pollution, Its Historical Perspective from Asian Countries (III), Japan	1.4	Air Pollution, Its Historical Perspective from Asian Countries (III), Japan (Kurata)
Student Presentations /Discussions I	1.4	Student Presentations /Discussions I (all)
Introduction to Municipal Solid Waste (MSW) Management in Malaysia	1.4	Introduction to Municipal Solid Waste (MSW) Management in Malaysia (Prof. Agamuthu, University of Malaya)
Solid Waste Management, Case Study in China	1.4	Solid Waste Management, Case Study in China (Prof. Wang, Tsinghua University)
Solid Waste Management, Case Study in Japan	1.4	Solid Waste Management, Case Study in Japan (Takaoka)
Solid Waste Management, Case Study in Malaysia	1.4	Solid Waste Management, Case Study in Malaysia (Prof. Agamuthu, University of Malaya)
Student Presentations /Discussions II	1	Student Presentations /Discussions II (all)

【Textbook】 Class handouts

【Textbook(supplemental)】 Introduce in the lecture classes

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Either of this course or "New Environmental Engineering I, advanced" can be dealt as "Asian Environmental Enigneering". PowerPoint slides are main teaching materials in the lectures, and their hard copies are distributed to the students. In addition, a list of technical terms and difficult English words is given to the students with their explanation and Japanese translation.

Environmental Organic Micropollutants Analysis Lab.

環境微量分析演習

[Code] 10F468 [Course Year] Master and Doctor Course [Term] Intensive course (27-29th Sep.)

【Class day & Period】9:00 am- 6:00 pm

[Location] Seminer Room, Research Center for Environmental Quality Management [Credits] 2

[Restriction] around 10 students [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor] Shimizu, Yoshihisa, Matsuda, Tomonari,

【Course Description】 There is increasing concern about proper risk evaluation and management of hazardous chemicals such as dioxins and endocrine disruptors. To manage this problem, it is necessary to understand analytical methods and toxicity of those hazardous chemicals. In this class, lectures and experiments will be carried out about chromatography, bioassays and mass spectrometry.

[Grading] It is required to attend all 3 days for lectures and experiments. Attendance and reports are considered for grading.

[Course Goals] Understand about principle and practical techniques of chromatography. Understand about principle of several bioassays.

[Course Topics]

Theme	Class number of times	Description
HPLC -How to	3	Learn about principle and practice of HPLC separation. How do you choose
separate it-	3	columns, solvents and detectors? How to improve peak separation?
Fractionation and		
Purification by using	3	Learn about practical techniques of fractionation and purification using HPLC.
HPLC		
		Learn about principle and practice of LC/MS/MS analysis. Understand about 3
LC/MS/MS	5	different scan modes, full scan, daughter scan and MRM. How to make an
		analytical method in a refined way for substances of your interest.
		Lecture about several bioassays which are used for evaluation of
Bioassays	4	environmental toxicity, and discuss about how to identify toxic compounds in
		environment by using HPLC in combination with bioassays.

【Textbook】 Handouts are distributed.

【Textbook(supplemental)】 Daniel C. Harris: "Quantitative Chemical Analysis" ISBN-13: 978-1-4292-3989-9

[Prerequisite(s)]

【Independent Study Outside of Class】 We hope active participation of students. It is welcome that patticipants additionally try to analyze the sample their own interest.

[Web Sites]

[Additional Information] This intensive course is useful especially for students who usually use or intend to use HPLC and LC/MS/MS for their research.

Advanced Enivironmental Engineering Lab.

環境工学先端実験演習

[Code] 10F470 [Course Year] Master and Doctor Course [Term] 2nd term

[Class day & Period] Monday 3,4 [Location] C1-173 [Credits] 2 [Restriction] less than 10 students

[Lecture Form(s)] Seminar and Exercise [Language] English / Japanese

[Instructor] Sadahiko Itoh, MInoru Yoneda, Masaki Takaoka, Shinya Echigo, Gakuji Kurata, Makoto Yasojima,

[Course Description] Analytical methods to characterize environmental samples are learnt through practical training including site visit to other research institute or analytical company. Also, integration of environmental information using GIS is also mastered.

[Grading] Attendance at the class (50%) and report subjects(50%) are evaluated.

[Course Goals] To promote your own research by learning each research method with wide vision

[Course Topics]

Theme	Class number of times	Description
Guidance and Safety	1	The content of subject and safety education for the following experiment are
Education	1	explained.
Quantitative analysis	3	The principle of multielement analysis is explained and practical training of
of elements	3	ICP-AES or ICP-MS machine is conducted.
Qualitative analysis	2	The principle of X-ray based methods is explained and practical training of
of elements	2	one or two X-ray based machine is conducted.
Qualitative analysis		Qualitative analysis of organic compounds such as mass spectrometry, NMR,
of organic	_	
compounds and	5	ESR and IR and bioassey are explained and practical training of GC-MS etc. is
bioassey		conducted.
GIS	3	The way to use GIS is learnt.
Site visit	1	Site visit to research institute or analytical company

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminer on Practical Issues in Urban and Environmental Enginering 環境工学実践セミナー

[Code] 10F472 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] Fri 4th

[Location]C1-192 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Seminar [Language]Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number of times Description	
---	--

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Exercises in Urban and Environmental Engineering A

都市環境工学演習 A

[Code] 10F449 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] Fri 5th [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Exercises in Urban and Environmental Engineering B

都市環境工学演習 B

[Code] 10F450 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

ORT on Urban and Environmental Engineering

都市環境工学 ORT

[Code] 10F475 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 5th

[Location] Funai Hall [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description	
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Exercise in Practical Scientific English

実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] Thu 4th or 5th [Location] A2-304 [Credits] 1

[Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] Japanese and English

[Instructor] Y. Nakayama and T. Mizuno

[Course Description] Students learn about the basics of technical writing in English, and learn about and practice the format, style, and mechanics of the scientific research article. We may restrict the class size to enhance learning. The course is shared by Master 's and Doctoral Course students.

[Grading] Students are required to submit an initial report and a mid-term report. Students failing to submit the mid-term report will be given no credit.

[Course Goals] Students develop basic communication skills needed to work for international organizations through practicing scientific English writing.

【Course Topics】

Theme	Class number of times	Description
Course Outline and		Students examine the aim and requirements of the course, and look at the key
Introduction to	1	points for writing correctly, clearly, and concisely. (The class schedule may
Technical Writing		change without notice.)
Di T 1 1		Students learn about the definition and basic rules for technical writing, and
Basics of Technical	3	look at common mistakes made by non-native writers of English. Students also
Writing		learn about basic English grammar.
Japanese-to-English	2	Students learn about English grammar and practice revising their English
Translation Practice	3	writing.
Danaganaha	2	Students learn about paragraphs: the topic sentence and supporting sentences,
Paragraphs	2	and techniques for sequencing information in a paragraph.
Format of Research	3	Students learn about the standard format of a research article: the title, abstract,
Articles	3	method, results, discussion, and conclusion.
T	1	Students practice listening comprehension using videos presenting scientific
Listening Practice	1	and technical information.
Online Learning	2	Writing Paragraphs

[Textbook] No text – all materials are supplied by the teachers.

【Textbook(supplemental)】 Yukiko Nakayama, Gijutsu kei Eibun Raithingu Kyohon (Technical Writing Textbook), Japan Society for Technical Communication

Anne M. Coghill and Lorrin R. Garson, The ACS style guide, 3rd, The American Chemical Society.

[Prerequisite(s)] Students need to have basic English skills at undergraduate level.

【Independent Study Outside of Class】

[Web Sites] http://www.glc.t.kyoto-u.ac.jp/ja/study/grad/10d040

[Additional Information] We may restrict the class size to enhance students 'learning. Students who intend to join the course are required to attend the first-day guidance.

Advanced Theory of Architectureand Architectural Engineering I 先端建築学特論

[Code] 10Q021 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] C2-213 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] Japanese

[Instructor] Monnai, Kishi, Katoh, Takada, Yamagishi, Kanki, Hokoi, Takahashi, Harada, Maki,

【Course Description】 Each professor gives a lecture for one or two hours.

Grading 1 Each professor assigns one report at the end of his/her lecture. Students choose three of ten assignments and submit reports (about 1200 words per report). Evaluation will be done as follows: Regular students: Evaluation is done only by reports. But students must attend at least half of lectures. Working students: Evaluation is done by either (1) reports (80%) and attendance (20%), or (2) reports only (100%). In case (2), student must submit four reports. In any case, students can submit reports for the lectures they attended.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】 none

【Textbook(supplemental)】

[Prerequisite(s)]

[Independent Study Outside of Class]

【Web Sites I none

Advanced Theory of Architectureand Architectural Engineering II

先端建築学特論

[Code] 10Q022 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Architectural Design and Planning I

建築設計・計画学セミナー

[Code] 10Q005 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Architectural Design and Planning II

建築設計・計画学セミナー

[Code] 10Q006 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Architectural Design and Planning III

建築設計・計画学セミナー

[Code] 10Q017 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Architectural Design and Planning IV

建築設計・計画学セミナー

[Code] 10Q018 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Structural Engineering of Buildings I

建築構造学セミナー

[Code] 10Q008 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Structural Engineering of Buildings II

建築構造学セミナー

[Code] 10Q009 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Structural Engineering of Buildings III

建築構造学セミナー

[Code] 10Q015 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Structural Engineering of Buildings IV

建築構造学セミナー

[Code] 10Q016 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Environmental Engineering I

建築環境工学セミナー

[Code] 10Q011 [Course Year] Doctor Course [Term] 1st term

【Class day & Period】 To be determined among participants and instructors

[Location] To be determined among participants and instructors [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Seminar [Language] Japanese [Instructor] Instructors in Architectural Environmental Lab's

[Course Description] Seminar topics are selected among heat transfer, human comfort on thermal, lighting, sound sensation, building systems such as HVAC, water supply, sanitation and electricity. Through discussions, the participants are encouraged to understand deeply the subject and to develop ability to think themselves. To increase the progress of doctoral study, presentation and report are obligatory in order to receive instructions by professors and to join discussion among participants.

[Grading] Presentation of research contents of his/her own and discussions among other participants and professors are necessary. The degree of understanding, the ability of conducting research by his/her own intension, the skills of presentation will be evaluated. In addition, the interest to broader range of research area, the ability of finding and solving problems are judged.

[Course Goals] The course intends to summarize the development of his/her own research, to devlope skills to convey his/her ideas to the researchers in other areas and to join discussions in multiple viewpoints properly.

[Course Topics]

Theme	Class number of times	Description
Research		Participants shall make presentations on the research of his/her own and make
presentations and	15	discussions among other participants and instructors.
discussion		discussions among other participants and histructors.

【Textbook】 None specified.

[Textbook(supplemental)] Supplemental textbooks will be specified during the course if necessary.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This seminar shall not be registered in parallel with Seminar on Environmental Engineering III.

Seminar on Environmental Engineering II

建築環境工学セミナー

[Code] 10Q012 [Course Year] Doctor Course [Term] 2nd term

【Class day & Period】 To be determined among participants and instructors

[Location] To be determined among participants and instructors [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Seminar [Language] Japanese [Instructor] Instructors in Architectural Environmental Lab's

[Course Description] Seminar topics are selected among heat transfer, human comfort on thermal, lighting, sound sensation, building systems such as HVAC, water supply, sanitation and electricity. Through discussions, the participants are encouraged to understand deeply the subject and to develop ability to think themselves. To increase the progress of doctoral study, presentation and report are obligatory in order to receive instructions by professors and to join discussion among participants.

[Grading] Presentation of research contents of his/her own and discussions among other participants and professors are necessary. The degree of understanding, the ability of conducting research by his/her own intension, the skills of presentation will be evaluated. In addition, the interest to broader range of research area, the ability of finding and solving problems are judged.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Research	'	Participants shall make presentations on the research of his/her own and make
presentations and	15	discussions among other participants and instructors.
discussion		discussions among other participants and histractors.

【Textbook】None specified.

【Textbook(supplemental)】 Supplemental textbooks will be specified during the course if necessary.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 This seminar shall not be registered in parallel with Seminar on Environmental Engineering IV.

Seminar on Environmental Engineering III

建築環境工学セミナー

[Code] 10Q013 [Course Year] Doctor Course [Term] 1st term

【Class day & Period】 To be determined among participants and instructors

[Location] To be determined among participants and instructors [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Seminar [Language] Japanese [Instructor] Instructors in Architectural Environmental Lab's

Course Description Seminar topics are selected among heat transfer, human comfort on thermal, lighting, sound sensation, building systems such as HVAC, water supply, sanitation and electricity. Through discussions, the participants are encouraged to understand deeply the subject and to develop ability to think themselves. To increase the progress of doctoral study, presentation and report are obligatory in order to receive instructions by professors and to join discussion among participants.

【Grading】 Presentation of research contents of his/her own and discussions among other participants and professors are necessary. The degree of understanding, the ability of conducting research by his/her own intension, the skills of presentation will be evaluated. In addition, the interest to broader range of research area, the ability of finding and solving problems are judged.

[Course Goals] The course intends to summarize the development of his/her own research, to devlope skills to convey his/her ideas to the researchers in other areas and to join discussions in multiple viewpoints properly.

[Course Topics]

Theme	Class number of times	Description
Research		Participants shall make presentations on the research of his/her own and make
presentations and	15	discussions among other participants and instructors.
discussion		discussions among other participants and histructors.

【Textbook】 None specified.

[Textbook(supplemental)] Supplemental textbooks will be specified during the course if necessary.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This seminar shall not be registered in parallel with Seminar on Environmental Engineering I.

Seminar on Environmental Engineering IV

建築環境工学セミナー

[Code] 10Q014 [Course Year] Doctor Course [Term] 2nd term

【Class day & Period】 To be determined among participants and instructors

[Location] To be determined among participants and instructors [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Seminar [Language] Japanese [Instructor] Instructors in Architectural Environmental Lab's

[Course Description] Seminar topics are selected among heat transfer, human comfort on thermal, lighting, sound sensation, building systems such as HVAC, water supply, sanitation and electricity. Through discussions, the participants are encouraged to understand deeply the subject and to develop ability to think themselves. To increase the progress of doctoral study, presentation and report are obligatory in order to receive instructions by professors and to join discussion among participants.

[Grading] Presentation of research contents of his/her own and discussions among other participants and professors are necessary. The degree of understanding, the ability of conducting research by his/her own intension, the skills of presentation will be evaluated. In addition, the interest to broader range of research area, the ability of finding and solving problems are judged.

[Course Goals] The course intends to summarize the development of his/her own research, to devlope skills to convey his/her ideas to the researchers in other areas and to join discussions in multiple viewpoints properly.

[Course Topics]

Theme	Class number of times	Description
Research		Participants shall make presentations on the research of his/her own and make
presentations and	15	•
discussion		discussions among other participants and instructors.

【Textbook】 None specified.

[Textbook(supplemental)] Supplemental textbooks will be specified during the course if necessary.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This seminar shall not be registered in parallel with Seminar on Environmental Engineering II.

10D051

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 5th

[Location] Funai Hall [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

【Course Description】

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Exercise in Practical Scientific English

実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] Thu 4th or 5th [Location] A2-304 [Credits] 1

[Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] Japanese and English

[Instructor] Y. Nakayama and T. Mizuno

[Course Description] Students learn about the basics of technical writing in English, and learn about and practice the format, style, and mechanics of the scientific research article. We may restrict the class size to enhance learning. The course is shared by Master 's and Doctoral Course students.

[Grading] Students are required to submit an initial report and a mid-term report. Students failing to submit the mid-term report will be given no credit.

[Course Goals] Students develop basic communication skills needed to work for international organizations through practicing scientific English writing.

【Course Topics】

Theme	Class number of times	Description
Course Outline and		Students examine the aim and requirements of the course, and look at the key
Introduction to	1	points for writing correctly, clearly, and concisely. (The class schedule may
Technical Writing		change without notice.)
Design of Tanhaical		Students learn about the definition and basic rules for technical writing, and
Basics of Technical	3	look at common mistakes made by non-native writers of English. Students also
Writing		learn about basic English grammar.
Japanese-to-English	3	Students learn about English grammar and practice revising their English
Translation Practice		writing.
Davagranha	2	Students learn about paragraphs: the topic sentence and supporting sentences,
Paragraphs		and techniques for sequencing information in a paragraph.
Format of Research	3	Students learn about the standard format of a research article: the title, abstract,
Articles	3	method, results, discussion, and conclusion.
Tistanina Duastiaa	1	Students practice listening comprehension using videos presenting scientific
Listening Practice		and technical information.
Online Learning	2	Writing Paragraphs

【Textbook】No text - all materials are supplied by the teachers.

【Textbook(supplemental)】 Yukiko Nakayama, Gijutsu kei Eibun Raithingu Kyohon (Technical Writing Textbook), Japan Society for Technical Communication

Anne M. Coghill and Lorrin R. Garson, The ACS style guide, 3rd, The American Chemical Society.

[Prerequisite(s)] Students need to have basic English skills at undergraduate level.

【Independent Study Outside of Class】

[Web Sites] http://www.glc.t.kyoto-u.ac.jp/ja/study/grad/10d040

[Additional Information] We may restrict the class size to enhance students 'learning. Students who intend to join the course are required to attend the first-day guidance.

Professional Scientific Presentation Exercises (English lecture)

科学技術者のためのプレゼンテーション演習(英語科目)

【Code】10i041 【Course Year】Doctor Course 【Term】1st term 【Class day & Period】Wed 5th

【Location 】B-Cluster 2F Seminar Room 【Credits 】1

【Restriction】 The number of students might be limited if too many students will get enrolled.

[Lecture Form(s)] Semina r [Language] English

【Instructor】 Juha Lintuluoto, Associate Professor, Department of Synthetic Chemistry and Biological Chemistry 【Course Description】 It is imperative for future engineers to be able to communicate and deliver effectively scientific information to large variety of audiences. This skill enables engineers to share and absorb information to more extended audiences, and facilitates success in selling ideas and products, publishing and team working. The purpose of this course is to teach the basic rules needed for successful professional scientific presentation, both orally and written. The course also prepares students to deliver scientific information presentations to wide audiences. The course is consisted of excessive exercises, of which the student should complete seven (7) tasks. The course holds 3-4 tasks for oral presentation exercises, and 3-4 tasks for professional scientific writing exercises. The exact number of both exercises is adjusted for each student's needs. The course is aimed for doctor course (DC) students, both Japanese and Foreign nationals

【Grading】Reports, class activity, presentation

【Course Goals】 This course is aimed to foster engineering students' scientific presentation skills. The successfully course completed students will be able to express and present complicated and specific scientific information at more generally understandable level. The students will also be able to pose relevant questions and effectively answer to the wide variety of questions.

[Course Topics]

Theme	Class number of times	Description
	1	Guidance and Professional presentation rules and etiquette
	3	Oral presentations & questioning I, Written report I
	3	Oral presentations & questioning I, Written report I
	3	Oral presentations & questioning II, Written report II
	3	Oral presentations & questioning II, Written report II
	2	Oral presentations & questioning III, Written report III
		Oral presentations & questioning III, Written report III
		Oral presentations & questioning IV, Written report IV
		Oral presentations & questioning IV, Written report IV I
		Course summary and discussion

【Textbook】Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] -Fundamental skills about scientific presentation

- -Advanced English skills
- -Sufficient personal research results

【Independent Study Outside of Class】

[Web Sites] The web-site is listed in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credit of this course is counted as the unit for graduation requirement at department level. Course starts at April 13th, and the 1st lesson is repeated on April 20th. The course schedule is irregular. Most classes are biweekly, the detailed schedule is provided at the 1st lecture.

Advanced Engineering and Economy (English lecture)

工学と経済(上級)(英語科目)

[Code] 10i042 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 5th [Location] B-Cluster 2F Seminar Room [Credits] 2 [Restriction] The number of students might be limited if too many students will get enrolled.

[Lecture Form(s)] Lectures, Group works&tasks [Language] English

[Instructor] Juha Lintuluoto, Associate Professor, Department of Synthetic Chemistry and Biological Chemistry

[Course Description] Engineering economics plays central role in any industrial engineering project. For an engineer, it is important to apply the engineering know-how with the economic analysis skills to obtain the best available materials, methods, devices, etc. in the most economical way. This course is aimed to teach engineering students the basic economic methods to manage economically an engineering project. In addition, the report writing on various engineering economic issues prepares to write reports in a professional form. The lab sessions are meant for the verbal skills improvement as well as improvement of analytical thinking. The topics are of current relevant topics Small-group brain-storming method is used. The exercise sessions cover the use of Ms-Excel for various quantitative economic analyses.

[Grading] Final test, reports, class activity

[Course Goals] This course is aimed to strengthen engineering students 'skills in economics. The course concept is to teach students selectively those subjects which serve as major tools to solve economic tasks in engineering environment. The reports and lab sessions provide students stimulating and analytical thinking requiring tasks, and presentation skills training is an important part of this course.

[Course Topics]

Theme	Class number of times	Description
Student orientation and		
Introduction to engineering	1	
economy		
Cost concepts and design		
economics	1	
Cost estimation techniques	1	
The time value of money	1	
Evaluating a single project	1	
Comparison and selection	1	
among alternatives	1	
Depreciation and income	1	
taxes	1	
Price changes and exchange	1	
rates	1	
Replacement analysis	1	
Evaluating projects with the	1	
benefit-cost ratio method		
Breakeven and sensitivity	1	
analysis	•	
Probabilistic risk analysis	1	
The capital budgeting	1	
process	•	
Decision making	1	
considering multiattributes		
Final test	1	
		Additionally, students will submit five reports during the course on given engineering economy subjects.
		Also, required are the five lab participations (ca.60 min/each) for each student. Additionally, three
		exercise sessions (ca.60 min/each), where use of Ms-Excel will be practiced for solving various

【Textbook】 Engineering Economy 15th ed. William G. Sullivan (2011)

【Textbook(supplemental)】Will be informed if necessary.

[Prerequisite(s)] -This course is highly recommended for those who attend "Engineering Project Management" course, Small group working method Independent Study Outside of Class]

[Web Sites] The web-site is listed in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credits of this course are counted as the units for graduation requirement at department level. The course starts on Apr.12th.

engineering economy tasks, should be completed

Engineering Project Management (English lecture)

エンジニアリングプロジェクトマネジメント (英語科目)

[Code] 10i047 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 4th [Location] B-Cluster 2F Seminar Room

[Credits] 1 [Restriction] [Lecture Form(s)] Lectures, Group works&tasks [Language] English

[Instructor] GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto

Assoc.Prof. Lintuluoto, J. Assoc.Prof. Nishi

[Course Description] The purpose of this course is to teach the basic skills needed for expressing and initiating ideas, and presenting information in successful international engineering group work. The course provides simulations for students in group managing and decision making in international engineering teams. International teamwork ethics subjects for successful engineering project will be practiced. The course consists of lectures, case studies, the invited lecture from an industry representative and the final examination. Also, a project report exercise is included in this course. The course is basically designed for doctor course (DC) students, both Japanese and foreign nationals. If place are available they may be given to master course students.

【Grading 】Report, class activity, presentation

[Course Goals] This course is the pre-course for Engineering Project Management II which will be held in the second semester. Students will learn project management tools, apply project strategies and perform qualitative risk analyses. Also students will learn how to carry out projects with group members from various countries and engineering fields.

[Course Topics]

Theme	Class number of times	Description	
Total destination to the comme		4/8 The introduction to the course and preliminary knowledge about the engineering project management	
Introduction to the course	1	will be given. (All)	
Project Management	1	4/15 I (Lintuluoto)	
Project Management	1	4/22 II (Lintuluoto)	
Management of abroad	1	5/6 Through an abroad dispatched project of Graduate School of Engineering, Kyoto University, the	
dispatched project	1	development and management of the project in University will be given. (Mizuno)	
TBA	1	5/13	
Leadership Skills	1	5/20 I (Tanaka)	
Leadership Skills	1	5/27 II (Tanaka)	
Risk Identification and	1	(OLOU 1)	
Assessment for Engineers	1	6/3 I (Nishi)	
		6/10 II	
Risk Identification and	1	Products failure potentially causes serious economic and human damages. This lecture firstly overviews	
		some mechanisms of failure, and introduces actual examples of failure accidents and their costs. And	
Assessment for Engineers		then, damage-tolerance-design methodology in which remaining life and inspection intervals are	
		quantified through fracture mechanics analyses is explained.(Matsumoto)	
Design and design thinking	1	6/17 I (Takatori)	
Design and design thinking	1	6/24 II (Takatori)	
Special Lecture from	1	7/1	
Industry	1	7/1	
Special Lecture from	1	7/9	
Industry	1	7/8	
Special Lecture from	1	7/15	
Industry	1	//15	
Review of the course	1	7/22 Review of the course	

【Textbook】 Course materials will be provided.

[Textbook(supplemental)]

[Prerequisite(s)] '-This course is recommended for those who later intend to attend "Engineering Project Management II".

-Highly interactive lessons (discussion), Small group work methodologies.

[Independent Study Outside of Class]

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department. The course starts on Apr. 10th.

Engineering Project Management (English lecture)

エンジニアリングプロジェクトマネジメント (英語科目)

[Code] 10i048 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] B-Cluster 2F Seminar Room [Credits] 1 [Restriction] Student number will be limited.

[Lecture Form(s)] Seminar [Language] English

[Instructor] GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto, Ashida,

Assoc.Prof. Lintuluoto

【Course Description】 In this course, students will apply the engineering know-how and the skills of management, group leadership, and international communication which they learned in the course of "Engineering Project Management I" to build and carry out a virtual inter-engineering project. This course provides a forum where students ' team-plan based on ideas and theories, decision making, and leadership should produce realistic engineering project outcomes. The course consists of intensive group work, presentations, and a few intermediate discussions. A written report will be required.

【Grading】Report, class activity, presentation

[Course Goals] This course prepares engineering students to work with other engineers within a large international engineering project. In particular this course will focus on leadership and management of projects along with applied engineering skills where the students learn various compromises, co-operation, responsibility, and ethics.

[Course Topics]

Theme	Class number of times	Description
		Introduction to Engineering Project Management
Guidance	1	Lecture on tools for the Engineering Project Management
		Practice
Practice I	2	Each student practices the tools for the Engineering Project Management
		Each project team may freely schedule the group works within given time
Group work I	2	frame. In addition to "Intermediate discussion" sessions, the course
		instructors are available if any such need is required.
Presentation I &		
Intermediate	1	Each project team has a presentation
discussion I		
Group work II	2	
Intermediate	1	
discussion II	1	
Group work III	2	
Presentation II	1	
Final discussion	1	

[Textbook] Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] Fundamental skills about group leading and communication, scientific presentation.

【Independent Study Outside of Class】

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department.

Applied Numerical Methods

応用数値計算法

[Code] 10G001 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Toshiyuki Tsuchiya,

Course Description Numerical techniques, such as the finite element method and numerical control method, are indispensable in mechanical engineering. In this lecture, basics of numerical techniques which are required to study advanced methods for graduated students will be explained. The lecture will cover the error evaluation, linear system solution (Ax=b), eigenvalue analysis, interpolation approximation method, solutions of ordinary differential equation and partial differential equation. The programing exercise is included in this lecture.

【Grading】 Home works (four home works will be assigned) and examination.

[Course Goals] Understandings of mathematical theories and programing implementations of the numerical methods.

[Course Topics]

Theme	Class number of times	Description
		Introduction of this class
Introduction	1	Numerical representations and errors
		Macro programing using spread sheet applications
Numarical Emar		Matrix
Numerical Error,	1	Norms
Approximation		Singular value decomposition
Linear simultaneous	2	Solution of simultaneous linear equations
equation 1		direct method, iteration method
Eigenvalue analysis	2	Eigenvalue problems
Interpolation	1.5	Interpolation and its errors
Numerical integra 1	1.5	Numerical integration methods
Normal differential		explicit method, implicit method
equation and	2	initial value problem, boundary value problem
numerical integral		initial value problem, boundary value problem
Partial differential		Differential expression of partial differential
	3	Diffusion equation, wave equation
equation		Poisson equation, Laplace equation
Examination	1	Feedback for homework and examination

【Textbook】 Lecture note will be given.

【Textbook(supplemental)】 Golub, G. H. and Loan, C. F. V., Matrix Computations, John Hopkins University Press R.D.Richtmyer and K.W.Morton, Difference Methods for Initial-Value Problems, Second Edition, John Wiley & Sons 1967

[Prerequisite(s)] Basic mathematics for undergraduates

Basic macro programing

【Independent Study Outside of Class】Problems are based on macro on Microsoft Excel or LibreOffice (OpenOffice).

[Web Sites] Lecture notes, home works, and other info will be distributed through PandA:

https://panda.ecs.kyoto-u.ac.jp

【Additional Information】 Have a PC with Microsoft Excel with VBA or LibreOffice (https://ja.libreoffice.org/). Apache OpenOffice(http://www.openoffice.org/ja/) wil be also ok.

Solid Mechanics, Adv.

固体力学特論

[Code] 10G003 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] S. Biwa, M. Nishikawa

[Course Description] In Part I, fundamental issues of the finite deformation analysis of solids and structures are introduced, including tensor analysis, kinematics of continua, conservation laws, and various stress/strain measures. In Part II, basic ideas of elastoplastic and viscoplastic theories are lectured to describe nonlinear material properties, and the derivation of inelastic constitutive equations and their application to numerical analyses are also introduced.

【Grading 】 Grading is based on the examination, possibly with considerations of the homework reports.

[Course Goals] The goal is to understand the concepts of finite deformation analysis and inelastic constitutive relations, which constitute the basis of computational mechanics simulations for mechanical/structural design.

[Course Topics]

Theme	Class number of times	Description	
Part I. Fundamentals of			
finite deformation			
analysis			
		Tensor as a linear transformation; Tensor algebra; Transformation of tensor components due	
I-1. Tensor analysis	2	to change of basis; Eigenvalues of symmetric tensors; Spectral decomposition; Integral	
		theorem	
		Reference and current configurations; Deformation gradient; Cauchy-Green deformation	
I-2. Kinematics	2	tensors; Polar decomposition; Strain tensors; Velocity and acceleration; Material time	
		derivative; Deformation-rate tensor and spin tensor	
I-3. Conservation laws	2	Conservation of mass; Laws of motion by Euler and Cauchy; Cauchy stress tensor; Equation	
1-3. Conservation laws		of motion; Conservation of energy	
I-4. Various definitions	2	First and second Piola-Kirchhoff stresses; Alternative expression of equation of motion;	
of stress	2	Principle of virtual power	
Part II. Basis of inelastic			
analyses			
II-1. Constitutive		Models of alsoticity for uniquial tancium Vield functions for instrumin materials. Work	
equations of elastoplastic	3	Models of plasticity for uniaxial tension; Yield functions for isotropic materials; Work	
body		hardening; J2 flow theory; Elastoplastic constitutive equations	
II-2. Numerical methods	2	In a compared vietual vicule animain la Davis for in a compared finite alamant	
for elastoplastic body 1		Incremental virtual work principle; Basis for incremental finite element analyses	
II-3. Numerical methods		Amplication to multiprial machiners Numerical magazines to follow vi-13	
for elastoplastic body 2	2	Application to multiaxial problems; Numerical procedure to follow yield surfaces	

[Textbook] Parts I, II: Lecture materials are distributed in the classroom or to be downloaded on the website.

【Textbook(supplemental)】 Part I: T. Kyoya, "Continuum Mechanics," Morikita (2008) (in Japanese); E. Tanaka, "Kotai Rikigaku No Kiso," Kyoritsu (2014) (in Japanese); A. J. M. Spencer, "Continuum Mechanics," Dover (1980).

Part II: Y. Tomita, "Foundation and Application of Elastoplasticity," Morikita (1995); E. Neto et al., "Computational Methods for Plasticity," John Wiley & Sons (2008).

[Prerequisite(s)] Enrolling students are expected to have good knowledge in "Mechanics of Materials," "Continuum Mechanics," or "Mechanics of Solids" courses on the undergraduate level.

[Independent Study Outside of Class] Enrolling students are expected to work on the distributed lecture materials and the homework problems.

[Web Sites] The URL will be informed during the semester.

[Additional Information] The order and hours (weights) for each item are subject to possible change.

Thermal Science and Engineering

熱物理工学

[Code] 10G005 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] H. Yoshida & M. Matsumoto,

【Course Description】 Several topics in advanced thermal physics are discussed. From microscopic view points, basics of stochastic process and related topics are given. From macroscopic ones, after the concept of entropy is revisited, applications in global environments and hydrogen energy are described.

[Grading] Reports, essays, and/or written examinations.

【Course Goals】 Microscopic Viewpoints: Ability of multi-scale modelling

Macroscopic Viewpoints: Ability of global environment modelling

[Course Topics]

Theme	Class number of	Description
	times	
(M) Brownian	1	
motion		
(M) Transport		
phenomena and	1	
correlation functions		
(M) Spectral analysis	2	
and fractal analysis		
(M) Stochastic		
process and its	3	
applications		
(Y) Entropy and free	1	
energy: revisit	1	
(Y) Science of		
atmosphere and	3	
ocean		
(Y) Hydrogen energy	3	
Check and feedback	1	
ocean (Y) Hydrogen energy	3	

【Textbook】Not specified.

【Textbook(supplemental)】

[Prerequisite(s)] Elementary thermodynamics, Statistical physics, Heat transfer engineering, Numerical analysis etc.

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】(2016)

Yoshida: April 11 ~ May 23 Matsumoto: May 30 ~ July 11

Introduction to Advanced Fluid Dynamics

基盤流体力学

[Code] 10G007 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Condensed Matter Physics

量子物性物理学

[Code] 10G009 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	4	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Design and Manufacturing Engineering

設計生産論

[Code] 10G011 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	3	
	2	
	3	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Dynamic Systems Control Theory

動的システム制御論

[Code] 10G013 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Engineering Ethics and Management of Technology

技術者倫理と技術経営

[Code] 10G057 [Course Year] Master 1st [Term] 1st term [Class day & Period] Thu 3rd

[Location] Butsurikei-Kousya [Credits] [Restriction] No Restriction [Lecture Form(s)] Lectures and Exercise

[Language] Japanese [Instructor] Sawaragi, Nishiwaki, Tomita, M. Komori, Tsuchiya, Noda, Sato, Iseda,

Course Description Basic knowledge of Engineering Ethics and Management of Technology needed for future project leaders in companies and society is taught. Students have to make group work after-class hours as well as presentations of wrapping-up the discussions. Engineering ethics is the field of applied ethics and system of moral principles that apply to the practice of engineering. The field examines and sets the obligations by engineers to society, to their clients, and to the profession. Management of Technology is a set of management disciplines that allows organizations to manage their technological fundamentals to create competitive advantage. This course consists of lectures, exercises, discussions and oral presentations under supervision of professional faculties and extramural lecturers.

【Grading】 Submission of reports and presentations

[Course Goals] To cultivate a spirit of self-sufficiency needed for engineers

【Course Topics】

Theme	Class number of times	Description
		1. Introduction to Engineering Ethics (EE)
		2.Medical Engineering Ethics
		3.EE by Institution of Professional Engineers, Japan and abroad
		4.Product Safety and Product Liability
Engineering Ethics	9	5.Comprehensive Manufacturing and EE (1)
		6.Comprehensive Manufacturing and EE (2)
		7.Group Discussions
		8.History and Philosophy of EE
		9.Presentation on exercise of EE
	5	1.Product Portfolio, Strategy for Competition
Managament of		2.Bussiness Domain and MOT for Marketing
Management of		3. Organizational Strategy for Corporates' R & D
Technology		4. Management Theory for R & D
		5.Presentation on exercise of MOT
Summary	1	

【Textbook 】No textbook

【Textbook(supplemental)】Nothing

[Prerequisite(s)] Nothing particular

[Independent Study Outside of Class]

[Web Sites] No Web Site

【Additional Information】 Nothing particular

Fracture Mechanics

破壊力学

[Code] 10G017 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Takayuki Kitamura,

[Course Description] The basics of the fracture mechanics will be lectured.

Elastic problem, Stress function of a crack, Stress field around a crack tip, Stress intensity factors, Energy release rate,

J-integral, Elastic plastic fracture mechanics, Interfacial fracture mechanics etc.

Fracture toughness, Crackings in fatigue, environmental fatigue and creep-fatigue etc.

【Grading】Mini-reports will be evaluated.

[Course Goals] The objective of this lecture is to master the basic knowledge of the fracture mechanics, and to be able to discuss about material strength on the basis of the knowledge.

【Course Topics】

Theme	Class number of times	Description
		Introduction
		Examples of fracture in real components
Introduction	2	Deformation and fracture
		Stress concentration and singular stress field
		Basics of solid mechanics
		Mechanics of cracked body under linear elasticity
T: C /		Singular stress field near a crack tip, Stress intensity factor, Energy release rate,
Linear fracture	3	J-integral, Small scale yielding
mechanics		Interfacial fracture mechnics in dissimilar materials, Stress field near an interface edge,
		Stress field near an interfacial crack
No. 11 Constant	2	Fracture mechanics in non-linear elastic solid
Nonlinear fracture		HRR singular field, J-integral, creep
mechanics		Stress field near an interface edge
		Application of fracture mechanics to fracture toughness
farcture phenomenon	3	Application of fracture mechanics to fatigue cracking
and mechanics	3	Application of fracture mechanics to environmental cracking
		Application of fracture mechanics to fatigue cracking at high temperatures
fracture mechanics on	1	Growth of physicall small crack
growth of small cracks	1	Growth of microstrucually small crack
Smakk crack and cavity	1	Cavity growth by diffusion creep
in creep	1	Difference of stress filed between crack and cavity
Fracture	1	Research works on fracture mechanics in nanometer scale
nanomechanics	1	Research works on fracture mechanics in nanometer scale
Fracture in atomic scale	1	Research works on fracture in atomic scale
Summary	1	Discussion and report

【Textbook】 The teacher provide articles for this lecture.

【Textbook(supplemental)】

[Prerequisite(s)] The traditional material strength and the linear elastic mechanics should be learned before taking this lecture.

【Independent Study Outside of Class】

[Web Sites]

Physics of Neutron Scattering

中性子物理工学

[Code] 10B628 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 4th

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] K. Mori, Y. Onodera

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10B407

Robotics

ロボティクス

[Code] 10B407 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 2nd[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Fumitoshi Matsuno,

Course Description \ Understanding of intelligent behaviors of living things is very interesting. And realization of their intelligent motion by a robot is also attractive for mechanical engineering. In this lecture, we consider basic understanding of beautiful human skill "manipulation" on the point of view of dynamics and control. First modeling methodologies for a rigid multibody system and a general dynamic model of a manipulator are provided. Next, a typical nonlinear control law is introduced and some problems for applying the controller are shown. Based on nature of the dynamics of the manipulator, a very simple and robust controller can be derived by designing energy of the system. This lecture provides modeling methodologies and controller design strategies of the rigid multibody system and we analyze a beautiful human skill of the manipulation.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	1	
	3	
	3	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Mechanical Functional Device Engineering

メカ機能デバイス工学

[Code] 10G025 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Wed 3rd

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	1	
	1	
	1	
	1	
	1	
	5	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Patent Seminar

特許セミナー

[Code] 10G029 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	3	
	2	
	2	
	5	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Basic Seminar on Mechanical Engineering and Science A

機械理工学基礎セミナーA

[Code] 10G036 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Basic Seminar on Mechanical Engineering and Science B

機械理工学基礎セミナーB

[Code] 10G037 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	2 0001.pul

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Mechanical Engineering and Science A

機械理工学セミナーA

[Code] 10G031 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	-	
	-	
	-	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Mechanical Engineering and Science B

機械理工学セミナーB

[Code] 10G032 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	-	
	-	
	-	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Finite Element Methods

有限要素法特論

[Code] 10G041 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd [Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture and Practice [Language] English [Instructor] Kotera and Nishiwaki,

Course Description This course presents the basic concept and mathematical theory of the Finite Element Method (FEM), and explains how the FEM is applied in engineering problems. We also address important topics such as the physical meaning of geometrical non-linearity, material non-linearity, and non-linearity of boundary conditions, and we explore numerical methods to deal with these nonlinearities. Also, we guide students in class in the use of software to solve several numerical problems, to develop practical skill in applying the FEM to engineering problems.

[Grading] Grading is based the quality of two or three reports and the final exam.

[Course Goals] The course goals are for students to understand the mathematical theory of the FEM and the numerical methods for analyzing non-linear problems based on the FEM.

[Course Topics]

Theme	Class number of times	Description	
Basic knowledge of the FEM	3	What is the FEM? The history of the FEM, classifications of partial differential equations, linear problems and non-linear problems, mathematical descriptions of structural problems (stress and strain, strong form and weak form, the principle of energy).	
Mathematical background of the FEM	2	Variational calculus and the norm space, the convergence of the solutions.	
FEM formulations	3	FEM approximations for linear problems, formulations of iso-parametric elements, numerical instability problems such as shear locking, formulations of reduced integration elements, non-conforming elements, the mixed approach, and assumed-stress elements.	
Classifications of nonlinearities and their formulations	4	Classifications of nonlinearities and numerical methods to deal with these nonlinearities.	
Numerical practice	2	Numerical practice using COMSOL.	
Evaluation of student achievements	1		

[Textbook]

[Textbook(supplemental)] Bath, K.-J., Finite Element Procedures, Prentice Hall

Belytschko, T., Liu, W. K., and Moran, B., Nonlinear Finite Elements for Continua and Structures, Wiley

[Prerequisite(s)] Solid Mechanics

【Independent Study Outside of Class】

[Web Sites]

Strength of Advanced Materials

先進材料強度論

[Code] 10B418 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd [Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] M. Hojo and M. Nishikawa,

[Course Description] The mechanism underlying mechanical and functional properties are lectured for advanced materials used and developed in advanced fields of current engineering. In particular, advanced composite materials, used for aircraft structure etc., are introduced, with a detailed description of the relationship between microscopic constituent materials and macroscopic properties from the perspective of multiscale mechanics; also the anisotropy of their properties, their fatigue and fracture properties are described in the basic discipline for strength of materials. The latest applications are introduced in the field of various transportation systems including airplanes.

【Grading】 Grading is based on the reports. The assignments will be given around three times.

[Course Goals] The course goal is to understand basic concepts of composite materials and the underlying mechanism of their mechanical properties from multiscale viewpoints, while the physical understanding of composites is developed based on multiple disciplines.

[Course Topics]

Theme	Class number of times	Description	
Concept of composite materials	2	The concept and definition of composite materials, their constituent materials and manufacturing methods are illustrated. Their application to aircraft structures etc. are also introduced.	
Mechanical properties of microscopic constituent materials	2	Resin for matrix and various fiber types are explained including their structure and mechanical properties. The weakest link model and Weibull distribution are described as a basis of the statistic nature of strength.	
Basic mechanical properties	4	The specific strength, the specific stiffness, and the rule of mixture for elastic modulus and strength are lectured. In particular, the detailed explanation is made to the anisotropy of elastic modulus, independent elastic constants in the generalized Hookean law, the anisotropic failure criteria, and laminate theory. The relationship between the mechanical properties of microscopic constituent materials and macroscopic properties of composite materials is also illustrated.	
Micromechanics	2	The mechanism of transverse fracture is illustrated. The mechanical models are described for short fiber reinforced composites and particle dispersed composites. The micromechanical analyses based on finite element method is also illustrated for the physical understanding of the strength of composite materials.	
Fracture mechanics properties	2	Fracture mechanics of anisotropic materials are described. The interlaminar fracture toughness and interlaminar fatigue crack propagation, the critical issues in the application of composite structures, are explained including their underlying mechanism.	
Superconducting materials	1	High-temperature superconducting materials are the composite materials consisting of metals and fibrous superconducting materials made of oxides. The mechanism are explained for understanding that their mechanical properties so much control their electric properties.	
Process and mechanical properties of composite materials	1	The molding and machining process of composite materials is explained to relate it to their mechanical properties. Fiber preform, the selection of resin, intermediate materials, machining and assembly and inspection methods are overviewed from the academic viewpoints.	
Academic achievement test	1	Academic achievements is assessed.	

【Textbook】 Supplementary handouts will be distributed in the class.

[Textbook(supplemental)] D.Hull and T.W.Clyne, "An Introduction to Composite Materials," Cambridge University Press.

[Prerequisite(s)] Mechanics of Materials, Continuum Mechanics, Fundamentals of Materials, Solid Mechanics, Adv.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] The order and the item in the course are possibly subject to change.

Thermophysics for Thermal Engineering

熱物性論

[Code] 10B622 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] M. Matsumoto

【Course Description】 Based on elementary thermodynamics and statistical physics, I will describe non-equilibrium thermodynamics and advanced statistical physics, including phase transition, pattern formation, and entropy production.

【Grading 】 Paper assignments

[Course Goals] Understanding the principle mechanisms of phase transition, cooperation phenomena, patern formation, and relaxation phenomena, in terms of advanced statistical mechanics and non-equilibrium thermodynamics.

[Course Topics]

Theme	Class number of times	Description
Elementary statistical physics: review	1	Review of equilibrium statistical mechanics
Phase transition as a cooperative phenomenon	3	Statistical mechanics of interacting particle system - Exact calculation - Monte Carlo simulation - Mean field approximation
Pattern formation of non-equilibrium systems	4	After a time dependent Ginzburg-Landau (TDGL) model is introduced, formation of spatial patterns is discussed from various viewpoints.
Equilibrium thermodynamics: review	1	Review of elementary thermodynamics
Non-equilibrium thermodynamics: Basics	2	System stability and the principle of irreversible process are discussed in terms of thermodynamics.
Non-equilibrium thermodynamics: Applications	3	- Entropy production - Linear response theory - Onsager's reciprocal relation
Check and Feedback	1	

【Textbook】Lecture note will be prepared.

【Textbook(supplemental)】 will be listed in the class.

[Prerequisite(s)] Undergraduate level of Thermophysics, Heat transfer phenomena, and Statistical physics

【Independent Study Outside of Class】

[Web Sites]

Transport Phenomena

熱物質移動論

[Code] 10G039 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd [Location] C3-Lecture Room 2 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Nakabe, Kazuyoshi, Tatsumi, Kazuya,

Course Description The important learning objective of this class is to understand the fundamental mechanisms of momentum, heat, and mass transfer phenomena, the knowledge of which will be markedly required for the thermal energy control technologies to further practice conservations of natural resources and energies for sustainable development. Heat and mass transfer processes consisting of conduction and forced/natural convection will be highlighted in detail, referring to the similarity characteristics of flow velocity, fluid temperature, and species concentration. Some topics on Reynolds stress, turbulent heat flux, and phase change will be introduced, expanding to their numerical models, together with some recent trends of high-tech heat and energy devices.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Surrounding		
Examples of	1	
Transport	1	
Phenomena		
Governing Equations		
and	3 ~ 4	
Non-Dimensional	3 ~ 4	
Parameters		
Boundary Layer	2 ~ 3	
Flows	2~3	
External and Internal	1 ~ 2	
Flows	1 ~ 2	
Turbulent	2 ~ 3	
Phenomena		
Topics of Flow and		
Heat Transfer	2 ~ 3	
Mechanism		
Estimation on Study	1	
Achievement	1	

[Textbook]

【Textbook(supplemental)】 Example: Transport Phenomena (Bird, R.B. et al.)

[Prerequisite(s)]

[Independent Study Outside of Class]

[Web Sites]

Engineering Optics and Spectroscopy

光物理工学

[Code] 10G021 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Masahiro Hasuo, Taiichi Shikama

Course Description Description

【Grading 】Grade evaluation will be based on report examination.

[Course Goals] Understand the principles of optical engineering and spectroscopy.

Develop application abilities based on the principle understanding.

[Course Topics]

Theme	Class number of times	Description	
Dispersion of light	6	propagation of light in dielectric media (Lorentz model), crystal optics,	
	,	nonlinear optics	
Quantum optics	1	quantum theory of light, principles of lasers	
Light-matter	5	light-induced transition, quantum states of atoms, molecules, and solids, and	
interactions		rules governing the transitions (selection rules)	
Selection rules and	2	introduction to group theory and its application to the selection rules	
group theory		introduction to group theory and its application to the selection rules	
Confirmation of the	1		
achievement	1		

[Textbook] Recommended books will be discussed in class.

【Textbook(supplemental)】Lecture notes will be distributed.

[Prerequisite(s)] Undergraduate-level electromagnetism and quantum mechanics.

[Independent Study Outside of Class]

[Web Sites]

Optimum System Design Engineering

最適システム設計論

[Code] 10G403 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	2	
	5	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10B631

High Energy Radiation Effects in Solid

高エネルギー材料工学

[Code] 10B631 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 3rd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] A. Kinomura, Q. Xu

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10B634

Advanced Experimental Techniques and Analysis in Engineering Physics 先端物理工学実験法

[Code] 10B634 [Course Year] Master and Doctor Course [Term] (intensively; in summer vacation)

[Class day & Period] [Location] Research Reactor Institute [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Theory for Design Systems Engineering

デザインシステム学

[Code] 10Q807 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Tetsuo Sawaragi and Hiroaki Nakanishi,

【Course Description】 The lecture focuses on the human design activity; designing artifacts (things, events and systems) based on human intuitions, and designing human-machine systems in which the relations between human and objects are of importance.

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	3	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

High Precision Engineering

超精密工学

[Code] 10B828 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd [Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese+Englihs [Instructor] Ari Ide-Ektessabi,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Introduction High precision Measurement High precision Measurement High precision	2	Introduction to High Precision Analysis Using Synchrotron Radiations Synchrotron Radiation and X-ray Fluorescence Spectroscopy Micro Imaging and Overtitative XRE micro Analysis		
Measurement High precision Measurement				
High precision Measurement				
Measurement	3	Migra Imaging and Quantitative VDE migra Analysis		
High precision		Micro Imaging and Quantitative XRF micro Analysis		
0 1	4	Eine Chrystyne Caretageeny		
Measurement	4	Fine Structure Spectroscopy		
High precision	5	Eina Structura Spactroscopy		
Measurement	3	Fine Structure Spectroscopy		
High precision	6	Synahrotron Padiation Massurament		
Measurement	O	Synchrotron Radiation Measurement		
Applications in	7	Elemental Images of Cinals Navyons by Using CD VDE I		
bio-nano technology	/	Elemental Images of Single Neurons by Using SR-XRF I		
Applications in	8	Elemental Images of Cincle Navious by Using CD VDE II		
bio-nano technology	0	Elemental Images of Single Neurons by Using SR-XRF II		
Applications in	9	Flamental Imaging of Mausa ES Calle(Application)		
bio-nano technology	9	Elemental Imaging of Mouse ES Cells(Application)		
Applications in	10	Application of Synchrotron Radiation in the Investigation of process of		
bio-nano technology	10	neuronal differentiation		
Applications in	11	Chemical State Imaging for Investigations of Neurodegenerative Disorders		
bio-nano technology	11	(Parkinsonism-Dementia Complex)		
Applications in	12	Chemical State Imaging for Investigations of Neurodegenerative Disorders:		
bio-nano technology	12	Chemical State of Iron in Parkinsonism Dementia Complex (PDC)		
Applications in	13			
bio-nano technology	13	Comparison with other techniques		
Applications in	1.4	Comparison with other techniques		
bio-nano technology	14	Comparison with other techniques		
	15			

[Textbook]

【Textbook(supplemental)】 Application of Synchrotron Radiation, Arid Ide-Ektessabi, Sp ringer 2007

[Prerequisite(s)]

【Independent Study Outside of Class】

【Web Sites】 http://ocw.kyoto-u.ac.jp/graduate-school-of-engineering-jp/ultra-high-precision-analysis/schedule 【Additional Information】

10V003

Biomechanics

バイオメカニクス

[Code] 10V003 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor] Taiji Adachi,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
	2	
	4	
	4	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D450

Biomolecular Dynamics

生体分子動力学

[Code] 10D450 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 3rd

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	5	
	4	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10W603

Introduction to Biomedical Engineering

医工学基礎

[Code] 10W603 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor],,,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10B440

Environmental Fluid Dynamics

環境流体力学

[Code] 10B440 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	6	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Turbulence Dynamics

乱流力学

[Code] 10Q402 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Hanazaki,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	4	
	2	
	2	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Crystallography of Metals

金属結晶学

[Code] 10G055 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 3rd [Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description] Metallic crystal structure and deformation behavior are lectured on the basis of metal physics and dislocation theory. Especially, mechanical properties of dislocation and its substructure, which is changed in association with deformation, are introduced, and the effect of grain boundary and free surface on dislocation motion is explained.

【Grading 】Reporting assignment

[Course Goals] The objective of this lecture is to deepen a further understanding of crystal growth methods, the dislocation theory and industrial problems.

【Course Topics】

Theme	Class number of times	Description
		Introduction
Introduction	1	Ideal strength and slip deformation
Introduction		Concept of dislocation
		Simulation
		Typical crystallographic structure
Basis of crystallography	1	Allotropic transformation
		Stereographic projection of crystal
High temperature and	1	Furnace
vacuum techniques	1	Vacuum pump
		Single- and bi-crystal growth
Crystal breeding	2	Crystal growth
Crystal breeding	Δ	Vapor deposition and thin film
	3	Plastic deformation of crystal
		Definition and type of dislocation
Dislocation theory		Strain field around dislocation
		Dislocation reaction
		Dislocation multiplication
		Dislocation substructure
Mechanical properties of	1	Grain boundary structure
single- and bi-crystals		Reaction between dislocation and grain boundary
single- and or-crystals		Deformation of micro- and nano- materials
		Fatigue of single crystal
Fatigue	3	Fatigue dislocation substructure
		Fatigue cracking mechanism
		Fatigue of micro- and nano- materials
Observation and analysis	2	Introduction of electron microscope and observation case
techniques		<u> </u>
Summary	1	Discussion and report

【Textbook】 The teacher provide articles for this lecture.

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar: Dynamics of Atomic Systems

原子系の動力学セミナー

[Code] 10Q610 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 5th [Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture + Exercise [Language] Japanese [Instructor] M. Matsumoto, M. Nishikawa, R. Matsumoto, T. Shimada, Y. Inoue [Course Description] Particle simulations are a tool of analyzing microscopic phenomena, and widely used in various fields of science and engineering. After providing the basics of particle simulation methods through lectures and exercises, we show various practical applications in thermofluids, solid materials, biophysics, and quantum systems.

【Grading】Reports, presentation/discussion

[Course Goals] - Understanding the basics of particle simulations - Mastering data analysis techniques

[Course Topics]

Theme	Class number of times	Description
Basics of MD		- Numerical simulation of equations of motion
	_	- Model potentials
simulations	5	- Data analysis
(M.Matsumoto)		- Equilibrium vs. non-equilibrium
Application:		
Thermofluidal	2	- Lennard-Jones fluids
systems (M.	2	- Interface, phase change, energy transport, etc.
Matsumoto)		
Application:		
Polymeric materials	2	- Fundamentals on mechanical (viscoelastic) properties of polymer materials
(Nishikawa)		- Application of molecular dynamics method of polymer materials
Application:	1	- MD simulation of biomolecular systems
Biosystems (Inoue)	1	- Recent examples
Application: Solid		Defended in and destruction
systems (R.	2	- Deformation and destruction
Matsumoto)		- Alternative methods
Application:		First minerals MD
Quantum systems	2	- First principle MD
(Shimada)		- Mechanical and electronic properties on nanoscale
Check and Feedback	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Elementary Level of

Analytical mechanics, Quantum mechanics, Material science, Thermodynamics, Statistical physics, Numerical analysis

【Independent Study Outside of Class】

[Web Sites]

10V007

Neutron Science Seminor 1

中性子材料工学セミナー

[Code] 10V007 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] Research Reactor Institute [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	2-3	
	2-3	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Neutron Science Seminar II

中性子材料工学セミナー

[Code] 10V008 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] Research Reactor Institute [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] K. Mori

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	2	
	9	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Mechanical Engineering

先端機械システム学通論

[Code] 10K013 [Course Year] Master and Doctor Course [Term] 2nd term

[Class day & Period] Tue 5th and Thu 4th [Location] C3-Lecture Room 5 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Faculty members from several fields

[Course Description] Lectures on recent topics in various fields of mechanical engineering will be given in English. This is mainly for foreing students (MC/DC), but Japanese students are also welcome.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Mechanics	2	Detailed schedule will be annouced later.
Materials	2	
Thermodynamics	2	
Fluid dynamics	2	
Control	2	
Design	2	
Microengineering	2	
Examination/Feedback	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This class will be given every two years; Not given in 2015.

10K005

Advanced Modern Science and Technology (English lecture)

現代科学技術特論(英語科目)

【Code】10K005	[Course Year] Master and Doctor Course	Term]	【Class day & Period】Thu 5th	【Location】A2-306	[Credits] 2(Semester system)	[Restriction] No Restriction
(Lecture Form(s)	Relay Lecture [Language] English					

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto Related professors

Course Description 1 Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
Who shake the dice?	1	Double slit phenomenon known as a prediction inability " quantum mechanics of the mystery (Feynman says) " can be every moment predicted by QED.(A. Tachibana: Dept. of Micro Engineering)	
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)	
Systems Control in Aeronautics and Astronautics	1	Systems control theory is used in several problems in aeronautics and astronautics. This lecture focuses on some of them and further gives an overview of this research based on them.(K. Fujimoto: Dept. of Aeronautics and Astronautics)	
Countermeasures of the Contaminated Water at Fukushima Daiichi Nuclear Power Station and that of the Contaminated Soil in Fukushima Area	1	The situation of contaminated water in Fukushima Daiichi Nuclear Power Station and soil contamination in and around Fukushima area and their technological countermeasures taken today will be introduced and discussed.(M. Yoneda: Dept. of Environmental Engineering)	
Polymer Synthesis beyond the 21st Century: Precision Polymerizations and Novel Polymeric Materials	1	We are now in the "Polymer Age", where synthetic polymer materials are indispensable in the modern human life: healthy, safe, comfortable, and sustainable. A critical challenge herein is to develop "precision polymerization", polymer-forming reactions that provide polymers of well-defined structures and designed functions. Given these backgrounds, this lecture will overview the following subjects: (a)What polymers are; (b)How to synthesize polymers; (c)How and where polymeric materials work and function; (d)Precision polymer synthesis; and (e)The future of polymeric materials.(M. Sawamoto: Dept. of Polymer Chemistry)	
Engineering Approach to Phase Behavior of Fluids Confined in Nanospace	1	Fluids confined in nano-scale pores exhibit peculiar phase behaviors that depends strongly on physico-chemical effects by pore walls and conditions of the bulk phase in equilibrium with the pore fluids, to which the engineering approach must be effective.(M. Miyahara: Dept. Chemical Engineering)	
Elucidation of Principles for the Self-organization of Mesoscale Colloidal Particles	1	The process of so-called the colloid crystal has been pursued to find out the key principles for the structure evolution, employing the Bro dynamics simulations. Also given in the lecture will be various pattern formations in the convective self-assembly of colloidal suspensio Miyahara: Dept. of Chemical Engineering)	
Architectural Design and Architectural Thinking	1	Architectural design is integration of thinking on architectural events and materials. I would like to discuss this architectural thinking and the method to embody it.(K. Takeyama: Dept. of Architecture and Architectural Engineering)	
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)	
Vacuum Nanoelectronics Devices in Harsh Environments	1	This lecture reviews the perspective of the modern vacuum electron devices based on miniaturized electron sources fabricated with contemporary semiconductor processes. The performance of the devices is evaluated in view of the device in harsh environments. (Y. Gotoh: Dept. of Electronic Science and Engineering)	
Advanced Digital Technology for Analytical Recording of Cultural Heritage Assets	1	(A. Ide: Dept. of Mechanical Engineering and Science)	
Protein Structure, Function, and Motion	1	Proteins work by fluctuating and changing their conformations. Protein structures and motions, which are essential for understanding their functions in detail, are introduced in conjunction with the state-of-art methods to analyze them.(K. Sugase: Dept. of Molecular Engineering)	
Laser-induced Breakdown Spectroscopy and Its Application to Underwater In-situ Elemental Analysis	1	Development of laser-induced breakdown spectroscopy (LIBS) for in-situ elemental analysis in water, and the application to resource exploration at sea bottom will be explained.(T. Sakka: Dept. of Energy and Hydrocarbon Chemistry)	
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications. (K. Otsuka: Dept. of Material Chemistry)	
Modern Techniques for Material Characterization	1	Overview of modern techniques for material characterization is given with basic principles and practical applications. Impacts on the life o people of characterization techniques are also included.(J. Matsuo: Dept. of Nuclear Engineering)	

【Textbook】 None

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students who take Autumn term should register "Lecture code 10H006".

10X411

Design of Complex Mechanical Systems

複雑系機械システムのデザイン

[Code] 10X411 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

10X402

Theory for Designing Artifacts

アーティファクトデザイン論

[Code] 10X402 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 5th [Location] C3-Lecture Room 4a [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Tetsuo Sawaragi, Kumiyo Nakakoji

[Course Description] The activity of design is fundamentally similar across a wide variety of domains. I use artifact in a broad and atypical sense to describe any product of intentional creation, including physical goods, services, information systems, buildings, landscapes, organizations, and societies. The central theme of this lecture is that a unifying framework informs the human activity of design across all domains. Especially, understanding user needs is a key element of problem definition, and that understanding is usually best developed with interactive and immersive methods. In this lecture, a variety of methodologies for participatory systems approach and an idea of user-experience are provided, and its contributions to the design process are discussed.

[Grading] Students will be evaluated based on the following criteria, in the order listed. (1) Exercises assigned in class: approx. 20% (2) Final exam: approx. 60% (3) Contributions to classwork (e.g., asking good questions): approx. 20%

[Course Goals] This course is aimed at developing the ability to apply methods for identifying problems and interactively analyzing/evaluating systems, based on understanding of the principles of artifact design and on systematic thinking.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	We will shed light on the concept of artifacts as something to be put on equal footing with natural objects and examine the history of artifacts in terms of how they were viewed in different ages — namely, artifacts as modes of representation in the ancient world, artifacts as necessities for survival in the middle ages, artifacts as forms of convenience in modern times, and artifacts as a means of perpetuation in the current era.
Artifact function and purpose	3	The effects that artifacts have on the outside world — i.e., other things — are "functions." Function is the concept of questioning the existence of an artifact, and design is the formulation of functions for achieving an intended purpose. We will discuss the categorization of artifacts in terms of how the "purpose" of artifacts relates to the context in which they are used, and look at the origins of artifacts from the perspective of semiosis.
Artifact design principles	2	To understand an artifact is to know how its internal structure acts on the outside world to realize its function. Today, cybernetics — which has explored the interaction between the physical world and the world of information — is expanding into a concept that encompasses society as well (second-order cybernetics), and concepts have been put forward for actively rethinking how human cognition and decision-making interact with the outside world (ecological approaches, socially distributed cognition, naturalistic decision-making). We will examine artifact design principles based on theories related human activity at the boundary of these externalities.
Artifact design representation and evaluation	3	Design must fulfill its role of enhancing the quality of life through the creation of not only individual artifacts, but also environments and social systems that encompass groups of artifacts and natural objects. We will discuss the path toward expanding the scope of design from physical objects to environments and social systems that include intangible services, including with regard to problem development/representation methods, how to set purposes of design, how to eliminate the ambiguities and conflicts among various goals, searching for alternative design strategies, design evaluation, and principles and methods of consensus-forming among different stakeholders.
User-centered artifact design	2	The quality of designs is something to be evaluated by the user, and hence there must be collaboration between users and designers/producers. Moreover, complex design challenges cannot be resolved by experts of only one discipline; they must be tackled by pooling the design-related knowledge of different domains. We will discuss the concept of user-centered design, design rationale, and international standards of design processes for achieving design that is grounded in the user 's needs/perspective.
Participatory systems approach	2	In order to deal with the design of large-scale, complex artifacts, one must take the approach of systemically structuring problems and basing design on diverse perspectives. We will broadly examine: interactive processes among system designers, users, and computers; methods of structurally modeling problems through repeated dialogue between experts in relative disciplines and computers; and ways of supporting the perceptions, interpretations, and decision-making of designers and users. We will also consider the utility of the participatory systems approach in smooth, effective implementation of system design.
Exercise in participatory systems approach	2	Students will apply the participatory systems approach to a real-world artifact design challenge, and report the results of this exercise.

[Textbook] Lecture notes used in class will be distributed as needed. Refer to "Textbook (supplemental)" below.

【Textbook(supplemental)】1. 吉川弘之 [2007] 人工物観,横幹,1(2),59-65 2. Suh, N.P. [1990] The Principles of Design, Oxford University Press (邦訳:スー(翻訳:畑村洋太郎)「設計の原理 - 創造的機械設計論」,朝倉書店,1992.) 3. 吉川弘之 [1979] 一般設計学序説,精密機械 45 (8) 20 - 26, 1979. 4. Vladimir Hubka and W. Ernst Eder [1995] Design Science, Springer 5. Simon,H.[1996] The Sciences of the Artificial Third edition 秋葉元吉、吉原英樹訳 [1999] 『システムの科学』パーソナルメディア 6. H・A・サイモン [1979] 稲葉元吉・倉井武夫訳,『意思決定の科学』,産業能率大学出版部 7. Hutchins, Edwin [1995] Cognition in the Wild. MIT Press 8. Klein, G., Orasanu, J., Calderwood, R., and Zsambok, C.E. [1993] Decision Making in Action: Models and Methods. Ablex Publishing Co., Norwood, NJ. 9. D・ノーマン [1986] The Design of Everyday Things, 野島久雄訳『誰のためのデザイン?:認知科学者のデザイン原論』、新曜社 10. 椹木、河村 [1981]:参加型システムズ・アプローチ 手法と応用、日刊工業新聞社ほか

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Office hours will be held for one hour before and after each class period (preferably 5th period on Tuesdays, but also 3rd period on Wednesdays).

Appointments for other times can be requested by e-mail.

Theory of Symbiotic Systems

共生システム論

[Code] 693518 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Mon 4th[Location] Integrated Research Bldg.-213 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],,,

【Course Description】 Various theories on developing and maintaining harmonious symbiosis among humans, artifacts, and environments are lectured and discussed. Topics include typical forms of harmonious coexistence such as in ecological systems, caring and artistic nature of communication and interactions, philosophical discussions on deep-ecology, and methodologies for designing symbiotic systems.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	3	
	3	
	3	
	1	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Control Theory for Mechanical Systems

機械システム制御論

[Code] 693510 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-315 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme Class number of times	Description
1	
3-4	
2-3	
3-4	
3-4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

693513

Theory of Human-Machine Systems

ヒューマン・マシンシステム論

[Code] 693513 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	3	
	2	
	3	
	3	
	1-2	
	1-2	
	1-2	
	1-2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Dynamical Systems, Advanced

力学系理論特論

[Code] 693431 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 4th

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

【Course Description】

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	2	
	2	
	2	
	2	
	1	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

653316

Heat Engine Systems

熱機関学

[Code] 653316 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 3rd [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	2	
	2	
	1	
	1	
	2-3	
	2-3	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Combustion Science and Engineering

燃焼理工学

[Code] 653322 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 1st [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1-2	
	1-2	
	1-2	
	1-2	
	1-2	
	1-2	
	1-2	
	1-2	
	1-2	
	1-2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Mechanical Engineering and ScienceA

機械理工学特別演習A

[Code] 10V012 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Mechanical Engineering and ScienceB

機械理工学特別演習 B

[Code] 10V013 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Mechanical Engineering and ScienceC

機械理工学特別演習C

[Code] 10V014 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Mechanical Engineering and ScienceD

機械理工学特別演習 D

[Code] 10V015 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	unies	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Mechanical Engineering and ScienceE

機械理工学特別演習 E

[Code] 10V016 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Mechanical Engineering and ScienceF

機械理工学特別演習 F

[Code] 10V017 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10G049

Internship M

インターンシップ M (機械工学群)

[Code] 10G049 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Internship DS

インターンシップ DS (機械工学群)

[Code] 10V019 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Internship DL

インターンシップ DL (機械工学群)

[Code] 10V020 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 6 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar of Complex Mechanical Engineering,A

複雑系機械工学セミナーA

[Code] 10V025 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity 10-1	10.12	Each group chooses an activity theme, and pursue the goal through discussion
	10-12	in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,B

複雑系機械工学セミナー B

[Code] 10V027 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading 】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,C

複雑系機械工学セミナーC

[Code] 10V029 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading 】Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity 10-1	10.12	Each group chooses an activity theme, and pursue the goal through discussion
	10-12	in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,D

複雑系機械工学セミナーD

[Code] 10V031 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading 】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,E

複雑系機械工学セミナーE

[Code] 10V033 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,F

複雑系機械工学セミナーF

[Code] 10V035 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] Engineering Science Depts Bldg.-215 [Credits] 1 [Restriction] [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading 】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

10G051

Experiments on Mechanical Engineering and Science, Adv. I

機械理工学特別実験及び演習第一

[Code] 10G051 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10G053

Experiments on Mechanical Engineering and Science, Adv. II

機械理工学特別実験及び演習第二

[Code] 10G053 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Applied Numerical Methods

応用数値計算法

[Code] 10G001 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Toshiyuki Tsuchiya,

[Course Description] Numerical techniques, such as the finite element method and numerical control method, are indispensable in mechanical engineering. In this lecture, basics of numerical techniques which are required to study advanced methods for graduated students will be explained. The lecture will cover the error evaluation, linear system solution (Ax=b), eigenvalue analysis, interpolation approximation method, solutions of ordinary differential equation and partial differential equation. The programing exercise is included in this lecture.

【Grading】 Home works (four home works will be assigned) and examination.

[Course Goals] Understandings of mathematical theories and programing implementations of the numerical methods.

[Course Topics]

Theme	Class number of times	Description
		Introduction of this class
Introduction	1	Numerical representations and errors
		Macro programing using spread sheet applications
Numarical Error		Matrix
Numerical Error,	1	Norms
Approximation		Singular value decomposition
Linear simultaneous	2	Solution of simultaneous linear equations
equation 1	2	direct method, iteration method
Eigenvalue analysis	2	Eigenvalue problems
Interpolation	1.5	Interpolation and its errors
Numerical integra 1	1.5	Numerical integration methods
Normal differential		explicit method, implicit method
equation and	2	initial value problem, boundary value problem
numerical integral		initial value problem, boundary value problem
Partial differential equation	3	Differential expression of partial differential
		Diffusion equation, wave equation
		Poisson equation, Laplace equation
Examination	1	Feedback for homework and examination

【Textbook】 Lecture note will be given.

【Textbook(supplemental)】 Golub, G. H. and Loan, C. F. V., Matrix Computations, John Hopkins University Press R.D.Richtmyer and K.W.Morton, Difference Methods for Initial-Value Problems, Second Edition, John Wiley & Sons 1967

[Prerequisite(s)] Basic mathematics for undergraduates

Basic macro programing

[Independent Study Outside of Class] Problems are based on macro on Microsoft Excel or LibreOffice (OpenOffice).

[Web Sites] Lecture notes, home works, and other info will be distributed through PandA:

https://panda.ecs.kyoto-u.ac.jp

【Additional Information】 Have a PC with Microsoft Excel with VBA or LibreOffice (https://ja.libreoffice.org/). Apache OpenOffice(http://www.openoffice.org/ja/) wil be also ok.

Solid Mechanics, Adv.

固体力学特論

[Code] 10G003 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] S. Biwa, M. Nishikawa

[Course Description] In Part I, fundamental issues of the finite deformation analysis of solids and structures are introduced, including tensor analysis, kinematics of continua, conservation laws, and various stress/strain measures. In Part II, basic ideas of elastoplastic and viscoplastic theories are lectured to describe nonlinear material properties, and the derivation of inelastic constitutive equations and their application to numerical analyses are also introduced.

[Grading] Grading is based on the examination, possibly with considerations of the homework reports.

[Course Goals] The goal is to understand the concepts of finite deformation analysis and inelastic constitutive relations, which constitute the basis of computational mechanics simulations for mechanical/structural design.

[Course Topics]

Theme	Class number of times	Description	
Part I. Fundamentals of			
finite deformation			
analysis			
		Tensor as a linear transformation; Tensor algebra; Transformation of tensor components due	
I-1. Tensor analysis	2	to change of basis; Eigenvalues of symmetric tensors; Spectral decomposition; Integral	
		theorem	
		Reference and current configurations; Deformation gradient; Cauchy-Green deformation	
I-2. Kinematics	2	tensors; Polar decomposition; Strain tensors; Velocity and acceleration; Material time	
		derivative; Deformation-rate tensor and spin tensor	
12.6	2	Conservation of mass; Laws of motion by Euler and Cauchy; Cauchy stress tensor; Equation	
I-3. Conservation laws		of motion; Conservation of energy	
I-4. Various definitions		First and second Piola-Kirchhoff stresses; Alternative expression of equation of motion;	
of stress	2	Principle of virtual power	
Part II. Basis of inelastic			
analyses			
II-1. Constitutive		M-1-1- f-1-4: 4. f: 1. W-1-	
equations of elastoplastic	3	Models of plasticity for uniaxial tension; Yield functions for isotropic materials; Work	
body		hardening; J2 flow theory; Elastoplastic constitutive equations	
II-2. Numerical methods	0		
for elastoplastic body 1	2	Incremental virtual work principle; Basis for incremental finite element analyses	
II-3. Numerical methods	0		
for elastoplastic body 2	2	Application to multiaxial problems; Numerical procedure to follow yield surfaces	

[Textbook] Parts I, II: Lecture materials are distributed in the classroom or to be downloaded on the website.

【Textbook(supplemental)】 Part I: T. Kyoya, "Continuum Mechanics," Morikita (2008) (in Japanese); E. Tanaka, "Kotai Rikigaku No Kiso," Kyoritsu (2014) (in Japanese); A. J. M. Spencer, "Continuum Mechanics," Dover (1980).

Part II: Y. Tomita, "Foundation and Application of Elastoplasticity," Morikita (1995); E. Neto et al., "Computational Methods for Plasticity," John Wiley & Sons (2008).

[Prerequisite(s)] Enrolling students are expected to have good knowledge in "Mechanics of Materials," "Continuum Mechanics," or "Mechanics of Solids" courses on the undergraduate level.

[Independent Study Outside of Class] Enrolling students are expected to work on the distributed lecture materials and the homework problems.

[Web Sites] The URL will be informed during the semester.

[Additional Information] The order and hours (weights) for each item are subject to possible change.

Thermal Science and Engineering

熱物理工学

[Code] 10G005 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] H. Yoshida & M. Matsumoto,

【Course Description】 Several topics in advanced thermal physics are discussed. From microscopic view points, basics of stochastic process and related topics are given. From macroscopic ones, after the concept of entropy is revisited, applications in global environments and hydrogen energy are described.

[Grading] Reports, essays, and/or written examinations.

【Course Goals】 Microscopic Viewpoints: Ability of multi-scale modelling

Macroscopic Viewpoints: Ability of global environment modelling

[Course Topics]

Theme	Class number of times	Description
(M) Brownian	1	
motion	1	
(M) Transport		
phenomena and	1	
correlation functions		
(M) Spectral analysis	2	
and fractal analysis		
(M) Stochastic		
process and its	3	
applications		
(Y) Entropy and free	1	
energy: revisit		
(Y) Science of		
atmosphere and	3	
ocean		
(Y) Hydrogen energy	3	
Check and feedback	1	

【Textbook】Not specified.

【Textbook(supplemental)】

[Prerequisite(s)] Elementary thermodynamics, Statistical physics, Heat transfer engineering, Numerical analysis etc.

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 (2016)

Yoshida: April 11 ~ May 23 Matsumoto: May 30 ~ July 11

10G007

Introduction to Advanced Fluid Dynamics

基盤流体力学

[Code] 10G007 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Condensed Matter Physics

量子物性物理学

[Code] 10G009 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	4	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10G011

Design and Manufacturing Engineering

設計生産論

[Code] 10G011 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	3	
	2	
	3	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Dynamic Systems Control Theory

動的システム制御論

[Code] 10G013 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10G057

Engineering Ethics and Management of Technology

技術者倫理と技術経営

[Code] 10G057 [Course Year] Master 1st [Term] 1st term [Class day & Period] Thu 3rd

[Location] Butsurikei-Kousya [Credits] [Restriction] No Restriction [Lecture Form(s)] Lectures and Exercise

[Language] Japanese [Instructor] Sawaragi, Nishiwaki, Tomita, M. Komori, Tsuchiya, Noda, Sato, Iseda,

Course Description Basic knowledge of Engineering Ethics and Management of Technology needed for future project leaders in companies and society is taught. Students have to make group work after-class hours as well as presentations of wrapping-up the discussions. Engineering ethics is the field of applied ethics and system of moral principles that apply to the practice of engineering. The field examines and sets the obligations by engineers to society, to their clients, and to the profession. Management of Technology is a set of management disciplines that allows organizations to manage their technological fundamentals to create competitive advantage. This course consists of lectures, exercises, discussions and oral presentations under supervision of professional faculties and extramural lecturers.

【Grading 】Submission of reports and presentations

[Course Goals] To cultivate a spirit of self-sufficiency needed for engineers

【Course Topics】

Theme	Class number of times	Description
		1. Introduction to Engineering Ethics (EE)
		2.Medical Engineering Ethics
		3.EE by Institution of Professional Engineers, Japan and abroad
		4. Product Safety and Product Liability
Engineering Ethics	9	5.Comprehensive Manufacturing and EE (1)
		6.Comprehensive Manufacturing and EE (2)
		7.Group Discussions
		8.History and Philosophy of EE
		9.Presentation on exercise of EE
	5	1.Product Portfolio, Strategy for Competition
Managament of		2.Bussiness Domain and MOT for Marketing
Management of Technology		3. Organizational Strategy for Corporates' R & D
		4. Management Theory for R & D
		5.Presentation on exercise of MOT
Summary	1	

【Textbook】No textbook

【Textbook(supplemental)】Nothing

[Prerequisite(s)] Nothing particular

[Independent Study Outside of Class]

[Web Sites] No Web Site

【Additional Information】 Nothing particular

Micro Process and Material Engineering

マイクロプロセス・材料工学

[Code] 10G203 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 4th

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] H. Kotera, O. Tabata, K. Eriguchi, I. Kanno, T. Tsuchiya,

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
Semiconductor	3	
microfabrication	3	
Thin-film process	3	
and evaluation		
Silicon	3	
micromachining		
3D lithography	3	
Soft-micromachining	2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Microsystem Engineering

マイクロシステム工学

[Code] 10G205 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 4th [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] English

[Instructor] O. Tabata, H. Kotera, T. Tsuchiya, R. Yokokawa,

Course Description Microsystem covers not only technologies related to individual physical or chemical phenomenon in micro scale, but also complex phenomena which are eveolved from their interaction. In this course, the physics and chemistry in micro and nanoscale will be lectured in contrast to those in macro scale. The various kinds of application devices (ex. physical (pressure, flow, force) sensors, chemical sensors, biosensors, actuators (piezoelectric, electrostatic, and shape memory) and their system are discussed.

【Grading】 The evaluation will be based on the reports given in each lecture.

[Course Goals] Understand the theory of sensing and actuating in microsystem. Acquire basic knowledge to handle various kinds of phenomena in microscale.

[Course Topics]

Theme	Class number of times	Description	
MEMS modeling	2	Multi-physics modeling in microscale.	
MEMS modeling	2	Electro-mechanical coupling analysis.	
MEMS simulation	2	System level simulation in MEMS.	
Electrostatic	3		
microsystem		Electrostatic sensors and actuators. Theory and application devices.	
Dhysical sansars	1	Physical sensors as a fundamental application in microsystem. Accelerometer,	
Physical sensors 4		vibrating gyroscope, pressure sensors.	
Micro total analysys	4	Chamical analysis system and his consing device using microsystem	
system	4	Chemical analysis system and bio-sensing device using microsytem.	

【Textbook 】Provided in the lecture.

【Textbook(supplemental)】Provided in the lecture.

[Prerequisite(s)] Students are required to take the 10G203 course "Micro Process and Material Engineering".

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] The student can register only to this class 10G205, but it is required to be able to take consecutive classes at Friday 4th and 5th. Those students who want to take this course has to contact Prof. Tabata (tabata@me.kyoto-u.ac.jp) by the end of 1st term. The student of this class is strongly recommended to take a course 10V201 "Introduction to the Design and Implementation of Micro-Systems" (10V201), which is a practice for designing microsystem. Those who want to take 10V201 have to take training course for CAD in advance.

Multi physics Numerical Analysis

マルチフィジクス数値解析力学

[Code] 10G209 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 1st

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
•	3	
	2	
	2	
	5	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Theory of Condensed Matter

量子物性学

[Code] 10B619 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Akitomo TACHIBANA

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	3	
	3	
	6	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Solid State Physics 1

物性物理学 1

[Code] 10G211 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Wed 1st

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)]

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	1-2	
	1	
	1	
	1 -2	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1-2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10G223

Basic Seminar on Micro Engineering A

マイクロエンジニアリング基礎セミナーA

[Code] 10G223 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	r

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Basic Seminar on Micro Engineering B

マイクロエンジニアリング基礎セミナーB

[Code] 10G224 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	2 0001.pul

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10G216

Seminar on Micro Engineering A

マイクロエンジニアリングセミナーA

[Code] 10G216 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	-	
	-	
	-	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Micro Engineering B

マイクロエンジニアリングセミナーB

[Code] 10G217 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	-	
	-	
	-	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Strength of Advanced Materials

先進材料強度論

[Code] 10B418 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd [Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] M. Hojo and M. Nishikawa,

[Course Description] The mechanism underlying mechanical and functional properties are lectured for advanced materials used and developed in advanced fields of current engineering. In particular, advanced composite materials, used for aircraft structure etc., are introduced, with a detailed description of the relationship between microscopic constituent materials and macroscopic properties from the perspective of multiscale mechanics; also the anisotropy of their properties, their fatigue and fracture properties are described in the basic discipline for strength of materials. The latest applications are introduced in the field of various transportation systems including airplanes.

【Grading】 Grading is based on the reports. The assignments will be given around three times.

[Course Goals] The course goal is to understand basic concepts of composite materials and the underlying mechanism of their mechanical properties from multiscale viewpoints, while the physical understanding of composites is developed based on multiple disciplines.

[Course Topics]

Theme	Class number of times	Description
Concept of composite materials	2	The concept and definition of composite materials, their constituent materials and manufacturing methods are illustrated. Their application to aircraft structures etc. are also introduced.
Mechanical properties of microscopic constituent materials	2	Resin for matrix and various fiber types are explained including their structure and mechanical properties. The weakest link model and Weibull distribution are described as a basis of the statistic nature of strength.
Basic mechanical properties	4	The specific strength, the specific stiffness, and the rule of mixture for elastic modulus and strength are lectured. In particular, the detailed explanation is made to the anisotropy of elastic modulus, independent elastic constants in the generalized Hookean law, the anisotropic failure criteria, and laminate theory. The relationship between the mechanical properties of microscopic constituent materials and macroscopic properties of composite materials is also illustrated.
Micromechanics	2	The mechanism of transverse fracture is illustrated. The mechanical models are described for short fiber reinforced composites and particle dispersed composites. The micromechanical analyses based on finite element method is also illustrated for the physical understanding of the strength of composite materials.
Fracture mechanics properties	2	Fracture mechanics of anisotropic materials are described. The interlaminar fracture toughness and interlaminar fatigue crack propagation, the critical issues in the application of composite structures, are explained including their underlying mechanism.
Superconducting materials	1	High-temperature superconducting materials are the composite materials consisting of metals and fibrous superconducting materials made of oxides. The mechanism are explained for understanding that their mechanical properties so much control their electric properties.
Process and mechanical properties of composite materials	1	The molding and machining process of composite materials is explained to relate it to their mechanical properties. Fiber preform, the selection of resin, intermediate materials, machining and assembly and inspection methods are overviewed from the academic viewpoints.
Academic achievement test	1	Academic achievements is assessed.

【Textbook】 Supplementary handouts will be distributed in the class.

[Textbook(supplemental)] D.Hull and T.W.Clyne, "An Introduction to Composite Materials," Cambridge University Press.

[Prerequisite(s)] Mechanics of Materials, Continuum Mechanics, Fundamentals of Materials, Solid Mechanics, Adv.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] The order and the item in the course are possibly subject to change.

Precision Measurement and Machining

精密計測加工学

[Code] 10G214 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location]C3 seminar room c1 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]

[Instructor] A. Matsubara and S. Ibaraki,

[Course Description] This course gives the principles of precision measurement and machining process for the meso-micro-nano metric fabrication. The optical measurement technologies (e.g. laser interferometer, optical encoders) and cutting technologies (e.g. cutting mechanics, tool, machine) are shown.

[Grading] Small exams in the term and the final exam

[Course Goals] Understand the basic principles of precision mesurement and machining associated with the applications

[Course Topics]

Theme	Class number of times	Description
Basics of		Constant of comment and in the contract of the
measurement and	1	Concept of accuracy, precision, Relation of measurement, machining, and
machining		control
Basics of precision	2	
measurement	2	
Optical mesurement	4	
	3	
	1	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V003

Biomechanics

バイオメカニクス

[Code] 10V003 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor] Taiji Adachi,

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
	2	
	4	
	4	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Biomolecular Dynamics

生体分子動力学

[Code] 10D450 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 3rd

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	5	
	4	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V201

Introduction to the Design and Implementation of Micro-Systems

微小電気機械システム創製学

[Code] 10V201 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] C3-Lecture room 1 or 3 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture and Pactice [Language] English

[Instructor] O. Tabata, H. Kotera, T. Tsuchiya, R. Yokokawa,

Course Description This is a joint lecture with Hong Kong University of Science and Technology (HKUST). A team consists of two students from each University work together to fullfill the assignment (design a microsystem) through paper survey, analysis, design, and presentation. A student can acquire not only the basic knowledge of a microsystem, but also comprehensive ability of English such as technical knowledge in English, skill for team work, and communication.

【Grading 】Presentation, Assignments, and Achievement

[Course Goals] Acquire the knowledge and skill to design and analyze a microsystem.

[Course Topics]

Theme	Class number of times	Description		
Tutorial on		Master CAD program for microsystem design and analysis which will be		
microsystem CAD	3			
software		utilized to accomplish an assignment.		
Lecture and Task	2	Learn basic knowledge necessary to design a microsystem/MEMS(Micro		
Introduction	<u> </u>	Electromechical Systems) utilizing microfabrication technology.		
Design and analysis	3	Analyze and design a microsystem by communicating with a team member of		
work	<u>.</u>	HKUST.		
Presentation I	2	The designed device and its analyzed results is presented in detail by team in		
riesentation i	2	English.		
Evatuation of device	3	Evaluate the fabricated microsystem.		
D 44' II	2	The measured results and comparison between the analyzed results of the		
Presentation II		fabricated microsystem is presented by team in English.		

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)] Students are required to take the 10G203 course "Micro Process and Material Engineering" provoded in 1st term.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] The student of this class is required to register to the course 10G205 "Microsystem Engineering" provided at Friday 4th so as to be able to take consecutive classes at Friday 4th and 5th. Those who want to take this course have to take training course for CAD in advance. Those students who want to take this course has to contact Prof. Tabata (tabata@me.kyoto-u.ac.jp) by the end of 1st term.

Advanced Finite Element Methods

有限要素法特論

[Code] 10G041 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd [Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture and Practice [Language] English [Instructor] Kotera and Nishiwaki,

【Course Description】 This course presents the basic concept and mathematical theory of the Finite Element Method (FEM), and explains how the FEM is applied in engineering problems. We also address important topics such as the physical meaning of geometrical non-linearity, material non-linearity, and non-linearity of boundary conditions, and we explore numerical methods to deal with these nonlinearities. Also, we guide students in class in the use of software to solve several numerical problems, to develop practical skill in applying the FEM to engineering problems.

[Grading] Grading is based the quality of two or three reports and the final exam.

[Course Goals] The course goals are for students to understand the mathematical theory of the FEM and the numerical methods for analyzing non-linear problems based on the FEM.

[Course Topics]

Theme	Class number of times	Description	
Basic knowledge of the FEM	3	What is the FEM? The history of the FEM, classifications of partial differential equations, linear problems and non-linear problems, mathematical descriptions of structural problems (stress and strain, strong form and weak form, the principle of energy).	
Mathematical background of the FEM	2	Variational calculus and the norm space, the convergence of the solutions.	
FEM formulations 3		FEM approximations for linear problems, formulations of iso-parametric elements, numerical instability problems such as shear locking, formulations of reduced integration elements, non-conforming elements, the mixed approach, and assumed-stress elements.	
Classifications of nonlinearities and their formulations	4	Classifications of nonlinearities and numerical methods to deal with these nonlinearities.	
Numerical practice	2	Numerical practice using COMSOL.	
Evaluation of student achievements	1		

[Textbook]

[Textbook(supplemental)] Bath, K.-J., Finite Element Procedures, Prentice Hall

Belytschko, T., Liu, W. K., and Moran, B., Nonlinear Finite Elements for Continua and Structures, Wiley

[Prerequisite(s)] Solid Mechanics

【Independent Study Outside of Class】

[Web Sites]

10W603

Introduction to Biomedical Engineering

医工学基礎

[Code] 10W603 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor],,,

【Course Description】

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	5	
	5	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Theory of Molecular Physics

量子分子物理学特論

[Code] 10B617 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Senami, Junior associate professor (Lecturer)

[Course Description] Basics for the application of quantum theory to molecular physics and recent progress. Main topics: analytic mechanics, relativistic quantum mechanics, quantum field theory, and path integral.

【Grading】 Homework paper instructed in class

[Course Goals]

[Course Topics]

Theme	Class number of times	Description		
1. Analytic mechanics and symmetry in physics	2	Principle of least action, Equation of motion, Hamiltonian mechanics, Symmetry and conservation law in physics, Noether's theorem, Group theory		
2. Classical relativistic theory	2	Invariance of the speed of light, Lorentz transformation, Relativistic form of electromagnetism, Four component vector potential		
3. Relativistic quantum mechanics	3-5	Relativistic equation of motion, Nonrelativistic limit of Dirac equation, Covariance of Dirac equation, Plane wave solution for Dirac equation and negative energy, Hole theory and problem		
4. A primer of quantum field theory	2-4	Field operator, Charge conjugation, Noether's theorem, Gauge transformation and gauge symmetry		
5. Path integral	3	Time evolution and propagator, Transition amplitude and path integral, Aharonov-Bohm effect, Path integral in quantum field theory		
Confirmation	1			

[Textbook]

【Textbook(supplemental)】 J. D. Bjorken, S. D. Drell, Relativistic Quantum Mechanics

- J. J. Sakurai, Modern Quantum Mechanics, and Advanced Quantum Mechanics
- R. P. Feynmann, A. R. Hibbs, Quantum Mechanics and Path Integrals

[Prerequisite(s)] Quantum Mechanics

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] If English support is required, please contact the instructor by email. Then words written on a blackboard and some supplementary documents are provided in English.

Quantum Theory of Chemical Physics

量子化学物理学特論

[Code] 10Q408 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Akitomo TACHIBANA

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	4	
	4	
	4	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Solid State Physics 2

物性物理学 2

[Code] 10V205 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)]

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	4-5	
	4-5	
	4-5	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10K013

Advanced Mechanical Engineering

先端機械システム学通論

[Code] 10K013 [Course Year] Master and Doctor Course [Term] 2nd term

[Class day & Period] Tue 5th and Thu 4th [Location] C3-Lecture Room 5 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Faculty members from several fields

[Course Description] Lectures on recent topics in various fields of mechanical engineering will be given in English. This is mainly for foreing students (MC/DC), but Japanese students are also welcome.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Mechanics	2	Detailed schedule will be annouced later.
Materials	2	
Thermodynamics	2	
Fluid dynamics	2	
Control	2	
Design	2	
Microengineering	2	
Examination/Feedback	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This class will be given every two years; Not given in 2015.

10K005

Advanced Modern Science and Technology (English lecture)

現代科学技術特論(英語科目)

[Code] 10K005	[Course Year]	Master and Doctor Course	[Term]	Class day & Period Thu 5th	[Location] A2-306	[Credits] 2(Semester system)	[Restriction] No Restriction	
[Lecture Form(s)]	Relay Lecture	[Language] English						

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto Related professors

Course Description 1 Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description		
Who shake the dice?	1	Double slit phenomenon known as a prediction inability " quantum mechanics of the mystery (Feynman says) " can be every moment predicted by QED.(A. Tachibana: Dept. of Micro Engineering)		
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)		
Systems Control in Aeronautics and Astronautics	1	Systems control theory is used in several problems in aeronautics and astronautics. This lecture focuses on some of them and further gives an overview of this research based on them.(K. Fujimoto: Dept. of Aeronautics and Astronautics)		
Countermeasures of the Contaminated Water at Fukushima Daiichi Nuclear Power Station and that of the Contaminated Soil in Fukushima Area	1	The situation of contaminated water in Fukushima Daiichi Nuclear Power Station and soil contamination in and around Fukushima area and their technological countermeasures taken today will be introduced and discussed.(M. Yoneda: Dept. of Environmental Engineering)		
Polymer Synthesis beyond the 21st Century: Precision Polymerizations and Novel Polymeric Materials	1	We are now in the "Polymer Age", where synthetic polymer materials are indispensable in the modern human life: healthy, safe, comfortable, and sustainable. A critical challenge herein is to develop "precision polymerization", polymer-forming reactions that provide polymers of well-defined structures and designed functions. Given these backgrounds, this lecture will overview the following subjects: (a)What polymers are; (b)How to synthesize polymers; (c)How and where polymeric materials work and function; (d)Precision polymer synthesis; and (e)The future of polymeric materials.(M. Sawamoto: Dept. of Polymer Chemistry)		
Engineering Approach to Phase Behavior of Fluids Confined in Nanospace	1	Fluids confined in nano-scale pores exhibit peculiar phase behaviors that depends strongly on physico-chemical effects by pore walls and conditions of the bulk phase in equilibrium with the pore fluids, to which the engineering approach must be effective.(M. Miyahara: Dept. of Chemical Engineering)		
Elucidation of Principles for the Self-organization of Mesoscale Colloidal Particles	1	The process of so-called the colloid crystal has been pursued to find out the key principles for the structure evolution, employing the Brownian dynamics simulations. Also given in the lecture will be various pattern formations in the convective self-assembly of colloidal suspensions.(M. Miyahara: Dept. of Chemical Engineering)		
Architectural Design and Architectural Thinking	1	Architectural design is integration of thinking on architectural events and materials. I would like to discuss this architectural thinking and the method to embody it.(K. Takeyama: Dept. of Architecture and Architectural Engineering)		
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)		
Vacuum Nanoelectronics Devices in Harsh Environments	1	This lecture reviews the perspective of the modern vacuum electron devices based on miniaturized electron sources fabricated with contemporary semiconductor processes. The performance of the devices is evaluated in view of the device in harsh environments. (Y. Gotoh: Dept. of Electronic Science and Engineering)		
Advanced Digital Technology for Analytical Recording of Cultural Heritage Assets	1	(A. Ide: Dept. of Mechanical Engineering and Science)		
Protein Structure, Function, and Motion	1	Proteins work by fluctuating and changing their conformations. Protein structures and motions, which are essential for understanding their functions in detail, are introduced in conjunction with the state-of-art methods to analyze them.(K. Sugase: Dept. of Molecular Engineering)		
Laser-induced Breakdown Spectroscopy and Its Application to Underwater In-situ Elemental Analysis	1	Development of laser-induced breakdown spectroscopy (LIBS) for in-situ elemental analysis in water, and the application to resource exploration at sea bottom will be explained.(T. Sakka: Dept. of Energy and Hydrocarbon Chemistry)		
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)		
Modern Techniques for Material Characterization	1	Overview of modern techniques for material characterization is given with basic principles and practical applications. Impacts on the life of the people of characterization techniques are also included.(J. Matsuo: Dept. of Nuclear Engineering)		

【Textbook】 None

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

 $\label{thm:conditional} \mbox{ Additional Information \ref{D} Students who take Autumn term should register "Lecture code 10H006"}.$

10X411

Design of Complex Mechanical Systems

複雑系機械システムのデザイン

[Code] 10X411 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Theory for Designing Artifacts

アーティファクトデザイン論

[Code] 10X402 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 5th [Location] C3-Lecture Room 4a [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Tetsuo Sawaragi, Kumiyo Nakakoji

[Course Description] The activity of design is fundamentally similar across a wide variety of domains. I use artifact in a broad and atypical sense to describe any product of intentional creation, including physical goods, services, information systems, buildings, landscapes, organizations, and societies. The central theme of this lecture is that a unifying framework informs the human activity of design across all domains. Especially, understanding user needs is a key element of problem definition, and that understanding is usually best developed with interactive and immersive methods. In this lecture, a variety of methodologies for participatory systems approach and an idea of user-experience are provided, and its contributions to the design process are discussed.

[Grading] Students will be evaluated based on the following criteria, in the order listed. (1) Exercises assigned in class: approx. 20% (2) Final exam: approx. 60% (3) Contributions to classwork (e.g., asking good questions): approx. 20%

[Course Goals] This course is aimed at developing the ability to apply methods for identifying problems and interactively analyzing/evaluating systems, based on understanding of the principles of artifact design and on systematic thinking.

[Course Topics]

Theme	Class number of times	Description Description		
the history of artifacts in terms of how they were viewed in different ages — namel		We will shed light on the concept of artifacts as something to be put on equal footing with natural objects and examine the history of artifacts in terms of how they were viewed in different ages — namely, artifacts as modes of representation in the ancient world, artifacts as necessities for survival in the middle ages, artifacts as forms of convenience in modern times, and artifacts as a means of perpetuation in the current era.		
Artifact function and purpose	3	The effects that artifacts have on the outside world — i.e., other things — are "functions." Function is the concept of questioning the existence of an artifact, and design is the formulation of functions for achieving an intended purpose. Will discuss the categorization of artifacts in terms of how the "purpose" of artifacts relates to the context in which are used, and look at the origins of artifacts from the perspective of semiosis.		
Artifact design principles	2	To understand an artifact is to know how its internal structure acts on the outside world to realize its function. Today, cybernetics — which has explored the interaction between the physical world and the world of information — is expanding into a concept that encompasses society as well (second-order cybernetics), and concepts have been put forward for actively rethinking how human cognition and decision-making interact with the outside world (ecological approaches, socially distributed cognition, naturalistic decision-making). We will examine artifact design principles based on theories related human activity at the boundary of these externalities.		
Artifact design representation and evaluation	3	Design must fulfill its role of enhancing the quality of life through the creation of not only individual artifacts, but also environments and social systems that encompass groups of artifacts and natural objects. We will discuss the path toward expanding the scope of design from physical objects to environments and social systems that include intangible services, including with regard to problem development/representation methods, how to set purposes of design, how to eliminate the ambiguities and conflicts among various goals, searching for alternative design strategies, design evaluation, and principles and methods of consensus-forming among different stakeholders.		
User-centered artifact design	2	The quality of designs is something to be evaluated by the user, and hence there must be collaboration between users and designers/producers. Moreover, complex design challenges cannot be resolved by experts of only one discipline; they must be tackled by pooling the design-related knowledge of different domains. We will discuss the concept of user-centered design, design rationale, and international standards of design processes for achieving design that is grounded in the user 's needs/perspective.		
Participatory systems approach	2	In order to deal with the design of large-scale, complex artifacts, one must take the approach of systemically structuring problems and basing design on diverse perspectives. We will broadly examine: interactive processes among system designers, users, and computers; methods of structurally modeling problems through repeated dialogue between experts in relative disciplines and computers; and ways of supporting the perceptions, interpretations, and decision-making of designers and users. We will also consider the utility of the participatory systems approach in smooth, effective implementation of system design.		
Exercise in participatory systems approach	2	Students will apply the participatory systems approach to a real-world artifact design challenge, and report the results of this exercise.		

[Textbook] Lecture notes used in class will be distributed as needed. Refer to "Textbook (supplemental)" below.

【Textbook(supplemental)】1. 吉川弘之 [2007] 人工物観,横幹,1(2),59-65 2. Suh, N.P. [1990] The Principles of Design, Oxford University Press (邦訳:スー(翻訳:畑村洋太郎)「設計の原理 - 創造的機械設計論」,朝倉書店,1992.) 3. 吉川弘之 [1979] 一般設計学序説,精密機械 45 (8) 20 - 26, 1979. 4. Vladimir Hubka and W. Ernst Eder [1995] Design Science, Springer 5. Simon,H.[1996] The Sciences of the Artificial Third edition 秋葉元吉、吉原英樹訳 [1999] 『システムの科学』パーソナルメディア 6. H・A・サイモン [1979] 稲葉元吉・倉井武夫訳,『意思決定の科学』,産業能率大学出版部 7. Hutchins, Edwin [1995] Cognition in the Wild. MIT Press 8. Klein, G., Orasanu, J., Calderwood, R., and Zsambok, C.E. [1993] Decision Making in Action: Models and Methods. Ablex Publishing Co., Norwood, NJ. 9. D・ノーマン [1986] The Design of Everyday Things, 野島久雄訳『誰のためのデザイン?:認知科学者のデザイン原論』、新曜社 10. 椹木、河村 [1981]:参加型システムズ・アプローチ 手法と応用、日刊工業新聞社ほか

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Office hours will be held for one hour before and after each class period (preferably 5th period on Tuesdays, but also 3rd period on Wednesdays).

Appointments for other times can be requested by e-mail.

10V210

Advanced Exercise in Micro Engineering A

マイクロエンジニアリング特別演習A

[Code] 10V210 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Micro Engineering B

マイクロエンジニアリング特別演習 B

[Code] 10V211 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V212

Advanced Exercise in Micro Engineering C

マイクロエンジニアリング特別演習C

[Code] 10V212 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Micro Engineering D

マイクロエンジニアリング特別演習D

[Code] 10V213 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V214

Advanced Exercise in Micro Engineering E

マイクロエンジニアリング特別演習 E

[Code] 10V214 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Micro Engineering F

マイクロエンジニアリング特別演習F

[Code] 10V215 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10Z101

Micro/Nano Scale Material Engineering

マイクロ・ナノスケール材料工学

[Code] 10Z101 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] 6, 7, 8, 9 September (Schedule has been changed (5/31))

[Location] C3-Lecture Room 4a [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] TABATA,KITAMURA,HOJO,ADACHI,TSUCHIYA,YOKOKAWA,SUMIGAWA,INOUE,NAKAMURA,(Aichi Institute of Technology) NAMAZU,

[Course Description] This class lectures specific mechanical properties and behavior of micro to nano scale materials, underlying mechanism of those properties and behavior and characterization method. Furthermore, techniques of measurements, analysis and structural design of biomaterial such as protein and DNA which are expected to be utilized as micro nano scale materials are lectured.

[Grading] The evaluation will be based on the reports given in each lecture.

[Course Goals] Educate engineers and researchers with fundamental knowledge on specific mechanical properties and behavior of micro to nano scale materials. They can promote industrial application of micro and nano materials based on the deep understanding about how specific mechanical properties and behavior of micro to nano scale materials dominate performance, reliability and lifetime of MEMS (Micro Electromechanical Systems), microsystems and micro scale components.

[Course Topics]

Theme	Class number of times	Description
Outline	1	In this lecture, application examples of micro and nano scale material on devices and importance of mechanical properties and its behavior on device characteristics are described. (Tabata)
Mechanical properties of Silicon	2	Silicon, one of the most widely used materrials in micro/nano devices, is used not only a semiconductor material but also a mechanical material because of its sperior mechanical properties. In this lecture, the properties of silicon, such as physical, electrical, mechanical, electro-mechanical properties, will be presented in the view point of a mechanical structural material. Especially the lecture will focus on the elastic properties, piezoresistive effect, and fracture/fatigue properties of silicon, indespensable for designing micro/nano-devices. (Tsuchiya)
Characterization of micro nano material	2	In this class, first I will lecture the evaluation method for the mechanical properties of micro and nano-scale materials used for MEMS and semiconductor devices. Several representative experimental techniques for micro and nano mechanical testing will be presented and explained. Then I will lecture representative functional materials, such as shape memory alloy films and self-propagating exothermic foils, and lecture regarding the possibility of their application to MEMS. (Tsuchiya, Namazu)
Fracture and fatigue mechanism of materials in the micro- and nano-meter scale	4	We explain fundamentals on the fracture and fatigue mechanism of materials in the micro- and nano-meter scale. At first, the characteristic properties of deformation and fracture in small components such as thin films, wires, dots etc. are discussed in terms of the solid mechanics. Focus is put on the interface strength of dissimilar materials as well including the effect of fatigue, creep and environment. Then, we extend our explanation to the multi-physics property of nano-components on the basis of the ab initio simulations. As a representative example of materials with microscale structures, properties of composite materials are lectured. Characterization of microscopic components such as fibers and matrices are explained from the view points of the difference from bulk materials. Testing methods and properties of fiber/matrix interface are described. The relationship between the deformation and fracture of microscopic components and those of macroscopic composite materials are explained including the underlying mechanism. Explanation is also made to anisotropy of elastic properties and strength. (Kitamura, Sumigawa, Hojo)
Piezoresistive effect of micro and nano material	2	In this theme, we will study the fundamental concepts of electronic-state theory and band structures to represent behavior of electrons in materials, and will discuss the electromechanical properties of materials based on the electronic-state theory. In particular, the principle and features of the piezoresistive effect, the change in the electrical resistivity due to mechanical stresses and strains, will be derived from the band structures of materials. The mechanisms of scale dependence of piezoresistivity in nanoscale materials such as silicon, carbon nanotube, and graphene will be also discussed. (Nakamura)
Bio/Nano material (1)	2	In tissue adaptation, regeneration and stem cell differentiation in tissue morphogenesis, cellular functional activities such as cell migration and division are regulated by complex mechano-chemical couplings at molecular level. To understand such a hierarchical dynamics from nanoscopic molecular events to microscopic cellular dynamics, we will discuss analysis of the molecular and cellular mechanical behaviors as bio-nano materials by integrating experiments, mathematical modeling and computer simulations. (Adachi, Inoue)
Bio/Nano material (2)	1	Motor proteins are nano-scale actuators in vivo. Their active functions can be reconstructed in vitro to be utilized as a driving source of micro/nano systems. This lecture introduces fundamentals of their mechanical properties and molecular design methods. (Yokokawa)
Bio/Nano material (3)	1	This lecture describes DNA nanotechnology to construct nanoscale structures using DNA as a structural material. Fundamental knowledge, design methodology and application of DNA origami technique are focused. (Tabata)

[Textbook]

【Textbook(supplemental)】 Biomaterial: Bionano material: Mechanics of Motor Proteins & the Cytoskeleton, Jonathon Howard, Sinauer Associates (January 2001)

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This lecture is provided as a part of NIP (Nanotech Innovation Professional) course of the Nanotech Career-up Alliance (Nanotech CUPAL) project.

Internship M

インターンシップ M (機械工学群)

[Code] 10G049 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V019

Internship DS

インターンシップ DS (機械工学群)

[Code] 10V019 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	unies	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Internship DL

インターンシップ DL (機械工学群)

[Code] 10V020 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 6 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	unies	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar of Complex Mechanical Engineering,A

複雑系機械工学セミナーA

[Code] 10V025 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading 】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity 10	10.10	Each group chooses an activity theme, and pursue the goal through discussion
	10-12	in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,B

複雑系機械工学セミナー B

[Code] 10V027 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading 】Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
	10.12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity	10-12	in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,C

複雑系機械工学セミナーC

[Code] 10V029 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading 】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
- · · · ·	10.12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity	10-12	in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,D

複雑系機械工学セミナーD

[Code] 10V031 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,E

複雑系機械工学セミナーE

[Code] 10V033 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading 】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

cme-seminar@me.kyoto-u.ac.jp

Seminar of Complex Mechanical Engineering,F

複雑系機械工学セミナーF

[Code] 10V035 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] Engineering Science Depts Bldg.-215 [Credits] 1 [Restriction] [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading 】Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Charles activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

10G226

Experiments on Micro Engineering, Adv. I

マイクロエンジニアリング特別実験及び演習第一

[Code] 10G226 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Experiments on Micro Engineering, Adv. II

マイクロエンジニアリング特別実験及び演習第二

[Code] 10G228 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10G001

Applied Numerical Methods

応用数値計算法

[Code] 10G001 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Toshiyuki Tsuchiya,

[Course Description] Numerical techniques, such as the finite element method and numerical control method, are indispensable in mechanical engineering. In this lecture, basics of numerical techniques which are required to study advanced methods for graduated students will be explained. The lecture will cover the error evaluation, linear system solution (Ax=b), eigenvalue analysis, interpolation approximation method, solutions of ordinary differential equation and partial differential equation. The programing exercise is included in this lecture.

【Grading】 Home works (four home works will be assigned) and examination.

[Course Goals] Understandings of mathematical theories and programing implementations of the numerical methods.

[Course Topics]

Theme	Class number of times	Description
		Introduction of this class
Introduction	1	Numerical representations and errors
		Macro programing using spread sheet applications
Numerical Error,		Matrix
,	1	Norms
Approximation		Singular value decomposition
Linear simultaneous	2	Solution of simultaneous linear equations
equation 1		direct method, iteration method
Eigenvalue analysis	2	Eigenvalue problems
Interpolation	1.5	Interpolation and its errors
Numerical integra 1	1.5	Numerical integration methods
Normal differential		explicit method, implicit method
equation and	2	initial value problem, boundary value problem
numerical integral		initial value problem, boundary value problem
Partial differential		Differential expression of partial differential
equation	3	Diffusion equation, wave equation
		Poisson equation, Laplace equation
Examination	1	Feedback for homework and examination

【Textbook】 Lecture note will be given.

【Textbook(supplemental)】 Golub, G. H. and Loan, C. F. V., Matrix Computations, John Hopkins University Press R.D.Richtmyer and K.W.Morton, Difference Methods for Initial-Value Problems, Second Edition, John Wiley & Sons 1967

[Prerequisite(s)] Basic mathematics for undergraduates

Basic macro programing

【Independent Study Outside of Class】Problems are based on macro on Microsoft Excel or LibreOffice (OpenOffice).

[Web Sites] Lecture notes, home works, and other info will be distributed through PandA:

https://panda.ecs.kyoto-u.ac.jp

【Additional Information】 Have a PC with Microsoft Excel with VBA or LibreOffice (https://ja.libreoffice.org/). Apache OpenOffice(http://www.openoffice.org/ja/) wil be also ok.

Solid Mechanics, Adv.

固体力学特論

[Code] 10G003 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] S. Biwa, M. Nishikawa

[Course Description] In Part I, fundamental issues of the finite deformation analysis of solids and structures are introduced, including tensor analysis, kinematics of continua, conservation laws, and various stress/strain measures. In Part II, basic ideas of elastoplastic and viscoplastic theories are lectured to describe nonlinear material properties, and the derivation of inelastic constitutive equations and their application to numerical analyses are also introduced.

[Grading] Grading is based on the examination, possibly with considerations of the homework reports.

[Course Goals] The goal is to understand the concepts of finite deformation analysis and inelastic constitutive relations, which constitute the basis of computational mechanics simulations for mechanical/structural design.

[Course Topics]

Theme	Class number of times	Description	
Part I. Fundamentals of			
finite deformation			
analysis			
		Tensor as a linear transformation; Tensor algebra; Transformation of tensor components due	
I-1. Tensor analysis	2	to change of basis; Eigenvalues of symmetric tensors; Spectral decomposition; Integral	
		theorem	
		Reference and current configurations; Deformation gradient; Cauchy-Green deformation	
I-2. Kinematics	2	tensors; Polar decomposition; Strain tensors; Velocity and acceleration; Material time	
		derivative; Deformation-rate tensor and spin tensor	
12.6	2	Conservation of mass; Laws of motion by Euler and Cauchy; Cauchy stress tensor; Equation	
I-3. Conservation laws		of motion; Conservation of energy	
I-4. Various definitions	2	First and second Piola-Kirchhoff stresses; Alternative expression of equation of motion;	
of stress	2	Principle of virtual power	
Part II. Basis of inelastic			
analyses			
II-1. Constitutive		M-1-1- f-1-4: 4. f: 1. W-1-	
equations of elastoplastic	3	Models of plasticity for uniaxial tension; Yield functions for isotropic materials; Work	
body		hardening; J2 flow theory; Elastoplastic constitutive equations	
II-2. Numerical methods	0		
for elastoplastic body 1	2	Incremental virtual work principle; Basis for incremental finite element analyses	
II-3. Numerical methods	0		
for elastoplastic body 2	2	Application to multiaxial problems; Numerical procedure to follow yield surfaces	

[Textbook] Parts I, II: Lecture materials are distributed in the classroom or to be downloaded on the website.

【Textbook(supplemental)】 Part I: T. Kyoya, "Continuum Mechanics," Morikita (2008) (in Japanese); E. Tanaka, "Kotai Rikigaku No Kiso," Kyoritsu (2014) (in Japanese); A. J. M. Spencer, "Continuum Mechanics," Dover (1980).

Part II: Y. Tomita, "Foundation and Application of Elastoplasticity," Morikita (1995); E. Neto et al., "Computational Methods for Plasticity," John Wiley & Sons (2008).

[Prerequisite(s)] Enrolling students are expected to have good knowledge in "Mechanics of Materials," "Continuum Mechanics," or "Mechanics of Solids" courses on the undergraduate level.

[Independent Study Outside of Class] Enrolling students are expected to work on the distributed lecture materials and the homework problems.

[Web Sites] The URL will be informed during the semester.

[Additional Information] The order and hours (weights) for each item are subject to possible change.

Thermal Science and Engineering

熱物理工学

[Code] 10G005 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] H. Yoshida & M. Matsumoto,

【Course Description】 Several topics in advanced thermal physics are discussed. From microscopic view points, basics of stochastic process and related topics are given. From macroscopic ones, after the concept of entropy is revisited, applications in global environments and hydrogen energy are described.

[Grading] Reports, essays, and/or written examinations.

【Course Goals】 Microscopic Viewpoints: Ability of multi-scale modelling

Macroscopic Viewpoints: Ability of global environment modelling

[Course Topics]

Theme	Class number of times	Description
(M) Brownian	1	
motion	1	
(M) Transport		
phenomena and	1	
correlation functions		
(M) Spectral analysis	2	
and fractal analysis	2	
(M) Stochastic		
process and its	3	
applications		
(Y) Entropy and free	1	
energy: revisit	1	
(Y) Science of		
atmosphere and	3	
ocean		
(Y) Hydrogen energy	3	
Check and feedback	1	

【Textbook】Not specified.

【Textbook(supplemental)】

[Prerequisite(s)] Elementary thermodynamics, Statistical physics, Heat transfer engineering, Numerical analysis etc.

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】(2016)

Yoshida: April 11 ~ May 23 Matsumoto: May 30 ~ July 11

Introduction to Advanced Fluid Dynamics

基盤流体力学

[Code] 10G007 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Condensed Matter Physics

量子物性物理学

[Code] 10G009 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	4	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Design and Manufacturing Engineering

設計生産論

[Code] 10G011 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	3	
	2	
	3	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10G013

Dynamic Systems Control Theory

動的システム制御論

[Code] 10G013 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Engineering Ethics and Management of Technology

技術者倫理と技術経営

[Code] 10G057 [Course Year] Master 1st [Term] 1st term [Class day & Period] Thu 3rd

[Location] Butsurikei-Kousya [Credits] [Restriction] No Restriction [Lecture Form(s)] Lectures and Exercise

[Language] Japanese [Instructor] Sawaragi, Nishiwaki, Tomita, M. Komori, Tsuchiya, Noda, Sato, Iseda,

Course Description Basic knowledge of Engineering Ethics and Management of Technology needed for future project leaders in companies and society is taught. Students have to make group work after-class hours as well as presentations of wrapping-up the discussions. Engineering ethics is the field of applied ethics and system of moral principles that apply to the practice of engineering. The field examines and sets the obligations by engineers to society, to their clients, and to the profession. Management of Technology is a set of management disciplines that allows organizations to manage their technological fundamentals to create competitive advantage. This course consists of lectures, exercises, discussions and oral presentations under supervision of professional faculties and extramural lecturers.

【Grading】 Submission of reports and presentations

[Course Goals] To cultivate a spirit of self-sufficiency needed for engineers

[Course Topics]

Theme	Class number of times	Description
		1. Introduction to Engineering Ethics (EE)
		2.Medical Engineering Ethics
		3.EE by Institution of Professional Engineers, Japan and abroad
		4.Product Safety and Product Liability
Engineering Ethics	9	5.Comprehensive Manufacturing and EE (1)
		6.Comprehensive Manufacturing and EE (2)
		7.Group Discussions
		8.History and Philosophy of EE
		9.Presentation on exercise of EE
		1.Product Portfolio, Strategy for Competition
Managament of		2.Bussiness Domain and MOT for Marketing
Management of Technology	5	3. Organizational Strategy for Corporates' R & D
		4. Management Theory for R & D
		5.Presentation on exercise of MOT
Summary	1	

【Textbook 】No textbook

【Textbook(supplemental)】Nothing

[Prerequisite(s)] Nothing particular

[Independent Study Outside of Class]

[Web Sites] No Web Site

【Additional Information】 Nothing particular

10G401

Jet Engine Engineering

ジェットエンジン工学

[Code] 10G401 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 1st

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)]

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	3-4	
	3-4	
	2-3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Propulsion Engineering, Adv.

推進工学特論

[Code] 10G405 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	4	
	2	
	2	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Gas Dynamics, Adv.

気体力学特論

[Code] 10G406 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	4	
	3	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Aerospace Systems and Control

航空宇宙システム制御工学

[Code] 10G409 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	4	
	4	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10G411

Fluid Dynamics for Aeronautics and Astronautics

航空宇宙流体力学

[Code] 10G411 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	3	
	3	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Flight Dynamics of Aerospace Vehicle

航空宇宙機力学特論

[Code] 10C430 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Kei Senda, Sinya Aoi

[Course Description] Flight Dynamics and Control of Aerospace Vehicles including Analytical Mechanics, Attitude Dynamics of Vehicles, Orbital Mechanics, etc.

【Grading】 Evaluation depends on marks of examination (80%) and exercises (20%). Both marks should be 60% or better.

【Course Goals】 To understand analytical mechanics through flight dynamics of aerospace vehicles: Basic items of Analytical Mechanics, Attitude Dynamics of Vehicles, Orbital Mechanics, etc.

[Course Topics]

Theme	Class number of times	Description
Analytical	7	1. Newton equations, 2. Lagrange equations, 3. Hamilton equations
Mechanics	/	1. Newton equations, 2. Lagrange equations, 3. Transition equations
Orbital Mechamics	4	1. Motions in central force field, 2. Conservation law, 3. Orbit transition
Attitude Dynamics	1	1. Kinematics of rotation, 2. Attitude mechanics, 3. Stability analysis of
and Control	4	equilibrium points, 4. Attitude Control

[Textbook]

【Textbook(supplemental)】 L. D. Landau and E. M. Lifshitz: Mechanics, Volume 1 (Course of Theoretical Physics

Herbert Goldstein: Classical Mechanics

Toda and Nakajima: Introductory course of physics #1, #2, #10, etc. (Iwnami Shoten)

【Prerequisite(s)】 Foundation of mechanics and mathematics, Flight Dynamics of Aerospace Vehicle (Undergraduate)

【Independent Study Outside of Class】

[Web Sites]

Dynamics of Solids and Structures

動的固体力学

[Code] 10G230 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd [Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] S. Biwa and T. Hayashi

[Course Description] Fundamental principles for dynamic deformations of solids and structures are examined. In particular, basic characteristics of elastic wave motion in solid media are emphasized. Responses of materials and structures to impact loading are also considered.

[Grading] Grading is based on the attendance, homework reports and the final examination (possibly replaced by reports).

Course Goals This course aims to establish the understanding of basic characteristics of dynamic deformations and elastic waves in solid media, as well as to learn about technological applications of ultrasound in a variety of fields extending from micro- to macro-scales. Particular emphasis is put on the mathematical aspects of the physical phenomena involved.

[Course Topics]

Theme	Class number of times	Description
Fundamentals of	1	Expressions of stress and strain; Conservation laws; Hooke's law; Principle of
elastodynamics	1	virtual work; Hamilton's principle and its applications
Dasies of ways		One-dimensional wave equation; D'Alembert's solution; Harmonic waves;
Basics of wave	2	Spectral analysis; Waves in structural members; Dispersive waves; Phase and
propagation		group velocities
Ctuasa vyovos in a han	1	Reflection and transmission at bi-material connection; Reflection at a free end;
Stress waves in a bar	1	Stress wave by tensile loading at a bar end; Plastic wave
Waves in isotropic	1	Navier's equations; Longitudinal and transverse waves; Plane elastic waves in
elastic media		isotropic solids
Waves in anisotropic	1	Voigt representation; Plane elastic waves in anisotropic solids; Christoffel's
elastic media	1	equation; Propagation and polarization directions; Slowness surfaces
Reflection and	2	Reflection and transmission of normal incident waves; Snell's law; Mode
transmission		conversion; Reflection and refraction of oblique incident waves.
Guided elastic waves	3	Bulk waves and guided waves; Rayleigh wave; Love wave; Lamb wave.
Numerical analysis	2	Finite difference method; Finite element method; Boundary element method
of elastic waves		Time difference method, Finite element method, Boundary element method
Measurements of	2	Comparison of various measurement techniques; Analogue and digital data
vibration and waves	<u> </u>	analysis

[Textbook] No textbooks are assigned. The lecture is mainly given in a blackboard style. Print-outs are handed in when needed.

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge of mechanics of materials (solid mechanics, continuum mechanics) is expected.

【Independent Study Outside of Class】 Enrolling students are expected to work on the lecture materials and the homework problems.

[Web Sites]

[Additional Information] The time units and weights for each item on the above list are subject to possible changes.

Transport Phenomena in Reactive Flows

Transport Phenomena in Reactive Flows

[Code] 10G423 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 1st

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] English [Instructor] YOSHIDA Hideo, IWAI Hiroshi,

Course Description 1 This lecture is designed for the students who want to gain their knowledge and understanding on transport phenomena associated mainly with convective flows with chemical reactions. It starts with a brief review of undergraduate level subjects followed by more advanced discussion on heat and mass transfer with reactions. The reactions of interest in the lecture include combustion (oxidation), reforming and electrochemical reactions. As the reactions may proceed on catalysts, the discussion covers the catalytic surface reactions, reactions in porous media as well as gas phase reactions. The students are expected to have learned fundamentals of Fluid dynamics, Thermodynamics and Heat transfer during their undergraduate courses.

[Grading] Grade evaluation is based on attendance, short reports and one's term paper submitted at the end of the semester.

[Course Goals] Starting from the basic heat and mass transfer, the lecture aims to expand the students 'comprehensive understanding on transport phenomena in physicochemical processes including thermochemical and electrochemical reactions.

[Course Topics]

Theme	Class number of times	Description
Transport		Transport phenomena in convective flows with chemical reactions including
phenomena in	14	combustion (oxidation), reforming and electrochemical reactions.
reactive flows		
Achievement	1	Achievement Confirmation
Confirmation	1	Achievement Commination

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Fluid dynamics, Thermodynamics, Heat transfer

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] This course will not be opened in 2015.

Advanced Finite Element Methods

有限要素法特論

[Code] 10G041 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd [Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture and Practice [Language] English [Instructor] Kotera and Nishiwaki,

Course Description This course presents the basic concept and mathematical theory of the Finite Element Method (FEM), and explains how the FEM is applied in engineering problems. We also address important topics such as the physical meaning of geometrical non-linearity, material non-linearity, and non-linearity of boundary conditions, and we explore numerical methods to deal with these nonlinearities. Also, we guide students in class in the use of software to solve several numerical problems, to develop practical skill in applying the FEM to engineering problems.

【Grading 】 Grading is based the quality of two or three reports and the final exam.

[Course Goals] The course goals are for students to understand the mathematical theory of the FEM and the numerical methods for analyzing non-linear problems based on the FEM.

[Course Topics]

Theme	Class number of times	Description
Basic knowledge of the FEM	3	What is the FEM? The history of the FEM, classifications of partial differential equations, linear problems and non-linear problems, mathematical descriptions of structural problems (stress and strain, strong form and weak form, the principle of energy).
Mathematical background of the FEM	2	Variational calculus and the norm space, the convergence of the solutions.
FEM formulations	3	FEM approximations for linear problems, formulations of iso-parametric elements, numerical instability problems such as shear locking, formulations of reduced integration elements, non-conforming elements, the mixed approach, and assumed-stress elements.
Classifications of nonlinearities and their formulations	4	Classifications of nonlinearities and numerical methods to deal with these nonlinearities.
Numerical practice	2	Numerical practice using COMSOL.
Evaluation of student achievements	1	

[Textbook]

[Textbook(supplemental)] Bath, K.-J., Finite Element Procedures, Prentice Hall

Belytschko, T., Liu, W. K., and Moran, B., Nonlinear Finite Elements for Continua and Structures, Wiley

[Prerequisite(s)] Solid Mechanics

[Independent Study Outside of Class]

[Web Sites]

Seminar on Engineering Science of Ionized Gases

電離気体工学セミナー

[Code] 10V401 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Mon 3rd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V412

Seminar on Gas Dynamics

気体力学セミナー

[Code] 10V412 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Tue 3rd

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Fluid Dynamics for Aeronautics and Astronutics

航空宇宙流体力学セミナー

[Code] 10V405 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Wed 5th

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	14	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Aerospace systems

航空宇宙機システムセミナー

[Code] 10R410 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Mon 4th

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese

[Instructor],

【Course Description】

【Grading】 Evaluation depends on marks of presentation, report, and so on.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Aerospace Systems	15	1. Reading textbooks
		2. Reviewing journal papers

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Systems and Control

システム制御工学セミナー

[Code] 10R419 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Tue 4th

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V407

Seminar on Optimum System Design Engineering

最適システム設計工学セミナー

[Code] 10V407 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar and Exercise

[Language] Japanese [Instructor],

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Thermal Engineering Seminar

熱工学セミナー

[Code] 10V409 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 3rd

[Location] C3-Lecture Room 3 [Credits] [Restriction] [Lecture Form(s)] [Language] Japanese

[Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Mechanics of Functional Solids and Structures

機能構造力学セミナー

[Code] 10V413 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Wed 4th

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] Japanese [Instructor] S. Biwa and T. Hayashi

[Course Description] This Seminar is to review advanced topics related to materials and structural systems involved in aeronautics and astronautics, as well as to nurture the presentation and discussion skills. Specific topics include the numerical methods for dynamic behavior of thin-walled structures and composite/functional materials, and advanced experimental techniques for structural health monitoring.

[Grading] Grading is based on the literature survey, presentation, discussion and the final report.

[Course Goals] The goal is to nurture the skills to survey and discuss advanced topics in the mechanics of functional materials and structures as well as structural health monitoring, and to utilize them in carrying out the research project.

[Course Topics]

Theme	Class number of times	Description
Subject setting	2	Literature survey is to be carried out for advanced topics in the mechanics of
Subject setting	3	functional materials and structures as well as structural health monitoring.
Presentation and	11	The results of literature survey are presented and discussed with the critical
discussion		evaluations for them.
Assessment	1	The achievement is assessed by the final report.

【Textbook】 No textbooks are assigned.

【Textbook(supplemental)】

[Prerequisite(s)] Enrolling students are expected to have the fundamental knowledge of solid mechanics and to be willing to work on advanced topics in the mechanics of solids/structures.

[Independent Study Outside of Class] Enrolling students are expected to carry out the literature survey and to prepare the presentation.

[Web Sites]

[Additional Information] The time units of each stage are subject to change depending on each year's conditions and due to the discussion by Instructors/students.

Design of Complex Mechanical Systems

複雑系機械システムのデザイン

[Code] 10X411 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme Class number of times		Description
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10K013

Advanced Mechanical Engineering

先端機械システム学通論

[Code] 10K013 [Course Year] Master and Doctor Course [Term] 2nd term

[Class day & Period] Tue 5th and Thu 4th [Location] C3-Lecture Room 5 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Faculty members from several fields

[Course Description] Lectures on recent topics in various fields of mechanical engineering will be given in English. This is mainly for foreing students (MC/DC), but Japanese students are also welcome.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Mechanics	2	Detailed schedule will be annouced later.
Materials	2	
Thermodynamics	2	
Fluid dynamics	2	
Control	2	
Design	2	
Microengineering	2	
Examination/Feedback	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This class will be given every two years; Not given in 2015.

Dynamical Systems, Advanced

力学系理論特論

[Code] 693431 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 4th

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

【Course Description】

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	2	
	2	
	2	
	2	
	1	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Mathematical Analysis, Advanced

数理解析特論

【Code】6934	10 Course	Year I Master and Doctor Cour	rse 【Term】2nd term 【Cla	ss day & Period] Wed 3rd
[Location]	【Credits】2	【Restriction】No Restriction	[Lecture Form(s)] Lecture	[Language] Japanese
【Instructor】,	,			

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Topics in Nonlinear Dynamics A

非線形力学特論A

[Code] 693320 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] Integrated Research Bldg.-111 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1-3	
	1-3	
	1-3	
	1-3	
	1-3	
	1-3	
	1-3	
	1-3	
	1-3	
	1-3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

693321

Topics in Nonlinear Dynamics B

非線形力学特論 B

[Code] 693321 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Meteorology I

気象学

[Code] 10M226 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 2nd [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2 ~ 4	
	2 ~ 4	
	2 ~ 4	
	2 ~ 4	
	2 ~ 4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10M227

Meteorology II

気象学

[Code] 10M227 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	3 ~ 4	
	3 ~ 4	
	3 ~ 4	
	3 ~ 4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Internship DS

インターンシップ DS (機械工学群)

[Code] 10V019 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V020

Internship DL

インターンシップ DL (機械工学群)

[Code] 10V020 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 6 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar of Complex Mechanical Engineering,A

複雑系機械工学セミナーA

[Code] 10V025 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,B

複雑系機械工学セミナー B

[Code] 10V027 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading 】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Croup activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity	10-12	in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,C

複雑系機械工学セミナーC

[Code] 10V029 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,D

複雑系機械工学セミナーD

[Code] 10V031 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,E

複雑系機械工学セミナーE

[Code] 10V033 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,F

複雑系機械工学セミナーF

[Code] 10V035 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] Engineering Science Depts Bldg.-215 [Credits] 1 [Restriction] [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda,

Course Description This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

【Grading 】 Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 All activities should be done in English.

10G418

Experiments and Exercises in Aeronautics and Astronautics I

航空宇宙工学特別実験及び演習第一

[Code] 10G418 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Experiment and Exercise [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

times	Theme Class number of times	Description
-------	-----------------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10G420

Experiments and Exercises in Aeronautics and Astronautics II

航空宇宙工学特別実験及び演習第二

[Code] 10G420 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Experiment and Exercise [Language] Japanese

[Instructor],

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Introduction to Quantum Science

基礎量子科学

[Code] 10C070 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	9	
	2	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10C072

Introduction to Advanced Nuclear Engineering

基礎量子エネルギー工学

[Code] 10C072 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Field Theory

場の量子論

[Code] 10C004 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

【Language】 Japanese 【Instructor】 Takayuki Miyadera, Kenzo Ogure

【Course Description】 An introduction to quantum field theory is presented with an emphasis on its importance and mathematical difficulties.

【Grading】examination

[Course Goals] Our aim is to understand the `beauty" (or peculiarity) and the difficulty of relativistic quantum field theory caused by the Poincare covariance and the infinite degrees of freedom.

[Course Topics]

Theme	Class number of times	Description
Free field	8	Poincare group, Wigner's theorem, Fock space, Wightman function, Weyl
Free field		algebra, microlocal analysis and Wick product
Interactions among	6	Perturbative expansion, Wick's theorem, Feynman diagram, divergences,
quantized fields		renormalization a la Epstein-Glaser, axiomatic quantum field theroy
Confirmation of	1	
achievement in study	1	

[Textbook]

【Textbook(supplemental)】None

[Prerequisite(s)] Analysis, linear algebra, quantum mechanics

【Independent Study Outside of Class】

[Web Sites]

Quantum Science

量子科学

[Code] 10C074 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 1st [Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

【Course Description】 This course involves fundamental interactions of electrons, ions and photons to atoms, molecules and condensed matters, and practical applications for nanotechnology. Great emphases are on fundamental mechanisms of beam-solid interactions, characterization techniques, material synthesis and processing for quantum devices with quantum beam. Recent progress of related area of quantum beam will be also introduced in this course.

[Grading] Coursework will be evaluated with attendance and report on subjects.

[Course Goals] To provide students to understand fundamental interactions in quantum science.

[Course Topics]

Theme	Class number of times	Description
Interactions between quantum beams and solids	7	Interactions between quantum beams and solids are described with various formulas. Collisions with nucleus, electronic excitation, defect formation and energy loss will be discussed and related scientific topics, such as discovery of electron will be introduced.
Applications of quantum beams	7	The interactions of quantum beam are widely used for various applications. Material processing and analysis with quantum beams are essential in nanotechnology and quantum beams are also important for diagnostics of diseases and cancer therapy in medical field. Practical applications will be presented with recent progress and challenges.
Final examination and report	1	Evaluation will be given by the contents of the reports and quizzes of the subjects leaned in this course.

【Textbook】 Ion-Solid Interactions: Fundamentals and Applications (Cambridge Solid State Science Series) M. Nastasi, J. Mayer, J. Hirvonen

【Textbook(supplemental)】

[Prerequisite(s)] Solid state physics, Quantum mechanics(beginner 's), Electromagnetism

[Independent Study Outside of Class]

[Web Sites]

Nuclear Materials

核材料工学

[Code] 10C013 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Takagi Ikuji

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	5	
	4	
	5	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Nuclear Fuel Cycle 1

核燃料サイクル工学 1

[Code] 10C014 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Takayuki SASAKI, Taishi KOBAYASHI

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Nuclear fuel	3	
Actinide chemistry	3	
Disposal	4	
management	4	
Decomissioning	1	
Recent topics	2	
Support	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Nuclear Fuel Cycle 2

核燃料サイクル工学 2

[Code] 10C015 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Toshiyuki Fujii, Akihiro Uehara

Course Description The reliable nuclear fuel cycle is essential to realize the long-range utilization of the nuclear energy. The scope of this course is to understand concepts, engineering schemes, and chemical principles of the nuclear fuel cycle, that is, recycling system for fast breeder reactor, nuclear reprocessing, partitioning and transmutation, especially, chemical separation, isotope enrichment, recycling methods of plutonium and thorium, environmental problems, and so on.

【Grading】Reports for subjects asked in the course.

[Course Goals] To gain the fundamental knowledge of the nuclear fuel cycle and deepen understanding of the nuclear science.

[Course Topics]

Theme	Class number of times	Description
General	2	Nuclear energy use and nuclear fuel cycle
		*Formation of radionuclides in nuclear fuel *Radiochemical properties of
Radiochemistry	3	nuclides focused in nuclear fuel cycle *Chemistry of actinide elements
		(f-elements)
Reprocessing	2	Methods and characteristics of nuclear fuel reprocessing
Concepts of	2	Recycling of plutionium in light water reactor system (pluthermal), Thorium
reprocessing	2	fuel cycle
Solution chemistry 1	2	Wet reprocessing of nuclear fuel (dissolution and extraction processes)
Solution chemistry 2	2	Pyro-reprocessing (chemistry of molten salts)
Isotope separation	1	Isotope enrichment of uranium
Environmental	1	Environmental impact via nuclear fuel cycle
impact	1	Environmental impact via nuclear fuel cycle

【Textbook】 Not specified. According to need, documents may be distributed.

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] It is recommended to attend the course, Nuclear fuel cycle 1, before this course. Need: calculator

Radiation Physics and Engineering

放射線物理工学

[Code] 10C017 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 3rd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	5	
	2	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Neutron Science

中性子科学

[Code] 10C018 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	3	
	6	
	2	
	3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Manipulation Technology

量子制御工学

[Code] 10C031 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] Bldg.No.1-Nuclear Engineering 2 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	14	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Fundamentals of Magnetohydrodynamics

基礎電磁流体力学

[Code] 10C076 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] English Lecture

[Language] English [Instructor] Tomoaki Kunugi, Atsushi Fukuyama,

【Course Description】 This course provides fundamentals of magnetohydrodynamics which describes the dynamics of electrically conducting fluids, such as plasmas and liquid metals. The course covers the fundamental equations in magnetohydrodynamics, dynamics and heat transfer of magnetofluid in a magnetic field, equilibrium and stability of magnetized plasmas, as well as illustrative examples.

【Grading】 Attendance and two reports

[Course Goals] The students can understand fundamentals of magnetohydrodynamics which describes the dynamics of electrically conducting fluids, such as plasmas and liquid metals. Moreover, the students will figure out the applications of magnetohydrodynamics to the various science and engineering fields.

[Course Topics]

Theme	Class number of times	Description
		1. Introduction and Overview of Magnetohydrodynamics
		2. Governing Equations of Electrodynamics and Fluid Dynamics
		3. Turbulence and Its Modeling
Liquid Metal MHD	7	4. Dynamics at Low Magnetic Reynolds Numbers
		5. Glimpse at MHD Turbulence & Natural Convection under B field
		6. Boundary Layers of MHD Duct Flows
		7. MHD Turbulence at Low and High Magnetic Reynolds Numbers
	8	1. Introduction to Plasma MHD
		2. Basic Equation of Plasma MHD
		3. MHD Equilibrium
Plasma MHD		4. Axisymmetric MHD Equilibrium
Piasma MHD		5. Ideal MHD Instabilities
		6. Resistive MHD Instabilities
		7. MHD Waves in Plasmas
		8. Student Assessment

【Textbook】 Handout of the presentation will be provided at the lecture

【Textbook(supplemental)】P. A. Davidson, "An Introduction to Magnetohydrodynamics," Cambridge texts in applied mathematics, Cambridge University Press, 2001

[Prerequisite(s)] Fundamental fluid dynamics and electromagnetics should be learned prior to attend this lecture.

【Independent Study Outside of Class】

[Web Sites]

10C034

Nuclear Energy Conversion and Reactor Engineering

核エネルギー変換工学

[Code] 10C034 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] KAWARA, KUNUGI, YOKOMINE,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	3	
	2	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Multiphase Flow Engineering and Its Application

混相流工学

[Code]10C037 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period]Wed 2nd [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] KUNUGI, Tomoaki, YOKOMINE, Takehiko,

[Course Description] Reviewing of the fundamental definition and characteristics of multiphase flows, and to learn the governmental equations and some modelings of the constitutive equations and the current status of the multiphase flows. Moreover, to review and learn the fundamental definition and characteristics of particle flows, and to learn the numerical methods to track the particle laden flows and the particle measurement method.

[Grading] Present a summary of some papers regarding multiphase flows research by using a power point, and then answer several questions made by lecturers. The quality of your presentation and how deep understand your subject are the grading point.

[Course Goals] As for the multiphase flows, to learn its fluid dynamics behaviors, governing equations and numerical methods, and finally to discuss its applications to many engineering fields.

【Course Topics】

Theme	Class number of times	Description
What's the multiphase	1	To review the definitions and fundamental characteristics of multiphase flows.
flows?	1	
Governing equation of		
gas-liquid two phase	2	To learn the governing equation of gas-liquid two phase flows
flows		
Modeling of		
gas-liquid two phase	2	To learn modeling of gas-liquid two phase flows and its constitutive equations
flows		
Numerical methods	3	To learn the numerical methods to solve the single-phase and two-phase flows
Examples of		
gas-liquid two phase	1	To show some examples of gas-liquid two phase flow analysis
flow analysis		
Characteristics of	1	Review characteristics of particle flows
particle flows	1	Review Characteristics of particle flows
		Explain variables and parameters subjected to interaction between particle and
Fundamental aspect of	1	particle and/or particle and flow. Moreover, momentum and heat exchange
particle flows	1	between phases, i.e., to explain One-way, Two-way and Four-way coupling
		numerical methods.
		Explain numerical method for thermofluid including static particles like a packed
Particle methods	2	bed. Moreover, numerical methods for macroscopic and microscopic particles such
		as Discrete Element Method.
Measurements of	2	Review several measuring methods of particle characteristics and thermofluid
particle characteristics	۷.	behaviors

【Textbook】 Handouts of the presentation will be provided in the lecture.

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10C038

Physics of Fusion Plasma

核融合プラズマ工学

[Code] 10C038 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 3rd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

【Course Description】

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	1	
	1	
	3	
	1	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Hybrid Advanced Accelerator Engineering

複合加速器工学

[Code] 10C078 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Yoshiharu Mori,

【Course Description】 Particle accelerator is essential for proceeding nuclear and particle physics but also becomes a very important tool for future nuclear sciences and engineering. In this lecture, a basics theory of accelerator physics including beam optics and dynamics of the circular accelerators is given, and also various applications of the accelerators are also presented.

【Grading】Reports on practical issues and subjects.

[Course Goals] This lecture aims to learn a basic accelerator theory and to attain abilities to make a primitive design of circular accelerator.

[Course Topics]

Theme	Class number of times	Description
Hisitory and outline		
of particle	1	
accelerator		
Basic theory of beam		
dynamics in circular	2	
accelerator		
Beam oribit theory	3	
Hardwares of particle	2	
accelerator	2	
Strong focusing		
theory and lattice	3	
design		
Radio frequency	3	
acceleration theory		
Summary and check	1	
the accomplishment	1	

[Textbook]

【Textbook(supplemental)】 J.J.Livingood, Cyclic Particle Accelerator, Van Nostland, New York (1961).E.D. Courant and H.S.Snyder, Ann. Physics, 3,1(1958).

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Nuclear Reactor Safety Engineering

原子炉安全工学

[Code] 10C080 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Ken NAKAJIMA,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	3	
	5	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Applied Neutron Engineering

応用中性子工学

[Code] 10C082 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 3rd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	4	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10C046

Radiation Biology and Medicine

放射線生物医学

[Code] 10C046 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] Japanese

[Instructor],,,

【Course Description】

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	4	
	4	
	5	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Radiation Medical Physics

放射線医学物理学

[Code] 10C047 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd [Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Yoshinori Sakurai, Takushi Takata

Course Description Medical physics is the general term for the physics and technology which are supporting radiation diagnosis and therapy, and particle therapy. As it covers many different fields, the important subjects are "promotion for the advance of radiation therapy" and "quality assurance for radiation therapy". The scope of this course is to learn the fundamental knowledge for radiation medical physics. Especially, the focus is put on the understanding for (1) the bases of physics, biology and so on for radiation, (2) the physics for the radiations applied to diagnosis, (3) the characteristics of radiations and particle beams applied to therapy, and (4) the quality assurance and so on for radiation diagnosis and therapy.

【Grading】 Attendance and reports

[Course Goals] To learn the fundamental knowledge of medical physics, mainly for radiation physics in diagnosis and therapy

[Course Topics]

Theme	Class number of	Description
Introduction to	times	<u> </u>
medical physics for	1	
radiation		
Fundamental	1	
bilology for radiation	1	
Radiation		
measurement and	2	
evaluation		
Physics in radiation	4	
diagnosis	4	
Physics in radiation	5	
therapy	3	
Quality assurance		
and standard	1	
dosimetry		
Achievement	1	
Assessment	1	

【Textbook 】Not specified. Handouts will be given for each topic.

【Textbook(supplemental)】F.M.Khan, "The Physics of Radiation Therapy: Mechanisms, Diagnosis, and Management" (Lippincott Williams & Wilkins, Baltimore, 2003)

[Prerequisite(s)] It is recommended to attend the course, "Radiation Measurement for Medicine", concurrently.

[Independent Study Outside of Class]

[Web Sites]

10C084

Nuclear Engineering, Adv.

原子核工学最前線

[Code] 10C084 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 4th

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	11	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Nuclear Engineering Application Experiments

原子力工学応用実験

[Code] 10C068 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] Research Reactor Institute [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise

[Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R001

Quantum Beam Science, Adv.

量子ビーム科学特論

[Code] 10R001 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 4th

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	6	
	4	
	2	
	2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Physics, Adv.

量子物理学特論

[Code] 10R004 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location] C3-Seminar Room d1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] T. Miyadera,

【Course Description】 We study advanced quantum theories and their applications to technologies including quantum optics and quantum information. Keywords: Foundations of quantum theory, quantum information theory.

【Grading】Presentations and discussions

[Course Goals] We introduce recent progresses of techonogies based on quantum dynamics.

[Course Topics]

Theme	Class number of times	Description
Quantum theories	14	We study a relevant textbook and related topics.
and their applications	14	we study a relevant textbook and related topics.
Confirmation of	1	
achievement in study	1	

【Textbook】 A relevant textbook is instructed at the beginning of the class every year.

【Textbook(supplemental)】

[Prerequisite(s)] quantum physics

【Independent Study Outside of Class】

[Web Sites]

Nonlinear Physics in Fusion Plasmas

非線形プラズマ工学

[Code] 10R013 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Tue 3rd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] English [Instructor] Atsushi Fukuyama,

【Course Description】 This course provides a comprehensive introduction to computational modeling and simulation of magnetically confined fusion plasmas. Topics include elements of nonlinear plasma physics, modeling of various phenomena in fusion plasmas, computational methods in plasma physics, and integrated simulation of fusion plasmas

【Grading 】Report in English

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Nonlinear		
Phenomena in	1	Review of nonlinear phenomena in plasmas; modeling of plasmas
Plasma Physics		
Nonlinear Waves in	2	Nonlinear ion acoustic waves; Korteweg de Vries equation; Soliton; Nonlinear
Plasmas	2	Schrodinger equation
Wave-Particle		Linear wave particle resonant interaction; Landau damping; Trapping in a
Interaction in	2	single wave: Nonlinear interaction with waves; Stochastic particle motion;
Plasmas		Quasi-linear interaction
Wave-Wave		
Interaction in	2	Parametric instability; Three-wave interaction
Plasmas		
Numerical Analysis		
of Differential	4	Basics of numerical simulations; Ordinary differential equation; Partial
Equations		differential equation; Matrix solver
Numerical		N
Simulation of Fusion	3	Numerical simulation of fusion plasmas: equilibrium, transport, heating and
Plasmas		current drive, stability, energetic particles, integrated modeling
Assessment of	1	A
Achievement	1	Assessment of Achievement

【Textbook 】None

【Textbook(supplemental)】

[Prerequisite(s)] Plasma Physics, Fundamental Magnetohydrodynamics, Fusion Plasma Physics, or equivalents

【Independent Study Outside of Class】

[Web Sites]

Introduction to Nucelar Engineering 1

原子核工学序論 1

[Code] 10C086 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-101 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	7	
	7	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Introduction to Nucelar Engineering 2

原子核工学序論 2

[Code] 10C087 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-101 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	9	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Radiation Measurement for Medicine

医学放射線計測学

[Code] 10W620 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd [Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Hidetsugu Tsuchida, Yoshinori Sakurai,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Fundamentals for		
Physical Effects of	2	
Radiation	2	
Interactions		
Fundamentals for		
Chemical Effects of	1	
Radiation	1	
Interactions		
Fundamental		
Quantities and Units	2	
for Radiation		
Radiation		
Measurements in	3	
Medical Physics		
Radiation Dosimetry	2	
Estimation for Dose	2	
Distribution		
Techniques for		
Radiation Control		
and Measurement in	1	
Medical Radiation		
Field		
Laws and Ordinances		
for Radiation	1	
Therapy		
Check of Study	1	
Achievement	1	

[Textbook]

 $\begin{tabular}{ll} Textbook(supplemental) \begin{tabular}{ll} Tex$

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called "high technologies", and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site for more information. You can find an attachment file, "通知版: 2016 先端マテリアル講義概要", where the term Credit will tell you the requirement.

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
Hyperthermophiles and their thermostable biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Theoretical Design for Organic Light-Emitting Diode Materials	1	Organic light-emitting diodes have multilayer structures consisting of carrier-transporting layers and a light emitting layer. The concepts employed in desining these materials and their examples are discussed.(T. Sato: Dept. of Molecular Engineering)
In Vivo Optical and Photoacoustic Tumor Imaging using Near-infrared Dye-cinjugated Amphiphilic Polymers	1	Optical and photoacoustic imaging methods are one of the most powerful and noninvasive techniques with which to visualize organs as well as tumor tissues. In this lecture, students can learn the basic principles of molecular imaging as well as recent progress in this field. (K. Ohe: Dept. of Energy and Hydrocarbon Chemistry)
Charge Carrier Transport in Conjugated Molecular Materials	1	How can we facilitate effective charge carrier transport pathway in organic conjugated molecular materials? The major topic of the present lecture is the mechanism of charge carrier transport in conjugated molecular materials. After an overview of electronic structure of conjugated molecular materials based on band models, a variety of measurement techniques is introduced to probe charge carrier mobility in the materials, to figure out characteristic behavior of conjugated molecules (and their aggregates) as electric conductive materials.(S. Seki: Dept. of Molecular Engineering)
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed.(T. Koga: Dept. of Polymer Chemistry)
Materials Processing using external fields for microstructure control	1	Properties of materials are not simply determined by atomic structure and chemical composition. Microstructure (crystal grain size, crystallographic orientation and so on) significantly influences the properties. Not a few techniques have been developed for controlling the microstructure. Materials processing using external fields will be demonstrated in this class.(H. Yasuda: Dept. of Materials Science and Engineering)
Force acting on colloidal particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed.(R. Yamamoto: Dept. of Chemical Engineering)
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced.(T. Asano: Dept. of Electronic Science and Engineering)
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials.(Y. Nakao: Dept. of Material Chemistry)
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Introduction to Nuclear Materials	1	Nuclear materials are designed for using in irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked.(I. Takagi: Dept. of Nuclear Engineering)
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides.(K. Tanaka: Dept. of Material Chemistry)
Solar Hydrogen Production using Semiconductor Photocatalyst	1	The development of a clean and renewable energy carrier that does not utilize fossil fuels is a great technological challenge. Photocatalytic water splitting using semiconductor materials has attracted considerable interest due to its potential to cleanly produce H2 from water by utilizing abundant solar light. In the present lecture, the basis and the recent progress in photocatalytic water splitting will be introduced.(R. Abe: Dept. of Energy and Hydrocarbon Chemistry)
Electrodeposition and Electroless Deposition for Materials Processing	1	(1)Fundamentals chemistry, electrochemistry, and thermodynamics , and (2)applications of electrodeposition and electroless deposition for materials processing.(K. Murase: Dept. of Materials Science and Engineering)

【Textbook 】None

 $\begin{tabular}{ll} Textbook(supplemental) \begin{tabular}{ll} Textbook(supplemental) \end{tabular}$

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information 】 Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

10K005

Advanced Modern Science and Technology (English lecture)

現代科学技術特論(英語科目)

[Code] 10K005 [Course Year 1	Master and Doctor Course	[Term]	Class day & Period Thu 5th	[Location] A2-306	Credits 1 2(Semester system)	[Restriction] No Restriction	
[Lecture Form(s)]	Relay Lecture	[Language] English						

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto Related professors

Course Description 1 Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Who shake the dice?	1	Double slit phenomenon known as a prediction inability " quantum mechanics of the mystery (Feynman says) " can be every moment predicted by QED.(A. Tachibana: Dept. of Micro Engineering)
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)
Systems Control in Aeronautics and Astronautics	1	Systems control theory is used in several problems in aeronautics and astronautics. This lecture focuses on some of them and further gives an overview of this research based on them.(K. Fujimoto: Dept. of Aeronautics and Astronautics)
Countermeasures of the Contaminated Water at Fukushima Daiichi Nuclear Power Station and that of the Contaminated Soil in Fukushima Area	1	The situation of contaminated water in Fukushima Daiichi Nuclear Power Station and soil contamination in and around Fukushima area and their technological countermeasures taken today will be introduced and discussed.(M. Yoneda: Dept. of Environmental Engineering)
Polymer Synthesis beyond the 21st Century: Precision Polymerizations and Novel Polymeric Materials	1	We are now in the "Polymer Age", where synthetic polymer materials are indispensable in the modern human life: healthy, safe, comfortable, and sustainable. A critical challenge herein is to develop "precision polymerization", polymer-forming reactions that provide polymers of well-defined structures and designed functions. Given these backgrounds, this lecture will overview the following subjects: (a)What polymers are; (b)How to synthesize polymers; (c)How and where polymeric materials work and function; (d)Precision polymer synthesis; and (e)The future of polymeric materials.(M. Sawamoto: Dept. of Polymer Chemistry)
Engineering Approach to Phase Behavior of Fluids Confined in Nanospace	1	Fluids confined in nano-scale pores exhibit peculiar phase behaviors that depends strongly on physico-chemical effects by pore walls and conditions of the bulk phase in equilibrium with the pore fluids, to which the engineering approach must be effective.(M. Miyahara: Dept. of Chemical Engineering)
Elucidation of Principles for the Self-organization of Mesoscale Colloidal Particles	1	The process of so-called the colloid crystal has been pursued to find out the key principles for the structure evolution, employing the Brownian dynamics simulations. Also given in the lecture will be various pattern formations in the convective self-assembly of colloidal suspensions.(M. Miyahara: Dept. of Chemical Engineering)
Architectural Design and Architectural Thinking	1	Architectural design is integration of thinking on architectural events and materials. I would like to discuss this architectural thinking and the method to embody it.(K. Takeyama: Dept. of Architecture and Architectural Engineering)
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Vacuum Nanoelectronics Devices in Harsh Environments	1	This lecture reviews the perspective of the modern vacuum electron devices based on miniaturized electron sources fabricated with contemporary semiconductor processes. The performance of the devices is evaluated in view of the device in harsh environments. (Y. Gotoh: Dept. of Electronic Science and Engineering)
Advanced Digital Technology for Analytical Recording of Cultural Heritage Assets	1	(A. Ide: Dept. of Mechanical Engineering and Science)
Protein Structure, Function, and Motion	1	Proteins work by fluctuating and changing their conformations. Protein structures and motions, which are essential for understanding their functions in detail, are introduced in conjunction with the state-of-art methods to analyze them.(K. Sugase: Dept. of Molecular Engineering)
Laser-induced Breakdown Spectroscopy and Its Application to Underwater In-situ Elemental Analysis	1	Development of laser-induced breakdown spectroscopy (LIBS) for in-situ elemental analysis in water, and the application to resource exploration at sea bottom will be explained.(T. Sakka: Dept. of Energy and Hydrocarbon Chemistry)
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)
Modern Techniques for Material Characterization	1	Overview of modern techniques for material characterization is given with basic principles and practical applications. Impacts on the life of the people of characterization techniques are also included.(J. Matsuo: Dept. of Nuclear Engineering)

【Textbook】 None

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

 $\label{thm:conditional} \mbox{ Additional Information \ref{D} Students who take Autumn term should register "Lecture code 10H006"}.$

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 5th

[Location] Funai Hall [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Exercise in Practical Scientific English

実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] Thu 4th or 5th [Location] A2-304 [Credits] 1

[Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] Japanese and English

[Instructor] Y. Nakayama and T. Mizuno

[Course Description] Students learn about the basics of technical writing in English, and learn about and practice the format, style, and mechanics of the scientific research article. We may restrict the class size to enhance learning. The course is shared by Master 's and Doctoral Course students.

[Grading] Students are required to submit an initial report and a mid-term report. Students failing to submit the mid-term report will be given no credit.

[Course Goals] Students develop basic communication skills needed to work for international organizations through practicing scientific English writing.

[Course Topics]

Theme	Class number of times	Description
Course Outline and		Students examine the aim and requirements of the course, and look at the key
Introduction to	1	points for writing correctly, clearly, and concisely. (The class schedule may
Technical Writing		change without notice.)
Darias of Tarksiani		Students learn about the definition and basic rules for technical writing, and
Basics of Technical	3	look at common mistakes made by non-native writers of English. Students also
Writing		learn about basic English grammar.
Japanese-to-English	2	Students learn about English grammar and practice revising their English
Translation Practice	3	writing.
Danaganaha	2	Students learn about paragraphs: the topic sentence and supporting sentences,
Paragraphs	2	and techniques for sequencing information in a paragraph.
Format of Research	3	Students learn about the standard format of a research article: the title, abstract,
Articles	3	method, results, discussion, and conclusion.
Listania - Dasatia	1	Students practice listening comprehension using videos presenting scientific
Listening Practice	1	and technical information.
Online Learning	2	Writing Paragraphs

【Textbook】No text - all materials are supplied by the teachers.

【Textbook(supplemental)】 Yukiko Nakayama, Gijutsu kei Eibun Raithingu Kyohon (Technical Writing Textbook), Japan Society for Technical Communication

Anne M. Coghill and Lorrin R. Garson, The ACS style guide, 3rd, The American Chemical Society.

[Prerequisite(s)] Students need to have basic English skills at undergraduate level.

【Independent Study Outside of Class】

[Web Sites] http://www.glc.t.kyoto-u.ac.jp/ja/study/grad/10d040

[Additional Information] We may restrict the class size to enhance students 'learning. Students who intend to join the course are required to attend the first-day guidance.

Internship M

インターンシップM(原子核)

[Code] 10C050 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese

【Instructor】Hidetsugu Tsuchida,

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Experiments and Exercises on Nuclear Engineering, Adv. I

原子核工学特別実験及び演習第一

[Code] 10C063 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] Mon 1st and 2nd

[Location] [Credits] 4 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese

[Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Experiments and Exercises on Nuclear Engineering, Adv. II

原子核工学特別実験及び演習第二

[Code] 10C064 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Nuclear Engineering A

原子核工学セミナーA

[Code] 10C089 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Nuclear Engineering B

原子核工学セミナーB

[Code] 10C090 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R017

Engineering Internship D

インターンシップD(原子核)

[Code] 10R017 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise [Language] [Instructor] Manabu Saito

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	unies	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R019

Seminar on Nuclear Engineering, Adv. A

原子核工学特別セミナーA

[Code] 10R019 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Nuclear Engineering, Adv. B

原子核工学特別セミナーB

[Code] 10R021 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R023

Seminar on Nuclear Engineering, Adv. C

原子核工学特別セミナーC

[Code] 10R023 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Nuclear Engineering, Adv. D

原子核工学特別セミナーD

[Code] 10R025 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R027

Seminar on Nuclear Engineering, Adv. E

原子核工学特別セミナーE

[Code] 10R027 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Nuclear Engineering, Adv. F

原子核工学特別セミナーF

[Code] 10R029 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Thermodynamics for Materials Science, Adv.

材料熱力学特論

[Code] 10C208 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	3	
	2	
	2	
	3	
	2	
	1	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Material and Chemical Information Analysis

物質情報工学

[Code] 10C210 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd [Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Jun Kawai

【Course Description】1. Lectures on data processing methods such as Fourier transform and smoothing of measured data, ISO standards for chemical analysis, detection limits, standard deviation of measured data.

2. Lectures on basic concept of group, ring, field and vector space in abstract algebra and their applications to materials science, based on materials information obtained by measurements and/or theoretical calculations.

[Grading] By reports

[Course Goals] 1. To get skills to extract information from data measured by the students by themselves during the research in graduate school.

2. Understandings of basic concepts of abstract algebra and of how they are practically used to treat variety of problems in materials science.

[Course Topics]

Theme	Class number of times	Description	
Fif	2	Fourier transform, uniformly random numbers, the central limit theorem,	
Fourier transform		convolution and deconvolution. Report #1.	
The method of least squares	1	Least square method, Savitzky-Golay smoothing, and peak separation.	
Information	1	Submission of Report #1 and examples of the answer for Report #1. Akaike's	
Information	1	information criteria, spline function, and Tsallis entropy. Report #2.	
		Gaussian distribution, deviation, detection limit, the error of the first kind,	
Detection limit and		second kind, ISO standards in chemical analysis, IUPAC definition of	
spectrometer	3	detection limit.	
resolution		Submission of Report #2 and examples of the answer for Report #2.	
		Resolution of spectrometer, Fractal dimension of measured data.	
		Basic concepts of group, ring, field and vector space including binary	
		operation, map, isomorphism, ideal, direct sum, basis, dual space, function	
Basics and		space, metric, bilinear form and tensor product. Deeper understandings of the	
applications of	7	concepts with evolution in dynamical system, Fourier transform, statistical	
abstract algebra to	/	thermodynamics and quantum mechanics.	
materials science		Their applications to generalized Ising model for representation of physical	
		property in crystalline solids, and extracting characteristic structure using	
		homology group. Submission of reports during the lectures.	
Feedback	1	Comments on the reports.	

【Textbook】 not used.

[Textbook(supplemental)] Y. Gohshi (ed.) "Instrumentation Chemistry, Shoukoudo (1997).

[Prerequisite(s)] not needed.

[Independent Study Outside of Class]

[Web Sites] www.process.mtl.kyoto-u.ac.jp

[Additional Information]

Microstructure, solidification and crystal growth

凝固・結晶成長学

[Code] 10C214 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hideyuki Yasuda, Yoshitaro Nose

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	6-7	
	6-7	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Ceramic Materials Science

セラミックス材料学

[Code] 10C267 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] I. Tanaka and A. Seko

[Course Description] This lecture covers the mechanical, optical, and electronic properties of ceramics, their microscopic mechanisms, and fundamental knowledge required for the design of ceramics. Applications of advanced experimental and theoretical approaches to ceramic research are also discussed.

【Grading 】 Evaluations are made based on the examination or reports.

[Course Goals] Systematic understanding of the properties of ceramics on macroscopic and microscopic scales and learning approaches to the issues in ceramic research.

[Course Topics]

Theme	Class number of times	Description
Introduction to ceramics	2	Overview of the history and commercial applications of ceramics.
Fundamentals of ceramics	4	Fundamentals of ceramics such as crystal structure, electronic structure, and thermodynamical properties. The atomic and electronic structure of point defects, surfaces, grain boundaries, and their impacts on the properties of ceramics.
Structural ceramics	2	Mechanical properties of ceramics.
Energy ceramics	2	Ceramics for energy applications and their understanding from the viewpoint of the atomic and electronic structure.
Optical and electronic ceramics	4	Optical and electronic properties of ceramics for laser and electronic device applications and their understanding from the viewpoint of the atomic and electronic structure.
Assessment of mastery of the course content	1	The mastery of the course content is assessed.

[Textbook]

【Textbook(supplemental)】Yet-Ming Chiang et al., Physical Ceramics (John Wiley & Sons)

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Physical Properties of Crystals Adv.

結晶物性学特論

[Code] 10C263 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme Class number times	Tr of Description
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
2	
1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Magnetism and magnetic materials

磁性物理

[Code] 10C271 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	4	
	2	
	3	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Atomic-molecular scale engineering

原子分子工学特論

[Code] 10C286 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Microstructure theory and structure evaluation

材料組織・構造評価学

[Code] 10C288 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	times	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Structural Metallic Materials

先進構造材料特論

[Code] 10C289 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] Engineering Science Depts Bldg.-101 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Nobuhiro Tsuji, Akinobu Shibata

Course Description I Structural metallic materials, in particular steels, achieve their various mechanical properties based on microstructural control in micro and nano scales. This lecture treats mainly steels, and explains the mechanism of microstructure formation by solid state reactions (phase transformation / precipitation / recrystallization), and microstructural control method, such as thermomechanical processing. Moreover, the lecture introduces the new metallurgy for developing microstructural control methodology.

【Grading】 Evaluations are made based on attendance and report

【Course Goals】 Understanding the microstructure formation mechanism by phase transformation / precipitation / recrystallization, and acquiring the knowledge for improvement of mechanical properties through microstructural control in micro and nano scales.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Overview of the lecture
Formation		1. Iron and Steel, 2. Phase diagram of steel, 3. Diffusional phase
mechanism of	8	transformation, 4. Diffusionless phase transformation (martensitic
microstructure		transformation), 5. Precipitation, 6. Recrystallization
Microstructural	_	1. Strengthening mechanism of metallic materials, 2. Thermomechanical
control methodology	5	processing, 3. New metallurgy for microstructural control
	1	

【Textbook】 Materials will be distributed.

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Electrochemistry for Materials Processing,

材料電気化学特論

[Code] 10C290 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Kuniaki MURASE, Kazuhiro FUKAMI,

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
Modern	4	
electroplating	4	
Thermodynamics of	2	
electrodeposition		
Corrosion		
engineering and	4	
anodization		
Semiconductor	2	
electrochemistry	۷	
Advanced materials	2	
electrochemistry	<u></u>	
Self-assessment of	1	
achievement	1	

【Textbook 】 No textbook is required for this course.

【Textbook(supplemental)】

[Prerequisite(s)] Knowledge of fundamental electrochemistry and chemical thermodynamics are required.

【Independent Study Outside of Class】

[Web Sites] Not available

【Additional Information】 Not available

10K001

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called "high technologies", and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site for more information. You can find an attachment file, "通知版: 2016 先端マテリアル講義概要", where the term Credit will tell you the requirement.

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
Hyperthermophiles and their thermostable biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Theoretical Design for Organic Light-Emitting Diode Materials	1	Organic light-emitting diodes have multilayer structures consisting of carrier-transporting layers and a light emitting layer. The concepts employed in desining these materials and their examples are discussed.(T. Sato: Dept. of Molecular Engineering)
In Vivo Optical and Photoacoustic Tumor Imaging using Near-infrared Dye-cinjugated Amphiphilic Polymers	1	Optical and photoacoustic imaging methods are one of the most powerful and noninvasive techniques with which to visualize organs as well as tumor tissues. In this lecture, students can learn the basic principles of molecular imaging as well as recent progress in this field. (K. Ohe: Dept. of Energy and Hydrocarbon Chemistry)
Charge Carrier Transport in Conjugated Molecular Materials	1	How can we facilitate effective charge carrier transport pathway in organic conjugated molecular materials? The major topic of the present lecture is the mechanism of charge carrier transport in conjugated molecular materials. After an overview of electronic structure of conjugated molecular materials based on band models, a variety of measurement techniques is introduced to probe charge carrier mobility in the materials, to figure out characteristic behavior of conjugated molecules (and their aggregates) as electric conductive materials. (S. Seki: Dept. of Molecular Engineering)
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed.(T. Koga: Dept. of Polymer Chemistry)
Materials Processing using external fields for microstructure control	1	Properties of materials are not simply determined by atomic structure and chemical composition. Microstructure (crystal grain size, crystallographic orientation and so on) significantly influences the properties. Not a few techniques have been developed for controlling the microstructure. Materials processing using external fields will be demonstrated in this class.(H. Yasuda: Dept. of Materials Science and Engineering)
Force acting on colloidal particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed. (R. Yamamoto: Dept. of Chemical Engineering)
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced. (T. Asano: Dept. of Electronic Science and Engineering)
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials.(Y. Nakao: Dept. of Material Chemistry)
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Introduction to Nuclear Materials	1	Nuclear materials are designed for using in irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked.(I. Takagi: Dept. of Nuclear Engineering)
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed.(T. Koga: Dept. of Polymer Chemistry)
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides.(K. Tanaka: Dept. of Material Chemistry)
Solar Hydrogen Production using Semiconductor Photocatalyst	1	The development of a clean and renewable energy carrier that does not utilize fossil fuels is a great technological challenge. Photocatalytic water splitting using semiconductor materials has attracted considerable interest due to its potential to cleanly produce H2 from water by utilizing abundant solar light. In the present lecture, the basis and the recent progress in photocatalytic water splitting will be introduced.(R. Abe: Dept. of Energy and Hydrocarbon Chemistry)
Electrodeposition and Electroless Deposition for Materials Processing	1	(1)Fundamentals chemistry, electrochemistry, and thermodynamics , and (2)applications of electrodeposition and electroless deposition for materials processing.(K. Murase: Dept. of Materials Science and Engineering)

【Textbook 】None

 $\begin{tabular}{ll} Textbook(supplemental) \begin{tabular}{ll} Textbook(supplemental) \end{tabular}$

[Prerequisite(s)]

[Independent Study Outside of Class]

[Web Sites]

【Additional Information 】 Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10 H 012) should attend first 11 lectures.

Social Core Advanced Materials I

社会基盤材料特論

[Code] 10C273 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 4th

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Social Core Advanced Materials I I

社会基盤材料特論

[Code] 10C275 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 4th

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Internship M for Materials Science & Engineering

インターンシップM (材料工学)

[Code] 10C277 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Materials Science and Engineering A

材料工学セミナーA

[Code] 10C251 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 4th [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Materials Science and Engineering B

材料工学セミナーB

[Code] 10C253 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 4th [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

	Theme	Class number of times	Description
--	-------	-----------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Laboratory & Seminar in Materials Science and Engineering, Adv.

材料工学特別実験及演習第一

[Code] 10C240 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] Tue and Thu, 3ed

[Location] [Credits] 4 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor],

【Course Description】

[Grading]

【Course Goals】

【Course Topics】

Theme Class number of times Description	
---	--

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Laboratory & Seminar in Materials Science and Engineering, Adv.II

材料工学特別実験及演習第二

[Code] 10C241 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Seminar on Materials Science and Engineering, Adv. B

材料工学特別セミナーA

[Code] 10R241 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Materials Science and Engineering, Adv. B

材料工学特別セミナーB

[Code] 10R242 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Materials Science and Engineering, Adv. C

材料工学特別セミナーC

[Code] 10R243 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Materials Science and Engineering, Adv. D

材料工学特別セミナーD

[Code] 10R244 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	unies	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Materials Science and Engineering, Adv. E

材料工学特別セミナーE

[Code] 10R245 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Materials Science and Engineering, Adv. A \sim F

材料工学特別セミナーF

[Code] 10R247 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10W410

Nano Materials Science

ナノマテリアルサイエンス

[Code] 10W410 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 5th

[Location] Funai Hall [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

【Course Description】

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

International Standards

国際標準と国際規格

[Code] 10C292 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 3rd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Jun Kawai, Professor, Department of Materials Science and Engineering

【Course Description】 See the Japanese page.

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	3	
	1	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10C643

Advanced Experiments and Exercises in Electrical Engineering

電気工学特別実験及演習 1

[Code] 10C643 [Course Year] Master 1st [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10C646

Advanced Experiments and Exercises in Electrical Engineering II

電気工学特別実験及演習 2

[Code] 10C646 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Electrical Engineering Seminar

電気工学特別セミナー

[Code] 10R610 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

State Space Theory of Dynamical Systems

状態方程式論

[Code] 10C628 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese or English

[Instructor] T. Hagiwara, Y. Ebihara

【Course Description】 The course deals with the dynamical system theory based on linear time-invariant state equations. It covers such topics as state equations, controllability and observability, mode decomposition and its relevance to controllability/observability, stability of dynamical systems, and the Kalman canonical decomposition.

【Grading 】 The grading will be based on the exam.

[Course Goals] To acquire the knowledge on the basic theory for linear system analysis by means of state equations.

[Course Topics]

Theme	Class number of times	Description
feedback systems	3 ~ 4	fundamentals of state equations, their relationship to transfer functions and
and state equations	3~4	block diagram representations
responses of linear	5 6	state transition matrices, equivalence transformation of systems, mode
systems	5 ~ 6	decomposition and Lyapunov stability
		controllability and observability, mode decomposition and its relevance to
controllability and	5 ~ 6	controllability/observability, controllable subspace and unobservable subspace,
observability		and the Kalman canonical decomposition; Checking degrees of understanding
		of all the lecture topics closes the class.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] classical control theory (in terms of transfer functions), linear algebra and calculus

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Handouts will be given at the class.

Applied Systems Theory

応用システム理論

[Code] 10C604 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Tue 1st [Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] E. Furutani

【Course Description】 The course deals with mathematical methods of system optimization mainly for combinatorial optimization problems. It covers such topics as the integer optimization and its typical problems, exact solution methods including the dynamic programming and the branch and bound method, approximate solution methods including the greedy method, meta-heuristics including the genetic algorithms, the simulated annealing method, and the tabu search.

[Grading] In principle, the grading will be based on the absolute and comprehensive evaluation of the reports on the subjects given in the class.

[Course Goals] To acquire the knowledge on formulation of combinatorial optimization problems into integer programming problems, basic concepts, algorithms, characteristics, and application procedures of exact solution methods, approximate solution methods, and meta-heuristics.

[Course Topics]

Theme	Class number of times	Description	
combinatorial	,	necessity and importance of combinatorial optimization, typical problems,	
optimization	1-2	complexity, classes P and NP, complexity of combinatorial optimization	
problems and	1-2	problems, limitation of exact solution methods, necessity of approximate	
complexity		solution methods and meta-heuristics	
exact solution	3	principle of optimality, dynamic programming, branch and bound method, and	
methods		their applications	
intagar programming	2-3	formulation into integer programming problem, relaxation problem, and	
integer programming	2-3	cutting plane algorithm	
approximate solution	1-2	greedy method, relaxation method, partial enumeration method, etc.	
methods	1-2	greedy method, relaxation method, partial enumeration method, etc.	
		local search, basic ideas of meta-heuristics, genetic algorithms, simulated	
meta-heuristics	5-6	annealing method, tabu search, etc. Checking degrees of understanding of all	
		the lecture topics closes the class.	

[Textbook]

【Textbook(supplemental)】 M. Fukushima: Introduction to Mathematical Programming (in Japanese), Asakura, 1996

- Y. Nishikawa, N. Sannomiya, and T. Ibaraki: Optimization (in Japanese), Iwanami, 1982.
- M. Yagiura, and T. Ibaraki: Combinatorial Optimization ---With a Central Focus on Meta-heuristics--- (in Japanese), Asakura, 2001.
- B. Korte, and J. Vygen: Combinatorial Optimization --- Theory and Algorithms, Third Edition, Springer, 2006.

[Prerequisite(s)] linear programming, nonlinear programming

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Handouts and exercises are given at the class.

Applied Mathematics for Electrical Engineering

電気数学特論

[Code] 10C601 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 1st [Location] A1-001 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】T. Hikihara & S. Doi,

[Course Description] In the class, fundamental mathematics is lectured for electrical engineering, electronics, system engineering, and material science. In particular, system theory, nonlinear dynamics, and particle dynamics in force field can be discussed with mathematical clear image.

[Grading] Students are requested to reply to report assignments. The grading is based on the evaluation of the reports.

[Course Goals] Professors expect students to model their system and analyze the models theoretically. Students will be requested to understand their system in principle mechanics and control them based on system theory.

[Course Topics]

Theme	Class number of times	Description	
	1		
	2-4		
	3-5		
		Relationship between the previous classes and further will be explained. The	
Introduction 2	1	introduction to nonlinear dynamics will be explained based on oscillation	
		theory.	
Hamiltonian	1.0		
mechanics	1-3	Hamiltonian mechanics on linear symplectic space is lectured.	
Manifold and vector	2-4	Manifold is discussed in nonlinear system with relation to vector filed analysis.	
field			

[Textbook]

【Textbook(supplemental)】S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag.

[Prerequisite(s)] Linear algebra

【Independent Study Outside of Class】

[Web Sites] https://www.t.kyoto-u.ac.jp/lecturenotes/gse/kueeng/10C601/syllabus

【Additional Information】 Appropriate references will be shown in classes.

Electrical and Electromagnetic Circuits

電気電磁回路論

[Code] 10C647 [Course Year] Master 1st [Term] 1st term [Class day & Period] Wed 2nd

[Location] A1-001 (Katsura) [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Osami Wada, Professor, Department of Electrical Engineering

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
Guidance	times 1	<u> </u>
Circuit description	1	
including		
electromagnetic	2	
coupling effects		
Evaluation and		
description methods		
for high-frequency	2	
circuits		
Transmission line		
	2	
and its characteristics	2	
<u>(1)</u>		
Transmission line	•	
and its characteristics	2	
(2)		
Description of		
electromagnetic	2	
couplings		
E-system integrity		
design technology	3	
for electric and	3	
electronic systems		
Final exam and	1	
feedback	1	

【Textbook】 Materials for this course will be distributed at the lectures.

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Electromagnetic Theory, Adv.

電磁気学特論

[Code] 10C610 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Wed 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] T. Matsuo,

[Course Description] The first half: the special theory of relativity and the covariance of Maxwell's equations
The latter half: the differential form in the electromagnetic field theory and its application to computational electromagnetics

【Grading】Submission of reports (twice)

[Course Goals] 1. Understanding of the basic concepts of special theory of relativity and the covariant formulation of Maxwell's equations

2. Understanding of the basics of differential form in electromagnetic field theory

[Course Topics]

Theme	Class number of times	Description
Introduction to special theory of relativity	2-3	- Galilean relativity and special relativity - Lorentz transformation
Tensor representation and relativistic dynamics	2-3	- Introduction to tensor representation - Relativistic dynamics
Covariant formulation of Maxwell 's equations	2-3	- Electromagnetic field tensor - Lorentz covariance of Maxwell 's equations
Differential form in electromagnetic field theory	3-4	- Basics of differential form in electromagnetic field theory
Application to computational electromagnetics	3-4	- Application of integral form of Maxwell 's equations to computational electromagnetics

[Textbook]

【Textbook(supplemental)】Y. Kazama, Introductory Lectures on the Theory of Relativity (in Japanese), Baifukan,1997.

[Prerequisite(s)] Basic electromagnetic theory

【Independent Study Outside of Class】

[Web Sites]

Superconductivity Engineering

超伝導工学

[Code] 10C613 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 4th [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3 ~ 4	
	2 ~ 3	
	3 ~ 4	
	2 ~ 3	
	1 ~ 2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Biological Function Engineering

生体機能工学

[Code] 10C614 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 2nd

【Location】A1-001(桂1) 【Credits】2 【Restriction】No Restriction 【Lecture Form(s)】Lecture

[Language] Japanese [Instructor] Tetsuo Kobayashi, Shoji Hamada,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
Basics of nervous	2	Study about detail structure of the human brain to understand higher brain	
system	2	functions. In particular, learn about cortical structure and functional map.	
Neurones and glial cells	1	Study about detail structures and functions of neuron and glial cells.	
Neuroimaging		Study about measurement principles and analytical methods of representative	
techniques	3	non-invasive neuro-imaging techniques.	
G C .:	2	Study about organizations of sensory systems such as visual, auditory and	
Sensory functions	2	somatosensory systems.	
Matan functions	1	Study about organizations and functions of primary motor, premotor and	
Motor functions		supplementary motor areas.	
Electromagnetic		Physical phenomena inside and outside biological body caused by external and	
fields in biological	2	internal electromagnetic fields and electric currents.	
body		internal electromagnetic fields and electric currents.	
Electromagnetic field		Pasies of algetromagnetic field analysis in higherinal body. Characteristics of	
analysis in biological	2	Basics of electromagnetic field analysis in biological body. Characteristics of	
body		conductivity and permittivity of biological tissues.	
Electrical and	1	Transpranial magnetic stimulation and deep brain stimulation	
magnetic stimulation	1	Transcranial magnetic stimulation and deep brain stimulation.	
Evaluation of	1	We are going to check students' achievement by answering questions from	
understanding		students.	

[Textbook]

【Textbook(supplemental)】 Tetsuo Kobayashi, Isamu Ozaki and Ken Nagata (eds.): "Brain topography and multimodal imaging", (Kyoto Univ. Press, 2009)

[Prerequisite(s)] Electricity and magnetism, Fundamentals of biomedical engineering

【Independent Study Outside of Class】

[Web Sites]

Applied Hybrid System Engineering

応用ハイブリッドシステム工学

[Code] 10C621 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location] A1-001

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language]

[Instructor] Takashi Hikihara, Shinji Doi, Yoshihiko Susuki, Syun'ichi Azuma,

Course Description Many engineering systems show hybrid dynamical structure, which is accompanied with discrete change of vector flow by control and regulate the trajectory to target dynamically. In the course, the fundamental characteristics and theorems are lectured. The framework of hybrid system, automaton model, and singular perturbation theorem are explain. Dynamic quantizer, power system, and network are picked up as examples.

【Grading】 Exercise and repots are evaluated.

[Course Goals] Students are requested to understand the characteristics of hybrid system, approaching method, and control methods.

[Course Topics]

Theme	Class number of times	Description
Fundamentals of	4	As fundamentals, the definition of hybrid system and the method of modeling
hybrid system	4	is explained.
Singular perturbation		Singular perturbation theorema and asymptotic expansion are explained. For
and asymptotic	3	the global oscillation of singular perturbed system, analytical and geometrical
expansion		singular perturbation methods are introduced.
Application of hybrid		The application to power system is explained. The outline of power system,
system-1: power	3	then safety and examination, the stability analysis, and the modeling towards
system		control are given.
Application of hybrid		As an application dynamic quantizanic adapted. The outline of the dynamic
system-2: dynamic	2	As an application, dynamic quantizer is adopted. The outline of the dynamic
quantizer		quantizer, the analysis, and the design of the system are given.
Application of hybrid		A
system-3:	3	As an application, the communication network is adopted. The internet
networking		network is also explained as an example of modeling and control.

【Textbook】 Each professors prepare the prints of lectures.

【Textbook(supplemental)】 No textbook.

[Prerequisite(s)] Nothing.

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 This course is held every two years. The classes will be held on Wednesday or Thursday. Schedule is 4/13,20,27 [Hikihara], 5/11,18,25 [Azuma], 6/1,6/8 [Hikihara], 6/16,6/23,30, 7/7,14 (Thursday)[Doi], 7/21 [extra].

10C625

Theory of Electric Circuits, Adv.

電気回路特論

[Code] 10C625 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese and English [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Modeling by circuit	4	
Circuit equation	4	
Phenomena in circuit	3	
Property of circuit	2	
Achievement test	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Design of Control Systems

制御系設計理論

[Code] 10C631 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese or English

[Instructor] T. Hagiwara, Y. Ebihara

【Course Description】 The course is based on State Space Theory of Dynamical Systems, and provides the applications of the concepts given therein to systematic control system design. The course covers such topics as state feedback and pole assignment, observers, synthesis of feedback control systems, servo conditions and feedforward, and optimal control under quadratic performance indices.

[Grading] In principle, the grading will be based on the absolute and comprehensive evaluation of the reports on the subjects given in the class. Should this change due to inadequate efforts on the submitted reports, an exam might be also imposed, in which case the details will be announced at the class at least two weeks before the exam term.

[Course Goals] To understand the basic ideas of control system design based on state space representations, and acquire fundamental knowledge and skills on practical control system design through simulated experiences with the report subjects.

[Course Topics]

Theme	Class number of times	Description
mala aggionment by		state feedback, controllable canonical forms and pole assignment of
pole assignment by	4 ~ 5	scalar/multivariable systems, computation of the state feedback gains for pole
state feedback		assignment, transient responses, uncontrollable poles and stabilizability
observers	3 ~ 4	observable canonical forms and observability conditions, full-order observer,
observers		minimal-order observer, conditions for observers and observer-based feedback
synthesis of feedback	2 ~ 3	feedback systems with integral compensation, servo systems, internal model
systems	2 ~ 3	principle, synthesis of servo systems
optimal control under		optimal regulators and their closed-loop poles, Riccati equations and their
quadratic	3 ~ 4	solutions, relationship with the pole assignment problem; Checking degrees of
performance index		understanding of all the lecture topics closes the class.

【Textbook】 Handouts will be given at the class.

【Textbook(supplemental)】

[Prerequisite(s)] The contents given in State Space Theory of Dynamical Systems, and linear algebra.

【Independent Study Outside of Class】

[Web Sites] (Info) http://www-lab22.kuee.kyoto-u.ac.jp/~hagiwara/ku/matlab-octave.html

10C616

Electric Power Transmission System

電力輸送システム

[Code] 10C616 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	r

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Computer Simulations of Electrodynamics

電磁界シミュレーション

[Code] 10C611 [Course Year] Master 1st [Term] 1st term [Class day & Period] Tue 5th

[Location] A1-101/Electrical Engineering Bldg.-Lecture Room (M)/Uji Campus(Remote Lecture Room) [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor],

【Course Description】

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Variables and		
Classification of	1	
Simulation Codes		
Finite Difference Methods	1	
Difference Form of		
Maxwell's Equation and	1	
Grid Assignment / Time	1	
Step Chart		
Courant Condition	1	
Electromagnetic Radiation	1	
from a Thin Current	1	
Buneman-Boris Method		
for Equation of Motion	1	
(Relativistic Eqs.)		
Interporation of	1	
Electromagnetic Field	1	
Computatin of Charge and		
Current Densities,	1	
Self-force Cancellation		
Initilization of Particles	1	
and Fields		
Renormalization and	1	
Diagnostics		
Advection/Wave Equation		
for 1D Case (FTCS, Lax,	1	
Upwind and	1	
Lax-Wendroff Methods)		
von Neumann Stability	1	
Analysis	1	
Limiter Function	1	
Advection/Wave Equation		
for Multi-Dimensional	1	
Case		
Vlasov Equation	1	

Textbook

【Textbook(supplemental)】(1) H. Matsumoto and Y. Omura, Computer Space Plasma Physics: Simulation Techniques and Softwares, Terra Scientific, Tokyo, 1993.

(2) H. Usui and Y. Omura, Advanced Methods for Space Simulations, Terra Pub, 2007.

[Prerequisite(s)] Electrodynamics, Vector Analysis, Computer Language

【Independent Study Outside of Class】

[Web Sites]

Space Radio Engineering

宇宙電波工学

[Code] 10C612 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] N1 lecture room in the Faculty of engineering building No. 3, A1-131 in Katsura campus, Uji

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language]

[Instructor] Hiroshi Yamakawa, Hirotsugu Kojima,

[Course Description] The present lecture provides the guideline how the technology on the electronics and propulsion system is used for the development of spacecraft and space systems. Furthermore, in order to understand the environment in space, we also give a lecture on the space plasma physics.

【Grading】 attendance and final examination

[Course Goals] Mastery of the way how we can make use of the knowledges of the physics and technology to the space engineering.

[Course Topics]

Theme	Class number of times	Description	
Chase environment	2	The space environment in the view point of spacecraft desing such as thermal	
Space environment	<u> </u>	condition, plasmas, and charging.	
Spacecraft system		The encourage exists and its technology related to nower evictors	
and its related	5	The spacecraft system and its technology related to power system,	
technology		communication system, EMC, and payload desings.	
Spacecraft dynamics	3	Spacecraft orbit design and its attitude control	
System engineering	4	Spacecraft propulsion system including the advanced systems which make use	
of spacecraft	4	of solar power, GPS navigation system, and space debris	
Feedback	1	We will give a feedback lecture by answering to questions from students.	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Plasma physics, Electromagnetics. Radio engineering, Electronics

【Independent Study Outside of Class】

[Web Sites]

Applied Microwave Engineering

マイクロ波応用工学

[Code] 10C617 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 4th

[Location] (Katsura)A1-131, (Yoshida)N1, (Uji)S-143H [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] (RISH) Shinohara,(RISH) Mitani,

【Course Description】 This lecture picks up microwave power transmission (MPT) technology, rectifying antenna (rectenna), antenna and propagation for the MPT, microwave transmitters, and some MPT applications like the Space Solar Power Satellite/Station. This lecture also picks up the other wireless power transmission technologies like resonnance coupling, energy harvesting, and applied microwave technologies of microwave processing, wireless communications, and radar.

【Grading 】Reports

[Course Goals] Students learn about applied microwave engeering, mainly microwave power transmission.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The purpose and constitution of the lecture, and review of microwave
Introduction	1	engineering are explained.
Applications of		Space Solar Power Satellite/Station and Ubiquitous power source as
Wireless Power	3-4	applications of microwave power transmission, the resonance coupling and
Tramsmission		energy harvesting as the other battery-less technologies are explained.
rectifying antenna	1.2	
(rectenna)	1-2	rectifying antenna (rectenna) for the MPT are explained.
antenna and		Calculation of beam collection efficiency and beam propagation with FDTD
propagation for the	5-6	method are explained. Phased array technologies, beam targetting method, non
MPT		linear physics of microwave-plasma interation are overviwed.
Microwave	2	YY-1-66:
transmitters	2	High efficient semi-conductor amplifiers and microwave tubes are explained.
microwave		
processing, wireless	2	Microwave processing, wireless communications, and radar texhnologies are
communications, and	2	explained.
radar		

【Textbook 】Naoki Shinohara, "Solar Power Satellite (in Japanese)", ISBN 978-4-274-21233-8, Ohm-Sya

【Textbook(supplemental)】 Naoki Shinohara and Kimiya Komurasaki, "Wireless Power Transmission Technologies - Inductive Coupling, Resonance Coupling and Microwave Power Transmission - (in Japanese)", ISBN 978-4-904-77402-1, Kagaku-Gijutsu-Syuppan

[Prerequisite(s)] Microwave engineering

[Independent Study Outside of Class]

[Web Sites]

【Additional Information】 Number of the lectures may change.

Spacio-Temporal Media Analysis

時空間メディア解析特論

[Code] 10C714 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 3rd

【Location】工学部 3 号館 N1 教室・A1-131・宇治生存研講義室 【Credits】2 【Restriction】No Restriction

[Lecture Form(s)] Lecture [Language] Japanese or English [Instructor] Yuichi Nakamura, Kazuaki Kondo

[Course Description] Representation, feature extraction, recognition of media with two or higher dimensions, especially images and videos, are explained with comparing to human vision and biological systems.

[Grading] Evaluation is based on participation and reports.

[Course Goals] To learn the basic of representation, feature extraction, and pattern recognition of signals with two or higher dimension, and their applications.

[Course Topics]

Theme	Class number of times	Description	
Spatio-Temporal	1		
Media	1	What is spatio-temporal media. Some examples.	
Light and Colors	1-2	Intensity, colors, and spectrum in image media.	
Features and	2	Factures such as adaptivation at a for analyzing image madia	
Segmentation	<i>L</i>	Features such as edge, region, etc. for analysing image media.	
Filtering and	1-2	Introduction to filtering and Wayslet Transform	
Wavelet Transform	1-2	Introduction to filtering and Wavelet Transform.	
Discrete Wavelet		Digrata Wayalat Transform and applications such as image aphancement	
Transform and	1-2	Dicrete Wavelet Transform and applications such as image enhancement,	
Applications		image compression, etc.	
Geometry of Image	1-2	The mechanism and geometry of image capturing: projection of a 3D world	
Capturing	1-2	into 2D images.	
3D Measurements	2	2D massyroments and 2D world reconstruption from a set of 2D images	
and Reconstruction	<u> </u>	3D measurements and 3D world reconstrunction from a set of 2D images.	
Measurement of	1-2	Motion detection and management, and gigat treaking	
Motions	1-2	Motion detection and measurement, and oject tracking.	
Dattam Daggarition	0.2	The basic idea of pattern recognition and usuful tools such as Support Vector	
Pattern Recognition	0-2	Machine.	

【Textbook】 No specific textbooks. Handouts will be given when necessary.

【Textbook(supplemental)】Computer Vision: A Modern Approach, Forsyth and Ponce, Prentice Hall

[Prerequisite(s)] Fundamental knowledge of digital signal processing

【Independent Study Outside of Class】

[Web Sites] Please see PandA (https://panda.ecs.kyoto-u.ac.jp/portal).

Visualized Simulation Technology

可視化シミュレーション学

[Code] 10C716 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 4th [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2-3	
	1-2	
	1-2	
	2-3	
	2-3	
	1-2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10K010

Recent Advances in Electrical and Electronic Engineering

先端電気電子工学通論

[Code] 10K010 [Course Year] Master and Doctor Course [Term] 2nd term

[Class day & Period] Tuesday, 5 [Location] Laboratories [Credits] 2 [Restriction] Foreig students

[Lecture Form(s)] Seminar [Language] English [Instructor]

【Course Description】 The class consists of a series of seminars at 3 laboratories related to Department of Electrical and Electronic Engineering (energy and electrical machinery, computers, control and systems, communications and radio engineering, and electronic devices and applied physics). Each seminar intends to give a brief introduction into a specific research field so that students can get a feel for the state-of-the-art in each topic and broaden their scope beyond their majors.

【Grading】 The evaluation of a student 's work is given based on his/her attendance, reports and discussions, not on examinations.

[Course Goals]

[Course Topics]

Theme Class number of times Description

【Textbook】None

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Digital Communication Engineering

ディジタル通信工学

[Code] 693622 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

【Course Description】

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	4	
	2	
	3	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

693628

Information Network

情報ネットワーク

[Code] 693628 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description] This course introduces architecture of information networks including communication protocol and layered structure. Various networks and their technologies, such as circuit switching network, IP network, photonic network, and mobile network, are explained.

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	5	
	3	
	1	
	1	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】http://www.i.kyoto-u.ac.jp/curriculum/syllabus.html

Prospects of Interdisciplinary Photonics and Electronics

融合光・電子科学の展望

[Code] 10X001 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10C718

Advanced Seminar in Electrical Engineering I

電気工学特別研修1(インターン)

[Code] 10C718 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar in Electrical Engineering II

電気工学特別研修 2 (インターン)

[Code] 10C720 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10C627

Research Internship(M)

研究インターンシップ M(電気)

[Code] 10C627 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Research Internship (D)

研究インターンシップ D(電気)

[Code] 10R630 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercises on Electrical Engineering I, II

電気工学特別演習 1

[Code] 10R632 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercises on Electrical Engineering I, II

電気工学特別演習 2

[Code] 10R633 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 5th

[Location] Funai Hall [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Exercise in Practical Scientific English

実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] Thu 4th or 5th [Location] A2-304 [Credits] 1

[Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] Japanese and English

[Instructor] Y. Nakayama and T. Mizuno

[Course Description] Students learn about the basics of technical writing in English, and learn about and practice the format, style, and mechanics of the scientific research article. We may restrict the class size to enhance learning. The course is shared by Master 's and Doctoral Course students.

[Grading] Students are required to submit an initial report and a mid-term report. Students failing to submit the mid-term report will be given no credit.

[Course Goals] Students develop basic communication skills needed to work for international organizations through practicing scientific English writing.

[Course Topics]

Theme	Class number of times	Description
Course Outline and		Students examine the aim and requirements of the course, and look at the key
Introduction to	1	points for writing correctly, clearly, and concisely. (The class schedule may
Technical Writing		change without notice.)
Darias of Tarksiani		Students learn about the definition and basic rules for technical writing, and
Basics of Technical	3	look at common mistakes made by non-native writers of English. Students also
Writing		learn about basic English grammar.
Japanese-to-English	2	Students learn about English grammar and practice revising their English
Translation Practice	3	writing.
Danaganaha	2	Students learn about paragraphs: the topic sentence and supporting sentences,
Paragraphs		and techniques for sequencing information in a paragraph.
Format of Research	3	Students learn about the standard format of a research article: the title, abstract,
Articles	3	method, results, discussion, and conclusion.
Listening Practice	1	Students practice listening comprehension using videos presenting scientific
	1	and technical information.
Online Learning	2	Writing Paragraphs

[Textbook] No text – all materials are supplied by the teachers.

【Textbook(supplemental)】 Yukiko Nakayama, Gijutsu kei Eibun Raithingu Kyohon (Technical Writing Textbook), Japan Society for Technical Communication

Anne M. Coghill and Lorrin R. Garson, The ACS style guide, 3rd, The American Chemical Society.

[Prerequisite(s)] Students need to have basic English skills at undergraduate level.

【Independent Study Outside of Class】

[Web Sites] http://www.glc.t.kyoto-u.ac.jp/ja/study/grad/10d040

[Additional Information] We may restrict the class size to enhance students 'learning. Students who intend to join the course are required to attend the first-day guidance.

10K001

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called "high technologies", and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site for more information. You can find an attachment file, "通知版: 2016 先端マテリアル講義概要", where the term Credit will tell you the requirement.

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
Hyperthermophiles and their thermostable biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Theoretical Design for Organic Light-Emitting Diode Materials	1	Organic light-emitting diodes have multilayer structures consisting of carrier-transporting layers and a light emitting layer. The concepts employed in desining these materials and their examples are discussed.(T. Sato: Dept. of Molecular Engineering)
In Vivo Optical and Photoacoustic Tumor Imaging using Near-infrared Dye-cinjugated Amphiphilic Polymers	1	Optical and photoacoustic imaging methods are one of the most powerful and noninvasive techniques with which to visualize organs as well as tumor tissues. In this lecture, students can learn the basic principles of molecular imaging as well as recent progress in this field. (K. Ohe: Dept. of Energy and Hydrocarbon Chemistry)
Charge Carrier Transport in Conjugated Molecular Materials	1	How can we facilitate effective charge carrier transport pathway in organic conjugated molecular materials? The major topic of the present lecture is the mechanism of charge carrier transport in conjugated molecular materials. After an overview of electronic structure of conjugated molecular materials based on band models, a variety of measurement techniques is introduced to probe charge carrier mobility in the materials, to figure out characteristic behavior of conjugated molecules (and their aggregates) as electric conductive materials.(S. Seki: Dept. of Molecular Engineering)
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed.(T. Koga: Dept. of Polymer Chemistry)
Materials Processing using external fields for microstructure control	1	Properties of materials are not simply determined by atomic structure and chemical composition. Microstructure (crystal grain size, crystallographic orientation and so on) significantly influences the properties. Not a few techniques have been developed for controlling the microstructure. Materials processing using external fields will be demonstrated in this class.(H. Yasuda: Dept. of Materials Science and Engineering)
Force acting on colloidal particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed.(R. Yamamoto: Dept. of Chemical Engineering)
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced.(T. Asano: Dept. of Electronic Science and Engineering)
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials.(Y. Nakao: Dept. of Material Chemistry)
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Introduction to Nuclear Materials	1	Nuclear materials are designed for using in irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked.(I. Takagi: Dept. of Nuclear Engineering)
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides.(K. Tanaka: Dept. of Material Chemistry)
Solar Hydrogen Production using Semiconductor Photocatalyst	1	The development of a clean and renewable energy carrier that does not utilize fossil fuels is a great technological challenge. Photocatalytic water splitting using semiconductor materials has attracted considerable interest due to its potential to cleanly produce H2 from water by utilizing abundant solar light. In the present lecture, the basis and the recent progress in photocatalytic water splitting will be introduced.(R. Abe: Dept. of Energy and Hydrocarbon Chemistry)
Electrodeposition and Electroless Deposition for Materials Processing	1	(1)Fundamentals chemistry, electrochemistry, and thermodynamics , and (2)applications of electrodeposition and electroless deposition for materials processing.(K. Murase: Dept. of Materials Science and Engineering)

【Textbook 】None

 $\begin{tabular}{ll} Textbook(supplemental) \begin{tabular}{ll} Textbook(supplemental) \end{tabular}$

[Prerequisite(s)]

[Independent Study Outside of Class]

[Web Sites]

【Additional Information 】 Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

10K005

Advanced Modern Science and Technology (English lecture)

現代科学技術特論(英語科目)

[Code] 10K005 [Course Year 1	Master and Doctor Course	[Term]	[Class day & Period] Thu 5th	【Location】A2-306	[Credits] 2(Semester system)	[Restriction] No Rest	riction
Lecture Form(s)	Relay Lecture	[Language] English						

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto Related professors

Course Description 1 Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
Who shake the dice?	1	Double slit phenomenon known as a prediction inability " quantum mechanics of the mystery (Feynman says) " can be every moment predicted by QED.(A. Tachibana: Dept. of Micro Engineering)	
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)	
Systems Control in Aeronautics and Astronautics	1	Systems control theory is used in several problems in aeronautics and astronautics. This lecture focuses on some of them and further gives an overview of this research based on them.(K. Fujimoto: Dept. of Aeronautics and Astronautics)	
Countermeasures of the Contaminated Water at Fukushima Daiichi Nuclear Power Station and that of the Contaminated Soil in Fukushima Area	1	The situation of contaminated water in Fukushima Daiichi Nuclear Power Station and soil contamination in and around Fukushima area and their technological countermeasures taken today will be introduced and discussed.(M. Yoneda: Dept. of Environmental Engineering)	
Polymer Synthesis beyond the 21st Century: Precision Polymerizations and Novel Polymeric Materials	1	We are now in the "Polymer Age", where synthetic polymer materials are indispensable in the modern human life: healthy, safe, comfortable, and sustainable. A critical challenge herein is to develop "precision polymerization", polymer-forming reactions that provide polymers of well-defined structures and designed functions. Given these backgrounds, this lecture will overview the following subjects: (a)What polymers are; (b)How to synthesize polymers; (c)How and where polymeric materials work and function; (d)Precision polymer synthesis; and (e)The future of polymeric materials.(M. Sawamoto: Dept. of Polymer Chemistry)	
Engineering Approach to Phase Behavior of Fluids Confined in Nanospace	1	Fluids confined in nano-scale pores exhibit peculiar phase behaviors that depends strongly on physico-chemical effects by pore walls and conditions of the bulk phase in equilibrium with the pore fluids, to which the engineering approach must be effective.(M. Miyahara: Dept. of Chemical Engineering)	
Elucidation of Principles for the Self-organization of Mesoscale Colloidal Particles	1	The process of so-called the colloid crystal has been pursued to find out the key principles for the structure evolution, employing dynamics simulations. Also given in the lecture will be various pattern formations in the convective self-assembly of colloidal sus Miyahara: Dept. of Chemical Engineering)	
Architectural Design and Architectural Thinking	1	Architectural design is integration of thinking on architectural events and materials. I would like to discuss this architectural thinking and the method to embody it.(K. Takeyama: Dept. of Architecture and Architectural Engineering)	
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)	
Vacuum Nanoelectronics Devices in Harsh Environments	1	This lecture reviews the perspective of the modern vacuum electron devices based on miniaturized electron sources fabricated with contemporary semiconductor processes. The performance of the devices is evaluated in view of the device in harsh environments.(Y. Gotoh: Dept. of Electronic Science and Engineering)	
Advanced Digital Technology for Analytical Recording of Cultural Heritage Assets	1	(A. Ide: Dept. of Mechanical Engineering and Science)	
Protein Structure, Function, and Motion	1	Proteins work by fluctuating and changing their conformations. Protein structures and motions, which are essential for understanding their functions in detail, are introduced in conjunction with the state-of-art methods to analyze them.(K. Sugase: Dept. of Molecular Engineering)	
aser-induced Breakdown Spectroscopy and Its Application to Underwater In-situ Elemental Analysis	1	Development of laser-induced breakdown spectroscopy (LIBS) for in-situ elemental analysis in water, and the application to resource exploration at sea bottom will be explained.(T. Sakka: Dept. of Energy and Hydrocarbon Chemistry)	
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)	
Modern Techniques for Material Characterization	1	Overview of modern techniques for material characterization is given with basic principles and practical applications. Impacts on the life of the people of characterization techniques are also included.(J. Matsuo: Dept. of Nuclear Engineering)	

【Textbook】 None

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

 $\label{thm:conditional} \mbox{ Additional Information \ref{D} Students who take Autumn term should register "Lecture code 10H006"}.$

Advanced Experiments and Exercises in Electronic Science and Engineering

電子工学特別実験及演習 1

[Code] 10C710 [Course Year] Master 1st [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Experiments and Exercises in Electronic Science and Engineering II

電子工学特別実験及演習 2

[Code] 10C713 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] [Instructor],

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar on Electronic Science and Engineering

電子工学特別セミナー

[Code] 10R701 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Mechanics for Electronics Engineering

量子論電子工学

[Code] 10C825 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	1	
	1	
	2	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Semiconductor Nanospintronics

半導体ナノスピントロニクス

[Code] 10C800 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 2nd [Location] A1-131 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English or Japanese (depends on students) [Instructor] Masashi Shiraishi

[Course Description] Spintronics is now attracting tremendous attention, and is recognized as one of the most potential candidates to overcome the limit of the Moore's law. Spintronics possesses attractive and profound basis physics and also a potential to practical applications towards MRAMs and spin FETs. In this lecture, I introduce some important and basic theories and experimental techniques in spintronics using semiconductors, metals, insulators, oxides and so on.

【Grading】Report submission

【Course Goals】 【Course Topics】

Theme	Class number of times	Description
Introduction	1	Spin is a quantum quantity, and thus it is to induced by rotation of an electron (an electron is an elementary particle, i.e., it has no domain. Thus, rotation of an electron cannot be defined). Nevertheless, the spin degree of freedom can be coupled to spatial rotation because spin is a generator of infinitesimal rotation. I explain the essence of spin, its SU(2) algebra and so on.
Relativistic quantum physics and spin-orbit interaction	5	To understand spin manipulation and spin coherence in semiconductor, it is quite important what the spin-orbit interaction (SOI) is. The SOI is a manifestation of a relativistic effect, and the Dirac equation, the equation of motion in relativistic quantum physics, is derived to understand the SOI. Next, the SOI is explicitly derived be expanding the Dirac equation. As a related important topic, electron motion in graphene, which can be described as massless Dirac fermion, and the Berry phase (a geometric phase that plays an important role in spintronics) of electrons in graphene are discussed.
Electrical and dynamical spin injection into condensed matters and generation of pure spin current	5-6	Pure spin current is a quite significant physical current in spintronics using semiconductors and so on. Pure spin current is a current of only a spin degree of freedom without a net charge flow. I introduced some important papers and show how to derive essential equations describing generation and propagation of pure spin current. (1) Spin drift-diffusion equation, (2) Hanle-type spin precession, (3) spin pumping using magnetization dynamics, and (4) spin current circuit theory are discussed.
Recent topics in spintronics	2-3	Topological insulators and the Berry phase are important topics in modern spintronics. To understand the essence of them, I show the derivation of the Kubo formula, and the calculation of the Hall conductivity based on the Kubo theory. The above mentioned topics are the main contents of this lecture, but I may add or omit some topics as requests from students.

【Textbook 】None

[Textbook(supplemental)] For foreign students, I recommend the following review articles: 1. "Spin Hall effect", J. Sinova et al., Rev. Mod. Phys. 87, 1213 (2015). 2. "Spintronics: Fundamentals and applications", I. Zutic et al., Rev. Mod. Phys. 76, 1 (2004). 3. "Nonlocal magnetization dynamics in ferromagnetic heterostructures", Y. Tserkovnyak et al., Rev. Mod. Phys. 77, 1375 (2005).

[Prerequisite(s)] Solid State Physics and Quantum Physics at the level of undergraduate school.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Charged Particle Beam Apparatus

電子装置特論

[Code] 10C801 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 4th

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Yasuhito Gotoh

[Course Description] Fundamental technologies of an ion beam system, such as ion sources, formation and evaluation of ion beams, transport of ion beams, and ion-solid interaction will be presented. Taking ion implantation as one of the example of the ion beam application, the relationship between the incident ion energy and implantation depth will be presented. Each element of a typical ion beam system is explained in detail.

【Grading】 Evaluation will be made with the results of final examination. Achievements of exercises in the class are also taken into consideration.

[Course Goals] To understand the details of an ion beam apparatus: generation, transport and evaluation of an ion beam. Understanding of the entire ion beam apparatus as a system is also purpose of the class.

【Course Topics】

Theme	Class number of times	Description	
Ion beam systems and their applications	1	Outline of the class is presented. Physical properties of ions in vacuum are given, and ion beam apparatuses and their application will be introduced with some typical examples.	
Ion-solid interaction	3	Interaction between high energy ion and solid atoms are given. Major topics are: how the ions transfer their energy to the target atoms, i.e., how the ions are decelerated in the solid, and relationship between incident ion energy and implantation depth is given. Concept of sputtering phenomenon is also presented.	
Nature of ion beam	2	Concept of the acceleration voltage is introduced to explain the principle of the ion beam systems. Nature of an ion beam is also presented.	
Generation and transport of ion beam	3	Methods of ion generation for various elements are explained. Important equations of beam extraction and beam transport are given. Starting with the paraxial ray equation, concept of transfer matrix is given. Finally, some important physical parameters of ion beams are given.	
Mass separators and energy analyzers	3	Details of magnetic sector as mass separator are given. Transfer matrix of the mass separator are presented and focusing effect is described. An important parameter of mass resolution is given. Some different kinds of energy analyzers are also introduced. Deflection and detection systems are also introduced.	
Fundamentals of vacuum engineering	2	Fundamentals of vacuum engineering is given. Several pumps used for ion beam systems are also introduced.	
Design of ion beam systems	1	Design of an ion beam system under a given condition will be presented. In the last class, achievment test will be performed.	

【Textbook】 Yasuhito Gotoh, Charged Particle Beam Appratus, 2016 version (to be sold at CO-OP shop in Katsura Campus)

【Textbook(supplemental)】 Junzo Ishikawa, Charged Particle Engineering (Corona).

[Prerequisite(s)] Vacuum Electronic Engineering 1, 2 (undergraduate course)

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] We will have brief practice in each class. Bring your calculator and A4-size writing papers.

Quantum Information Science

量子情報科学

[Code] 10C803 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] English or Japanese [Instructor] Professor Shigeki Takeuchi

[Course Description] An overview of the quantum information sciences will be given. The topics includes the basic picture of wave/particle duality, quantum key distribution, quantum computation, quantum measurements.

[Grading] the number of days one has attended, and the score of reports will be considered.

【Course Goals】 To understand the basic concepts/mechanisms of quantum key distribution, quantum computers, and quantum metrology so that one can read and understand the scientific papers of the related area.

[Course Topics]

Theme	Class number of times	Description
Introduction	3	
Quantum Computer	2	
(Theory)	3	
Quantum Computer	2	
(Experiment)	3	
Quantum Key		
distribution and	4	
Quantum metrology		
Summary and	2	
Outlook	2	

【Textbook】 No text book will be used.

【Textbook(supplemental)】 Nielsen & Chuang, Quantum Computation and Quantum Information, Cambridge University Press

[Prerequisite(s)] Basic understanding of quantum mechanics will be helpful.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] We welcome your positive questions and comments.

Semiconductor Engineering Adv.

半導体工学特論

[Code] 10C810 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description] This course explores the fundamentals of physics of semiconductors, which are esseantial to understand semiconductor materials and devices.

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	3-4	Electronic Band Structures are discussed. Nearly free electron and
D 1 41		tight-binding approachs, k dot p theory, pseudopotential method are explained.
Band theory		Band structures of major semiconductors such as Si and GaAs are also
		discussed.
	3-4	
	3-4	
	3-4	

[Textbook]

【Textbook(supplemental)】S. M. Sze Physics of Semiconductor Devices (Wiley Interscience)

P.Y.Yu and M. Cardona Fundamentals of Semiconductors (Springer)

[Prerequisite(s)] Semiconductor engineering, quantum mechanics (undergraduate level)

【Independent Study Outside of Class】

[Web Sites]

Electronic Materials Adv.

電子材料学特論

[Code] 10C813 [Course Year] Master Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
Semiconductors	6-7	
Superconductors	4-5	
		Semiconductor heterostructures are fabricated by using a crystal growth
Epitaxial growth	3-4	method called "epitaxy". Fundamentals of epitaxial growth are discussed. One
		of epitaxial growth methods, molecular-beam epitaxy, is discussed in detail.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Electronics

分子エレクトロニクス

[Code] 10C816 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 5th

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	3	
	4	
	3	
	3	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Surface Electronic Properties

表面電子物性工学

[Code] 10C819 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 5th [Location]

[Credits]2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] [Instructor] Hirofumi Yamada,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	3	
	4	
	2	
	3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Optical Properties and Engineering

光物性工学

[Code] 10C822 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 4th [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2-3 💷	
	7-8 回	
	4-5 回	
	1 回	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Quantum Optoelectronics Devices

光量子デバイス工学

[Code] 10C828 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 4th [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
-	1	
	5	
	5	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Quantum Optics

量子光学

[Code] 10C829 [Course Year] Master 1st [Term] 1st term [Class day & Period] Tue 2nd

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】,

【Course Description】

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	3	
	3	
	3	
	3	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Measurement

量子計測工学

[Code] 10C830 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 4th [Location] A1-131 (Katsura #2 lecture room) [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese, but there is a possibility of some lectures in English. [Instructor] Kazuhiko Sugiyama [Course Description] As an example of high precision measurements using quantum phenomena, frequency standards, which is realized with the smallest uncertainty in all measurement quantities at present, are discussed. The principle and evaluation of frequency standards are explained.

【Grading 】Report(two times, at the first lecture and the after all lectures)

[Course Goals] The goal of this lecture is to understand that precision measurements are realized with combination of the best technologies and is based on physics.

[Course Topics]

Theme	Class number of times	Description
Introduction and		T
principle of time	1	Two principles of time measurement: Reproducibility postulate and dynamic model
measurement		
Fundamentals of		A4
atomic frequency	2.5	Atomic states, its energy shifts, high-resolution spectroscopy and
standards		high-sensitive detection
Cesium frequency		
standard and atom	2.5	Principle of Ramsey resonance and its interpretation as atom interferometer
interferometer		
Specification of		
frequency standards:	2	Fundamentals of evaluation of frequency stability with Allan variance, and
evaluation methods	2	theoretical limit of frequency stability
and theoritical limit		
Noise	2	Incoherent signals and shot noise
Relativistic theory	3	Impact of special and general relativistic theory on time measurement
and time	<u>J</u>	impact of special and general relativistic theory on time measurement
Others	1	If we have time, the frequency noises of masers and lasers, and other subjects
Outers	1	will be lectured.
Evaluation of	1	
understanding	1	

[Textbook]

【Textbook(supplemental)】C. Audoin and B. Guinot, The Measurement of Time, (Cambridge University Press, 2001). M. Kitano, Fundamentals of electronic circuits (Reimei publishing, 2009) in Japanese.

[Prerequisite(s)] Fundamentals of physics (quantum physics, in particular) and electric circuits including linear system.

The level which average graduate students of electric and electronic science and technology acquire is sufficient. [Independent Study Outside of Class]

[Web Sites] https://www.kogaku.kyoto-u.ac.jp/lecturenotes/(Unfortunately, this web page is discontinued from 2014. New pages would appear on PandA system.)

Electrical Conduction in Condensed Matter

電気伝導

[Code] 10C851 [Course Year] Master 1st [Term] 1st term [Class day & Period] Wed 2nd

[Location] Electrical Engineering Bldg.-Lecture Room (M) [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	3	
	3	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

High Performance Thin Film Engineering

高機能薄膜工学

[Code] 10C834 [Course Year] Master 1st [Term] 1st term [Class day & Period] Tue 1st [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3-4	
	3-4	
	2-3	
	2-3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

10K010

Recent Advances in Electrical and Electronic Engineering

先端電気電子工学通論

[Code] 10K010 [Course Year] Master and Doctor Course [Term] 2nd term

[Class day & Period] Tuesday, 5 [Location] Laboratories [Credits] 2 [Restriction] Foreig students

[Lecture Form(s)] Seminar [Language] English [Instructor]

[Course Description] The class consists of a series of seminars at 3 laboratories related to Department of Electrical and Electronic Engineering (energy and electrical machinery, computers, control and systems, communications and radio engineering, and electronic devices and applied physics). Each seminar intends to give a brief introduction into a specific research field so that students can get a feel for the state-of-the-art in each topic and broaden their scope beyond their majors.

【Grading】 The evaluation of a student 's work is given based on his/her attendance, reports and discussions, not on examinations.

[Course Goals]

[Course Topics]

	Theme	Class number of times	Description
--	-------	-----------------------	-------------

【Textbook】None

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Integrated Circuits Engineering, Advanced.

集積回路工学特論

[Code] 693631 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th [Location] Electrical Engineering Bldg.-Lecture Room (M) etc. [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hidetoshi Onodera

【Course Description】 An integrated circuit is a key device that enables functionality enhancement, performance increase, and cost reduction of an electronic system. Steady progress in fabrication technology leads to exponential increase in integration scale. This course focuses on the design methodology of a large-scale integrated circuit (LSI), with particular emphasis on logical and physical design process. Topics covered by the course include the current status and future directions regarding LSI design technology, CMOS process technology, CMOS layout design, CMOS device characteristics, CMOS static gates, CMOS dynamic gates, and LSI design methodology. 【Grading】 The level of achievement will be examined by several reports assigned during lectures. All reports are mandatory.

[Course Goals] The target of this lecture is to obtain basic knowledge on a design method of integrated circuits such that he/she can complete logic, circuit and layout design for a simple digital circuit.

[Course Topics]

Theme	Class number of times	Description
1. Current status and		
future directions of	2	The current status of integrated circuit development will be explained. Brief
Integrated Circuit	2	history and future directions of integrated circuit technology will be covered.
Technology		
CMOS Process	2	Fabrication process of CMOS will be explained with particular emphasis on
Technology		photo-masks required for lithography.
		Structure and performance characteristics of MOSFET, capacitor and resister
MOS Devices	3	will be explained. Performance degradation of scaled interconnect will be
		discussed with possible solutions.
CMOS Logic Gates	3	CMOS complementary static gates and dynamic gates will be presented with
		performance analysis and design methods.
LSI Design		Synchronous design method will be explained. Timing analysis and clocking
•	3	techniques will be discussed. Low power design methodology will be
Methodology		explained.
FPGA	2	Field programmable gate array and its application will be explained.

【Textbook】 N/A Hand-outs will be provided.

【Textbook(supplemental)】 Neil H.E. Weste and David Harris, "CMOS VLSI Design, 4th Ed." Addison-Wesley, 2011.

Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, "Digital Integrated Circuits, 2nd Ed." Prentice Hall, 2003.

[Prerequisite(s)] Basic knowledge on electronic circuits, digital circuits, logic circuits.

【Independent Study Outside of Class】 Reports include design and analysis of small circuits. A simulation program (SPICE) is required for performance analysis. Instructions for obtaining SPICE are given and students need to install SPICE by themselves.

[Web Sites]

10X001

Prospects of Interdisciplinary Photonics and Electronics

融合光・電子科学の展望

[Code] 10X001 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar in Electronic Science and Engineering I

電子工学特別研修1(インターン)

[Code] 10C846 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar in Electronic Science and Engineering II

電子工学特別研修2(インターン)

[Code] 10C848 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

|--|

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Research Internship(M)

研究インターンシップ M (電子)

[Code] 10C821 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] [Restriction] [Lecture Form(s)] [Language] [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Research Internship(D)

研究インターンシップ D(電子)

[Code] 10R823 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercises on Electronic Science and Engineering I, II

電子工学特別演習1

[Code] 10R825 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercises on Electronic Science and Engineering I, II

電子工学特別演習 2

[Code] 10R827 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D051

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 5th

[Location] Funai Hall [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number times	of Description
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Exercise in Practical Scientific English

実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] Thu 4th or 5th [Location] A2-304 [Credits] 1

[Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] Japanese and English

[Instructor] Y. Nakayama and T. Mizuno

[Course Description] Students learn about the basics of technical writing in English, and learn about and practice the format, style, and mechanics of the scientific research article. We may restrict the class size to enhance learning. The course is shared by Master 's and Doctoral Course students.

[Grading] Students are required to submit an initial report and a mid-term report. Students failing to submit the mid-term report will be given no credit.

[Course Goals] Students develop basic communication skills needed to work for international organizations through practicing scientific English writing.

[Course Topics]

Theme	Class number of times	Description
Course Outline and		Students examine the aim and requirements of the course, and look at the key
Introduction to	1	points for writing correctly, clearly, and concisely. (The class schedule may
Technical Writing		change without notice.)
Design of Tanhaical		Students learn about the definition and basic rules for technical writing, and
Basics of Technical	3	look at common mistakes made by non-native writers of English. Students also
Writing		learn about basic English grammar.
Japanese-to-English	3	Students learn about English grammar and practice revising their English
Translation Practice	3	writing.
Davagranha	2	Students learn about paragraphs: the topic sentence and supporting sentences,
Paragraphs		and techniques for sequencing information in a paragraph.
Format of Research	3	Students learn about the standard format of a research article: the title, abstract,
Articles		method, results, discussion, and conclusion.
Listening Practice	1	Students practice listening comprehension using videos presenting scientific
		and technical information.
Online Learning	2	Writing Paragraphs

【Textbook】No text - all materials are supplied by the teachers.

【Textbook(supplemental)】 Yukiko Nakayama, Gijutsu kei Eibun Raithingu Kyohon (Technical Writing Textbook), Japan Society for Technical Communication

Anne M. Coghill and Lorrin R. Garson, The ACS style guide, 3rd, The American Chemical Society.

[Prerequisite(s)] Students need to have basic English skills at undergraduate level.

【Independent Study Outside of Class】

[Web Sites] http://www.glc.t.kyoto-u.ac.jp/ja/study/grad/10d040

[Additional Information] We may restrict the class size to enhance students 'learning. Students who intend to join the course are required to attend the first-day guidance.

10K001

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called "high technologies", and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site for more information. You can find an attachment file, "通知版: 2016 先端マテリアル講義概要", where the term Credit will tell you the requirement.

[Course Goals]

【Course Topics】

Theme	Class number of	Description
	times	
Hyperthermophiles and their thermostable biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Theoretical Design for Organic Light-Emitting Diode Materials	1	Organic light-emitting diodes have multilayer structures consisting of carrier-transporting layers and a light emitting layer. The concepts employed in desining these materials and their examples are discussed.(T. Sato: Dept. of Molecular Engineering)
In Vivo Optical and Photoacoustic Tumor Imaging using Near-infrared Dye-cinjugated Amphiphilic Polymers	1	Optical and photoacoustic imaging methods are one of the most powerful and noninvasive techniques with which to visualize organs as well as tumor tissues. In this lecture, students can learn the basic principles of molecular imaging as well as recent progress in this field. (K. Ohe: Dept. of Energy and Hydrocarbon Chemistry)
Charge Carrier Transport in Conjugated Molecular Materials	1	How can we facilitate effective charge carrier transport pathway in organic conjugated molecular materials? The major topic of the present lecture is the mechanism of charge carrier transport in conjugated molecular materials. After an overview of electronic structure of conjugated molecular materials based on band models, a variety of measurement techniques is introduced to probe charge carrier mobility in the materials, to figure out characteristic behavior of conjugated molecules (and their aggregates) as electric conductive materials.(S. Seki: Dept. of Molecular Engineering)
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed.(T. Koga: Dept. of Polymer Chemistry)
Materials Processing using external fields for microstructure control	1	Properties of materials are not simply determined by atomic structure and chemical composition. Microstructure (crystal grain size, crystallographic orientation and so on) significantly influences the properties. Not a few techniques have been developed for controlling the microstructure. Materials processing using external fields will be demonstrated in this class.(H. Yasuda: Dept. of Materials Science and Engineering)
Force acting on colloidal particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed.(R. Yamamoto: Dept. of Chemical Engineering)
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced.(T. Asano: Dept. of Electronic Science and Engineering)
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials.(Y. Nakao: Dept. of Material Chemistry)
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Introduction to Nuclear Materials	1	Nuclear materials are designed for using in irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked.(I. Takagi: Dept. of Nuclear Engineering)
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed.(T. Koga: Dept. of Polymer Chemistry)
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides.(K. Tanaka: Dept. of Material Chemistry)
Solar Hydrogen Production using Semiconductor Photocatalyst	1	The development of a clean and renewable energy carrier that does not utilize fossil fuels is a great technological challenge. Photocatalytic water splitting using semiconductor materials has attracted considerable interest due to its potential to cleanly produce H2 from water by utilizing abundant solar light. In the present lecture, the basis and the recent progress in photocatalytic water splitting will be introduced.(R. Abe: Dept. of Energy and Hydrocarbon Chemistry)
Electrodeposition and Electroless Deposition for Materials Processing	1	(1)Fundamentals chemistry, electrochemistry, and thermodynamics , and (2)applications of electrodeposition and electroless deposition for materials processing.(K. Murase: Dept. of Materials Science and Engineering)

【Textbook 】None

 $\begin{tabular}{ll} Textbook(supplemental) \begin{tabular}{ll} Textbook(supplemental) \end{tabular}$

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10 H 012) should attend first 11 lectures.

10K005

Advanced Modern Science and Technology (English lecture)

現代科学技術特論(英語科目)

Code 1 10K005	【Course Year】	Master and Doctor Course	Term]	【Class day & Period】Thu 5th	[Location] A2-306	[Credits] 2(Se	emester system)	[Restriction]	No Restriction	
[Lecture Form(s)] Relay Lecture [Language] English										

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto Related professors

Course Description 1 Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description				
Who shake the dice?	1	Double slit phenomenon known as a prediction inability "quantum mechanics of the mystery (Feynman says)" can be every moment predicted by QED.(A. Tachibana: Dept. of Micro Engineering)				
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)				
Systems Control in Aeronautics and Astronautics	1	Systems control theory is used in several problems in aeronautics and astronautics. This lecture focuses on some of them and further gives an overview of this research based on them.(K. Fujimoto: Dept. of Aeronautics and Astronautics)				
Countermeasures of the Contaminated Water at Fukushima Daiichi Nuclear Power Station and that of the Contaminated Soil in Fukushima Area	1	The situation of contaminated water in Fukushima Daiichi Nuclear Power Station and soil contamination in and around Fukushima area and their technological countermeasures taken today will be introduced and discussed.(M. Yoneda: Dept. of Environmental Engineering)				
Polymer Synthesis beyond the 21st Century: Precision Polymerizations and Novel Polymeric Materials	1	We are now in the "Polymer Age", where synthetic polymer materials are indispensable in the modern human life: healthy, safe, comfortable, and sustainable. A critical challenge herein is to develop "precision polymerization", polymer-forming reactions that provide polymers of well-defined structures and designed functions. Given these backgrounds, this lecture will overview the following subjects: (a)What polymers are; (b)How to synthesize polymers; (c)How and where polymeric materials work and function; (d)Precision polymer synthesis; and (e)The future of polymeric materials.(M. Sawamoto: Dept. of Polymer Chemistry)				
Engineering Approach to Phase Behavior of Fluids Confined in Nanospace	1	Fluids confined in nano-scale pores exhibit peculiar phase behaviors that depends strongly on physico-chemical effects by pore walls and conditions of the bulk phase in equilibrium with the pore fluids, to which the engineering approach must be effective.(M. Miyahara: Dept. of Chemical Engineering)				
Elucidation of Principles for the Self-organization of Mesoscale Colloidal Particles	1	The process of so-called the colloid crystal has been pursued to find out the key principles for the structure evolution, employing the Brownian dynamics simulations. Also given in the lecture will be various pattern formations in the convective self-assembly of colloidal suspensions. (M. Miyahara: Dept. of Chemical Engineering)				
Architectural Design and Architectural Thinking	1	Architectural design is integration of thinking on architectural events and materials. I would like to discuss this architectural thinking and the method to embody it.(K. Takeyama: Dept. of Architecture and Architectural Engineering)				
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)				
Vacuum Nanoelectronics Devices in Harsh Environments	1	This lecture reviews the perspective of the modern vacuum electron devices based on miniaturized electron sources fabricated with contemporary semiconductor processes. The performance of the devices is evaluated in view of the device in harsh environments. (Y. Gotoh: Dept. of Electronic Science and Engineering)				
Advanced Digital Technology for Analytical Recording of Cultural Heritage Assets	1	(A. Ide: Dept. of Mechanical Engineering and Science)				
Protein Structure, Function, and Motion	1	Proteins work by fluctuating and changing their conformations. Protein structures and motions, which are essential for understanding their functions in detail, are introduced in conjunction with the state-of-art methods to analyze them.(K. Sugase: Dept. of Molecular Engineering)				
Laser-induced Breakdown Spectroscopy and Its Application to Underwater In-situ Elemental Analysis	1	Development of laser-induced breakdown spectroscopy (LIBS) for in-situ elemental analysis in water, and the application to resource exploration at sea bottom will be explained.(T. Sakka: Dept. of Energy and Hydrocarbon Chemistry)				
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)				
Modern Techniques for Material Characterization	1	Overview of modern techniques for material characterization is given with basic principles and practical applications. Impacts on the life of the people of characterization techniques are also included.(J. Matsuo: Dept. of Nuclear Engineering)				

【Textbook】 None

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

 $\label{thm:conditional} \mbox{ Additional Information \ref{D} Students who take Autumn term should register "Lecture code 10H006"}.$

10H001

Chemistry of Inorganic Materials

無機材料化学

[Code] 10H001 [Course Year] Master Course [Term] [Class day & Period] Mon 2nd [Location] A2-306

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Tanaka, Hirao, Miura,

[Course Description] Structure, characterization, synthesis, and properties of inorganic materials are described on the basis of solid-state chemistry of inorganic matters.

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	4	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemistry of Organic Materials

有機材料化学

[Code] 10H004 [Course Year] Master Course [Term] [Class day & Period] Mon 1st [Location] A2-302

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Matsubara, Shimizu,

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	3	
	1	
	1	
	3	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H007

Chemistry of Polymer Materials

高分子材料化学

[Code] 10H007 [Course Year] Master Course [Term] [Class day & Period] Fri 2nd [Location] A2-302

[Credits] [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	3	
	2	
	6	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemistry of Functional Materials

機能材料化学

[Code] 10H010 [Course Year] Master Course [Term] [Class day & Period] Wed 1st [Location] A2-302

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H013

Chemistry and Structure of Inorganic Compounds

無機構造化学

[Code] 10H013 [Course Year] Master Course [Term] [Class day & Period] Fri 2nd [Location] A2-302

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	3	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthetic Chemistry of Inorganic Solids

固体合成化学

[Code] 10H016 [Course Year] Master Course [Term] (not held; biennially) [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description] Methods to synthesize various inorganic solids and the structure and properties of the resultant materials are described.

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	3	
	2	
	4	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthesis of Organic Materials

有機材料合成化学

[Code] 10H019 [Course Year] Master Course [Term] (not held; biennially) [Class day & Period] Fri 2nd [Location] A2-302 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

【Course Description】

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	3	
	3	
	3	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemistry of Organic Natural Products

有機天然物化学

[Code] 10H022 [Course Year] Master Course [Term] [Class day & Period] Thu 1st [Location] A2-302

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Shimizu, Nakao,

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	3	
	2	
	3	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Analysis and Characterization of Materials

材料解析化学

[Code] 10H025 [Course Year] Master Course [Term] (not held; biennially) [Class day & Period] Wed 1st

[Location] A2-302 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】,,,

【Course Description】

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	4	
	3	
	3	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Physics and Function

高分子機能物性

[Code] 10H029 [Course Year] Master Course [Term] (not held; biennially) [Class day & Period] [Location]

[Credits] [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H031

Chemistry of Biomaterials

生体材料化学

[Code] 10H031 [Course Year] Master Course [Term] [Class day & Period] Tue 2nd [Location] A2-302

[Credits] [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	12	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Analysis and Characterization of Materials

材料解析化学

[Code] 10H034 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] A2-302 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],,,

【Course Description】

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	4	
	3	
	3	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D037

Laboratory and Exercise in Material Chemistry

材料化学特別実験及演習

[Code] 10D037 [Course Year] Master 2nd [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 8 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10K001

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論 (英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called "high technologies", and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site for more information. You can find an attachment file, "通知版: 2016 先端マテリアル講義概要", where the term Credit will tell you the requirement.

[Course Goals]

【Course Topics】

Theme	Class number of	Description
	times	
Hyperthermophiles and their thermostable biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Theoretical Design for Organic Light-Emitting Diode Materials	1	Organic light-emitting diodes have multilayer structures consisting of carrier-transporting layers and a light emitting layer. The concepts employed in desining these materials and their examples are discussed.(T. Sato: Dept. of Molecular Engineering)
In Vivo Optical and Photoacoustic Tumor Imaging using Near-infrared Dye-cinjugated Amphiphilic Polymers	1	Optical and photoacoustic imaging methods are one of the most powerful and noninvasive techniques with which to visualize organs as well as tumor tissues. In this lecture, students can learn the basic principles of molecular imaging as well as recent progress in this field. (K. Ohe: Dept. of Energy and Hydrocarbon Chemistry)
Charge Carrier Transport in Conjugated Molecular Materials	1	How can we facilitate effective charge carrier transport pathway in organic conjugated molecular materials? The major topic of the present lecture is the mechanism of charge carrier transport in conjugated molecular materials. After an overview of electronic structure of conjugated molecular materials based on band models, a variety of measurement techniques is introduced to probe charge carrier mobility in the materials, to figure out characteristic behavior of conjugated molecules (and their aggregates) as electric conductive materials.(S. Seki: Dept. of Molecular Engineering)
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed.(T. Koga: Dept. of Polymer Chemistry)
Materials Processing using external fields for microstructure control	1	Properties of materials are not simply determined by atomic structure and chemical composition. Microstructure (crystal grain size, crystallographic orientation and so on) significantly influences the properties. Not a few techniques have been developed for controlling the microstructure. Materials processing using external fields will be demonstrated in this class.(H. Yasuda: Dept. of Materials Science and Engineering)
Force acting on colloidal particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed.(R. Yamamoto: Dept. of Chemical Engineering)
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced.(T. Asano: Dept. of Electronic Science and Engineering)
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials.(Y. Nakao: Dept. of Material Chemistry)
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Introduction to Nuclear Materials	1	Nuclear materials are designed for using in irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked.(I. Takagi: Dept. of Nuclear Engineering)
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed.(T. Koga: Dept. of Polymer Chemistry)
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides.(K. Tanaka: Dept. of Material Chemistry)
Solar Hydrogen Production using Semiconductor Photocatalyst	1	The development of a clean and renewable energy carrier that does not utilize fossil fuels is a great technological challenge. Photocatalytic water splitting using semiconductor materials has attracted considerable interest due to its potential to cleanly produce H2 from water by utilizing abundant solar light. In the present lecture, the basis and the recent progress in photocatalytic water splitting will be introduced.(R. Abe: Dept. of Energy and Hydrocarbon Chemistry)
Electrodeposition and Electroless Deposition for Materials Processing	1	(1)Fundamentals chemistry, electrochemistry, and thermodynamics , and (2)applications of electrodeposition and electroless deposition for materials processing.(K. Murase: Dept. of Materials Science and Engineering)

【Textbook 】None

 $\begin{tabular}{ll} Textbook(supplemental) \begin{tabular}{ll} Textbook(supplemental) \end{tabular}$

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information 】 Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

10K005

Advanced Modern Science and Technology (English lecture)

現代科学技術特論(英語科目)

【Code】10K005	[Course Year]	Master and Doctor Course	[Term]	【Class day & Period】Thu 5th	【Location】A2-306	[Credits] 2(Semester system)	[Restriction] No Restriction
[Lecture Form(s)]	Relay Lecture	[Language] English					

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto Related professors

Course Description 1 Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Who shake the dice?	1	Double slit phenomenon known as a prediction inability " quantum mechanics of the mystery (Feynman says) " can be every moment predicted by QED.(A. Tachibana: Dept. of Micro Engineering)
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)
Systems Control in Aeronautics and Astronautics	1	Systems control theory is used in several problems in aeronautics and astronautics. This lecture focuses on some of them and further gives an overview of this research based on them.(K. Fujimoto: Dept. of Aeronautics and Astronautics)
Countermeasures of the Contaminated Water at Fukushima Daiichi Nuclear Power Station and that of the Contaminated Soil in Fukushima Area	1	The situation of contaminated water in Fukushima Daiichi Nuclear Power Station and soil contamination in and around Fukushima area and their technological countermeasures taken today will be introduced and discussed.(M. Yoneda: Dept. of Environmental Engineering)
Polymer Synthesis beyond the 21st Century: Precision Polymerizations and Novel Polymeric Materials	1	We are now in the "Polymer Age", where synthetic polymer materials are indispensable in the modern human life: healthy, safe, comfortable, and sustainable. A critical challenge herein is to develop "precision polymerization", polymer-forming reactions that provide polymers of well-defined structures and designed functions. Given these backgrounds, this lecture will overview the following subjects: (a)What polymers are; (b)How to synthesize polymers; (c)How and where polymeric materials work and function; (d)Precision polymer synthesis; and (e)The future of polymeric materials.(M. Sawamoto: Dept. of Polymer Chemistry)
Engineering Approach to Phase Behavior of Fluids Confined in Nanospace	1	Fluids confined in nano-scale pores exhibit peculiar phase behaviors that depends strongly on physico-chemical effects by pore walls and conditions of the bulk phase in equilibrium with the pore fluids, to which the engineering approach must be effective.(M. Miyahara: Dept. of Chemical Engineering)
Elucidation of Principles for the Self-organization of Mesoscale Colloidal Particles	1	The process of so-called the colloid crystal has been pursued to find out the key principles for the structure evolution, employing the Brownian dynamics simulations. Also given in the lecture will be various pattern formations in the convective self-assembly of colloidal suspensions.(M. Miyahara: Dept. of Chemical Engineering)
Architectural Design and Architectural Thinking	1	Architectural design is integration of thinking on architectural events and materials. I would like to discuss this architectural thinking and the method to embody it.(K. Takeyama: Dept. of Architecture and Architectural Engineering)
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Vacuum Nanoelectronics Devices in Harsh Environments	1	This lecture reviews the perspective of the modern vacuum electron devices based on miniaturized electron sources fabricated with contemporary semiconductor processes. The performance of the devices is evaluated in view of the device in harsh environments. (Y. Gotoh: Dept. of Electronic Science and Engineering)
Advanced Digital Technology for Analytical Recording of Cultural Heritage Assets	1	(A. Ide: Dept. of Mechanical Engineering and Science)
Protein Structure, Function, and Motion	1	Proteins work by fluctuating and changing their conformations. Protein structures and motions, which are essential for understanding their functions in detail, are introduced in conjunction with the state-of-art methods to analyze them.(K. Sugase: Dept. of Molecular Engineering)
Laser-induced Breakdown Spectroscopy and Its Application to Underwater In-situ Elemental Analysis	1	Development of laser-induced breakdown spectroscopy (LIBS) for in-situ elemental analysis in water, and the application to resource exploration at sea bottom will be explained.(T. Sakka: Dept. of Energy and Hydrocarbon Chemistry)
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)
Modern Techniques for Material Characterization	1	Overview of modern techniques for material characterization is given with basic principles and practical applications. Impacts on the life of the people of characterization techniques are also included.(J. Matsuo: Dept. of Nuclear Engineering)

【Textbook】 None

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

 $\label{thm:conditional} \mbox{ Additional Information \ref{D} Students who take Autumn term should register "Lecture code 10H006"}.$

Exercise in Practical Scientific English

実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] Thu 4th or 5th [Location] A2-304 [Credits] 1

[Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] Japanese and English

[Instructor] Y. Nakayama and T. Mizuno

[Course Description] Students learn about the basics of technical writing in English, and learn about and practice the format, style, and mechanics of the scientific research article. We may restrict the class size to enhance learning. The course is shared by Master 's and Doctoral Course students.

[Grading] Students are required to submit an initial report and a mid-term report. Students failing to submit the mid-term report will be given no credit.

[Course Goals] Students develop basic communication skills needed to work for international organizations through practicing scientific English writing.

【Course Topics】

Theme	Class number of times	Description
Course Outline and		Students examine the aim and requirements of the course, and look at the key
Introduction to	1	points for writing correctly, clearly, and concisely. (The class schedule may
Technical Writing		change without notice.)
Basics of Technical		Students learn about the definition and basic rules for technical writing, and
	3	look at common mistakes made by non-native writers of English. Students also
Writing		learn about basic English grammar.
Japanese-to-English	3	Students learn about English grammar and practice revising their English
Translation Practice	3	writing.
Daragrapha	2	Students learn about paragraphs: the topic sentence and supporting sentences,
Paragraphs	<u> </u>	and techniques for sequencing information in a paragraph.
Format of Research	3	Students learn about the standard format of a research article: the title, abstract,
Articles		method, results, discussion, and conclusion.
Listanina Drastica	1	Students practice listening comprehension using videos presenting scientific
Listening Practice	1	and technical information.
Online Learning	2	Writing Paragraphs

[Textbook] No text – all materials are supplied by the teachers.

【Textbook(supplemental)】 Yukiko Nakayama, Gijutsu kei Eibun Raithingu Kyohon (Technical Writing Textbook), Japan Society for Technical Communication

Anne M. Coghill and Lorrin R. Garson, The ACS style guide, 3rd, The American Chemical Society.

[Prerequisite(s)] Students need to have basic English skills at undergraduate level.

【Independent Study Outside of Class】

[Web Sites] http://www.glc.t.kyoto-u.ac.jp/ja/study/grad/10d040

[Additional Information] We may restrict the class size to enhance students 'learning. Students who intend to join the course are required to attend the first-day guidance.

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 5th

[Location] Funai Hall [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description	
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organotransition Metal Chemistry 1

有機金属化学1

[Code] 10H041 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location] A2-306 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】Nakamura,Matsubara,Suginome,Tsuji,Kurahashi,Omura,Murakami

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Organomagnesium	1	
compounds	1	Synthesis, structure, and reaction of organomagnesium compounds
Organolithium	1	Synthesis, structure, and reaction of organolithium compounds
compounds	1	Synthesis, structure, and reaction of organomunium compounds
Organozinc	1	Synthesis, structure, and reaction of organozinc compounds
compounds	1	Synthesis, structure, and reaction of organizative compounds
Organoboron	1	Synthesis, structure, and reaction of organoboron compounds
compounds		Synthesis, structure, and reaction of organoboron compounds
Organosilicon	1	Synthesis, structure, and reaction of organosilicon compounds
compounds		Synthesis, structure, and reaction of organosincon compounds
Organocopper	1	Synthesis, structure, and reaction of organocopper compounds
compounds	1	Synthesis, structure, and reaction of organocopper compounds
Rare earth metals	1	Synthesis, structure, and reaction of rare earth metals
Other		Synthesis, structure, and reaction of other transition-metal compounds such as
transition-metal	1	Ti, Zr, Cr, and Fe
compounds		11, 21, C1, and 10
Basic reaction of		Ligand substitution reaction, oxidative addition, oxidative cyclization,
organotransition-metal	1	reductive elimination, transmetallation, carbonyl insertion
compounds		reductive elimination, transmetanation, carbonyl insertion
Catalytic		Enantioselective hydrogenation, enantioselective oxidation (Sharpless
enantioselective	1	reactions), enantioselective C-C bond formation
reaction		reactions), chantiosciective C-C bond formation
Coupling reaction	1	C-C Bond forming reactions (cross coupling reactions)

【Textbook】none

【Textbook(supplemental)】 J. F. Hartwig, Organotransition metal chemistry. From bonding to catalysis., University Science Books, Mill Valley, CA, 2010.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organotransition Metal Chemistry 2

有機金属化学 2

[Code] 10H042 [Course Year] Master Course [Term] [Class day & Period] Fri 1st [Location] A2-306

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Tsuji, Ozawa, Kondo, Sawamoto, Akagi, Kurahashi, Miki

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	3	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Material Chemistry Adv. I

材料化学特論第一

[Code] 10P055 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] [Restriction] [Lecture Form(s)] Intensive Lecture [Language] [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	2 0001.pul

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Material Chemistry Adv. II

材料化学特論第二

[Code]10P056 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] Intensive Lecture [Language] [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Material Chemistry Adv.

材料化学特論第三

[Code]10P057 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] Intensive Lecture [Language] [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	r

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Material Chemistry Adv.

材料化学特論第四

[Code]10P058 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] Intensive Lecture [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	r

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Design of Functional Materials

機能材料設計学

[Code] 10S001 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 1st

[Location] A2-302 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

【Course Description】

【Grading】

[Course Goals]

【Course Topics】

Theme Class number of times	Description
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Design of Functional Materials, Advanced

機能材料設計学特論

[Code] 10S002 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Thu 3rd

[Location] A2-122 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor],

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	8	
	7	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Inorganic Structural Chemistry, Advanced

無機構造化学特論

[Code] 10S003 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location] A2-302 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor],

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	10	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Industrial Solid-State Chemistry, Advanced

応用固体化学特論

[Code] 10S006 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Mon 5th

[Location] A2-302 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	6	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organic Reaction Chemistry, Advanced

有機反応化学特論

[Code] 10S010 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Wed 5th

[Location] A2-302 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese

[Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1 5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S013

Organic Chemistry of Natural Products, Advanced

天然物有機化学特論

[Code] 10S013 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Wed 5th

[Location] A2-302 [Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese

[Instructor] Shimizu, Nakao,

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Analytical Chemistry of Materials, Advanced

材料解析化学特論

[Code] 10S016 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Wed 4th

[Location] A2-122 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor],

【Course Description】

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	14	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S019

Physical Properties of Polymer Materials, Advanced

高分子材料物性特論

[Code] 10S019 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Tue 5th

[Location] A2-302 [Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthesis of Polymer Materials, Advanced

高分子材料合成特論

[Code] 10S022 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] A2-302 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese

[Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Professional Scientific Presentation Exercises (English lecture)

科学技術者のためのプレゼンテーション演習(英語科目)

[Code] 10i041 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Wed 5th

[Location] B-Cluster 2F Seminar Room [Credits] 1

【Restriction】 The number of students might be limited if too many students will get enrolled.

[Lecture Form(s)] Semina r [Language] English

【Instructor】 Juha Lintuluoto, Associate Professor, Department of Synthetic Chemistry and Biological Chemistry 【Course Description】 It is imperative for future engineers to be able to communicate and deliver effectively scientific information to large variety of audiences. This skill enables engineers to share and absorb information to more extended audiences, and facilitates success in selling ideas and products, publishing and team working. The purpose of this course is to teach the basic rules needed for successful professional scientific presentation, both orally and written. The course also prepares students to deliver scientific information presentations to wide audiences. The course is consisted of excessive exercises, of which the student should complete seven (7) tasks. The course holds 3-4 tasks for oral presentation exercises, and 3-4 tasks for professional scientific writing exercises. The exact number of both exercises is adjusted for each student 's needs. The course is aimed for doctor course (DC) students, both Japanese and Foreign nationals

【Grading】Reports, class activity, presentation

【Course Goals】 This course is aimed to foster engineering students' scientific presentation skills. The successfully course completed students will be able to express and present complicated and specific scientific information at more generally understandable level. The students will also be able to pose relevant questions and effectively answer to the wide variety of questions.

[Course Topics]

Theme	Class number of times	Description
	1	Guidance and Professional presentation rules and etiquette
	3	Oral presentations & questioning I, Written report I
	3	Oral presentations & questioning I, Written report I
	3	Oral presentations & questioning II, Written report II
	3	Oral presentations & questioning II, Written report II
	2	Oral presentations & questioning III, Written report III
		Oral presentations & questioning III, Written report III
		Oral presentations & questioning IV, Written report IV
		Oral presentations & questioning IV, Written report IV I
		Course summary and discussion

【Textbook】Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] -Fundamental skills about scientific presentation

- -Advanced English skills
- -Sufficient personal research results

【Independent Study Outside of Class】

[Web Sites] The web-site is listed in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credit of this course is counted as the unit for graduation requirement at department level. Course starts at April 13th, and the 1st lesson is repeated on April 20th. The course schedule is irregular. Most classes are biweekly, the detailed schedule is provided at the 1st lecture.

Advanced Engineering and Economy (English lecture)

工学と経済(上級)(英語科目)

[Code] 10i042 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 5th [Location] B-Cluster 2F Seminar Room [Credits] 2 [Restriction] The number of students might be limited if too many students will get enrolled.

[Lecture Form(s)] Lectures, Group works&tasks [Language] English

[Instructor] Juha Lintuluoto, Associate Professor, Department of Synthetic Chemistry and Biological Chemistry

[Course Description] Engineering economics plays central role in any industrial engineering project. For an engineer, it is important to apply the engineering know-how with the economic analysis skills to obtain the best available materials, methods, devices, etc. in the most economical way. This course is aimed to teach engineering students the basic economic methods to manage economically an engineering project. In addition, the report writing on various engineering economic issues prepares to write reports in a professional form. The lab sessions are meant for the verbal skills improvement as well as improvement of analytical thinking. The topics are of current relevant topics Small-group brain-storming method is used. The exercise sessions cover the use of Ms-Excel for various quantitative economic analyses.

[Grading] Final test, reports, class activity

[Course Goals] This course is aimed to strengthen engineering students 'skills in economics. The course concept is to teach students selectively those subjects which serve as major tools to solve economic tasks in engineering environment. The reports and lab sessions provide students stimulating and analytical thinking requiring tasks, and presentation skills training is an important part of this course.

[Course Topics]

Theme	Class number of times	Description
Student orientation and		
Introduction to engineering	1	
economy		
Cost concepts and design	1	
economics		
Cost estimation techniques	1	
The time value of money	1	
Evaluating a single project	1	
Comparison and selection	1	
among alternatives		
Depreciation and income	1	
taxes		
Price changes and exchange	1	
rates		
Replacement analysis	1	
Evaluating projects with the	1	
benefit-cost ratio method		
Breakeven and sensitivity	1	
analysis		
Probabilistic risk analysis	1	
The capital budgeting	1	
process		
Decision making	1	
considering multiattributes		
Final test	1	
		Additionally, students will submit five reports during the course on given engineering economy subjects.
		Also, required are the five lab participations (ca.60 min/each) for each student. Additionally, three
		exercise sessions (ca.60 min/each), where use of Ms-Excel will be practiced for solving various

【Textbook】 Engineering Economy 15th ed. William G. Sullivan (2011)

【Textbook(supplemental)】Will be informed if necessary.

[Prerequisite(s)] -This course is highly recommended for those who attend "Engineering Project Management" course, Small group working method Independent Study Outside of Class]

[Web Sites] The web-site is listed in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credits of this course are counted as the units for graduation requirement at department level. The course starts on Apr.12th.

engineering economy tasks, should be completed

10i047

Engineering Project Management (English lecture)

エンジニアリングプロジェクトマネジメント (英語科目)

[Code] 10i047 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 4th [Location] B-Cluster 2F Seminar Room

[Credits] 1 [Restriction] [Lecture Form(s)] Lectures, Group works&tasks [Language] English

[Instructor] GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto

Assoc.Prof. Lintuluoto, J. Assoc.Prof. Nishi

[Course Description] The purpose of this course is to teach the basic skills needed for expressing and initiating ideas, and presenting information in successful international engineering group work. The course provides simulations for students in group managing and decision making in international engineering teams. International teamwork ethics subjects for successful engineering project will be practiced. The course consists of lectures, case studies, the invited lecture from an industry representative and the final examination. Also, a project report exercise is included in this course. The course is basically designed for doctor course (DC) students, both Japanese and foreign nationals. If place are available they may be given to master course students.

【Grading 】Report, class activity, presentation

[Course Goals] This course is the pre-course for Engineering Project Management II which will be held in the second semester. Students will learn project management tools, apply project strategies and perform qualitative risk analyses. Also students will learn how to carry out projects with group members from various countries and engineering fields.

[Course Topics]

Theme	Class number of times	Description	
T. I. C. A.		4/8 The introduction to the course and preliminary knowledge about the engineering project management	
Introduction to the course	1	will be given. (All)	
Project Management	1	4/15 I (Lintuluoto)	
Project Management	1	4/22 II (Lintuluoto)	
Management of abroad	1	5/6 Through an abroad dispatched project of Graduate School of Engineering, Kyoto University, the	
dispatched project	1	development and management of the project in University will be given. (Mizuno)	
TBA	1	5/13	
Leadership Skills	1	5/20 I (Tanaka)	
Leadership Skills	1	5/27 II (Tanaka)	
Risk Identification and	1	(OLOU 1)	
Assessment for Engineers	1	6/3 I (Nishi)	
		6/10 II	
Risk Identification and	1	Products failure potentially causes serious economic and human damages. This lecture firstly overviews	
		some mechanisms of failure, and introduces actual examples of failure accidents and their costs. And	
Assessment for Engineers		then, damage-tolerance-design methodology in which remaining life and inspection intervals are	
		quantified through fracture mechanics analyses is explained.(Matsumoto)	
Design and design thinking	1	6/17 I (Takatori)	
Design and design thinking	1	6/24 II (Takatori)	
Special Lecture from	1	7/1	
Industry	1	7/1	
Special Lecture from	1	7/8	
Industry	1	//8	
Special Lecture from	1	7/15	
Industry	1	//13	
Review of the course	1	7/22 Review of the course	

【Textbook】 Course materials will be provided.

[Textbook(supplemental)]

[Prerequisite(s)] '-This course is recommended for those who later intend to attend "Engineering Project Management II".

-Highly interactive lessons (discussion), Small group work methodologies.

[Independent Study Outside of Class]

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department. The course starts on Apr. 10th.

Engineering Project Management (English lecture)

エンジニアリングプロジェクトマネジメント (英語科目)

[Code] 10i048 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] B-Cluster 2F Seminar Room [Credits] 1 [Restriction] Student number will be limited.

[Lecture Form(s)] Seminar [Language] English

[Instructor] GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto, Ashida,

Assoc.Prof. Lintuluoto

【Course Description】 In this course, students will apply the engineering know-how and the skills of management, group leadership, and international communication which they learned in the course of "Engineering Project Management I" to build and carry out a virtual inter-engineering project. This course provides a forum where students ' team-plan based on ideas and theories, decision making, and leadership should produce realistic engineering project outcomes. The course consists of intensive group work, presentations, and a few intermediate discussions. A written report will be required.

【Grading】Report, class activity, presentation

[Course Goals] This course prepares engineering students to work with other engineers within a large international engineering project. In particular this course will focus on leadership and management of projects along with applied engineering skills where the students learn various compromises, co-operation, responsibility, and ethics.

[Course Topics]

Theme	Class number of times	Description
		Introduction to Engineering Project Management
Guidance	1	Lecture on tools for the Engineering Project Management
		Practice
Practice I	2	Each student practices the tools for the Engineering Project Management
		Each project team may freely schedule the group works within given time
Group work I	2	frame. In addition to "Intermediate discussion" sessions, the course
		instructors are available if any such need is required.
Presentation I &		
Intermediate	1	Each project team has a presentation
discussion I		
Group work II	2	
Intermediate	1	
discussion II	1	
Group work III	2	
Presentation II	1	
Final discussion	1	

[Textbook] Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] Fundamental skills about group leading and communication, scientific presentation.

【Independent Study Outside of Class】

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department.

10Z101

Micro/Nano Scale Material Engineering

マイクロ・ナノスケール材料工学

[Code] 10Z101 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] 6, 7, 8, 9 September (Schedule has been changed (5/31))

[Location] C3-Lecture Room 4a [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] TABATA,KITAMURA,HOJO,ADACHI,TSUCHIYA,YOKOKAWA,SUMIGAWA,INOUE,NAKAMURA,(Aichi Institute of Technology) NAMAZU,

[Course Description] This class lectures specific mechanical properties and behavior of micro to nano scale materials, underlying mechanism of those properties and behavior and characterization method. Furthermore, techniques of measurements, analysis and structural design of biomaterial such as protein and DNA which are expected to be utilized as micro nano scale materials are lectured.

[Grading] The evaluation will be based on the reports given in each lecture.

[Course Goals] Educate engineers and researchers with fundamental knowledge on specific mechanical properties and behavior of micro to nano scale materials. They can promote industrial application of micro and nano materials based on the deep understanding about how specific mechanical properties and behavior of micro to nano scale materials dominate performance, reliability and lifetime of MEMS (Micro Electromechanical Systems), microsystems and micro scale components.

[Course Topics]

Theme	Class number of times	Description		
Outline 1		In this lecture, application examples of micro and nano scale material on devices and importance of mechanical properties and its behavior on device characteristics are described. (Tabata)		
Mechanical properties of Silicon	2	Silicon, one of the most widely used materials in micro/nano devices, is used not only a semiconductor material but a mechanical material because of its sperior mechanical properties. In this lecture, the properties of silicon, such as physical, electrical, mechanical, electro-mechanical properties, will be presented in the view point of a mechanical structural material. Especially the lecture will focus on the elastic properties, piezoresistive effect, and fracture/fatigue properties of silicon, indespensable for designing micro/nano-devices. (Tsuchiya)		
Characterization of micro nano material	2	In this class, first I will lecture the evaluation method for the mechanical properties of micro and nano-scale materials used for MEMS and semiconductor devices. Several representative experimental techniques for micro and nano mechanical testing will be presented and explained. Then I will lecture representative functional materials, such as shape memory alloy films and self-propagating exothermic foils, and lecture regarding the possibility of their application to MEMS. (Tsuchiya, Namazu)		
Fracture and fatigue mechanism of materials in the micro- and nano-meter scale	4	We explain fundamentals on the fracture and fatigue mechanism of materials in the micro- and nano-meter scale. At first, the characteristic properties of deformation and fracture in small components such as thin films, wires, dots etc. are discussed in terms of the solid mechanics. Focus is put on the interface strength of dissimilar materials as well including the effect of fatigue, creep and environment. Then, we extend our explanation to the multi-physics property of nano-components on the basis of the ab initio simulations. As a representative example of materials with microscale structures, properties of composite materials are lectured. Characterization of microscopic components such as fibers and matrices are explained from the view points of the difference from bulk materials. Testing methods and properties of fiber/matrix interface are described. The relationship between the deformation and fracture of microscopic components and those of macroscopic composite materials are explained including the underlying mechanism. Explanation is also made to anisotropy of elastic properties and strength. (Kitamura, Sumigawa, Hojo)		
In thi of ele ezoresistive effect of micro theory ad nano material mech deper		In this theme, we will study the fundamental concepts of electronic-state theory and band structures to represent behavior of electrons in materials, and will discuss the electromechanical properties of materials based on the electronic-state theory. In particular, the principle and features of the piezoresistive effect, the change in the electrical resistivity due to mechanical stresses and strains, will be derived from the band structures of materials. The mechanisms of scale dependence of piezoresistivity in nanoscale materials such as silicon, carbon nanotube, and graphene will be also discussed. (Nakamura)		
Bio/Nano material (1)	In tissue adaptation, regeneration and stem cell differentiation in tissue morphogenesis, cellular function as cell migration and division are regulated by complex mechano-chemical couplings at molecular lever material (1) 2 such a hierarchical dynamics from nanoscopic molecular events to microscopic cellular dynamics, we wanterial so the molecular and cellular mechanical behaviors as bio-nano materials by integrating experimathematical modeling and computer simulations. (Adachi, Inoue)			
Bio/Nano material (2)	1	Motor proteins are nano-scale actuators in vivo. Their active functions can be reconstructed in vitro to be utilized as a driving source of micro/nano systems. This lecture introduces fundamentals of their mechanical properties and molecula design methods. (Yokokawa)		
Bio/Nano material (3)	1	This lecture describes DNA nanotechnology to construct nanoscale structures using DNA as a structural material. Fundamental knowledge, design methodology and application of DNA origami technique are focused. (Tabata)		

[Textbook]

[Textbook(supplemental)] Biomaterial: Bionano material: Mechanics of Motor Proteins & the Cytoskeleton, Jonathon Howard, Sinauer Associates (January 2001)

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This lecture is provided as a part of NIP (Nanotech Innovation Professional) course of the Nanotech Career-up Alliance (Nanotech CUPAL) project.

Internship

産学連携研究型インターンシップ

[Code] 10i009 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] Seminar and Exercise [Language] [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P011

General Material Chemistry

材料化学総論

[Code]10P011 [Course Year]Master 2nd [Term]1st term [Class day & Period] [Location]A2-306 [Credits]

[Restriction] [Lecture Form(s)] Intensive Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	2 0001.pul

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Energy Conversion Reactions

エネルギー変換反応論

[Code] 10H201 [Course Year] Master and Doctor Course [Term] [Class day & Period] Fri 2nd

[Location] A2-303 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 K.Eguchi, T.Abe, H.Kageyama, R.Abe,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Green and Sustainable Chemistry

物質環境化学

[Code]10H202 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] K.Ohe, Y.Tsuji, T.Sakka,

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Inorganic Solid-State Chemistry

無機固体化学

[Code]10H205 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] H.Kageyama,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	4	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Electrochemistry Advanced

電気化学特論

[Code]10H200 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] T.Abe,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	2	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemistry of Functional Interfaces

機能性界面化学

[Code]10H215 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] T.Sakka,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	5	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Catalysis in Organic Reactions

有機触媒化学

[Code]10H213 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Department of Energy and Hydrocarbon Chemistry, Professor, K.Ohe

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Total synthesis of	2	
Minfiensine	Z	
Total synthesis of	1	
Vitamin E	1	
Total synthesis of	1	
Total synthesis of	1	
(+)-Laurenyne	1	
Total synthesis of	1	
Miriaporone 4	1	
Total synthesis of	1	
BIRT-377	1	
Total synthesis of	1	
Ningalin D	1	
Total synthesis of	1	
Sporolide B	1	
Total synthesis of	2	
(-)-Tetrodotoxin	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Excited-State Hydrocarbon Chemistry

励起物質化学

[Code]10H207 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	2	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H209

Advanced Biomedical Engineering

先端医工学

[Code] 10H209 [Course Year] Master and Doctor Course [Term] [Class day & Period] Thu 2nd

[Location] A2-304 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor]

【Course Description】

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemical Conversion of Carbon Resources

資源変換化学

[Code] 10H217 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 2nd [Location] A2-303

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] R. Abe

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
(1) Introduction of		
chemical conversion of	1	
resources		
(2) Chemical		
conversion using	1	
semiconductor	1	
photocatalysts		
(3) Hydrogen		
production from water	1	
using photocatalysts (1)		
(4) Hydrogen		
production from water	1	
using photocatalysts (2)		
(5) Reduction of CO2	1	
using photocatalysts		
(6) Fine chemical		
synthesis using	1	
photocatalysts		
(7) Basic science of	1	
catalysis		
(8) Hydrogen		
production fromfossil	1	
resources		
(9) Petroleum refinery	1	
process (1)		
(10) Petroleum refinery	1	
process (2)		
(11) Biomass		
technology and future	1	
energy carriers		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemistry of Organometallic Complexes

有機錯体化学

[Code] 10H210 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd [Location] A2-303 [Credits] [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor] Tsuji, Terao,

[Course Description] Basic organometallic chemistry including history, structure, bonding, reactions, and survey of various metal complexes is lectured. Several typical catalytic reactions are explicated on the basis of elementary steps in organometallic chemistry such as ligand substitution, oxidative addition, reductive elimination, and insertion reactions.

【Grading】Graded by written examination

【Course Goals 】Acquirement of basic idea of:

- 1. General properties of transition metal organometallic complexes
- 2. Reactivity of transition metal organometallic compounds
- 3. Homogeneous catalysis of practical importance
- 4. Recent research trends in homogeneous catalysis

[Course Topics]

Theme	Class number of times	Description
		History
		Application
		Research trends
Introduction	1	Zaise salt
		Grignard reagent
		Alkyl lithium
		Ferrocene
		Bonding
Compared parametries of		Structure in general
General properties of organometallic complexes	1	Coordination number
organometanic complexes		-Structure
		μ -Structure
		Number of d- and s-electrons
	1	Classification and the nature of ligands
		Effect of complexation
Oncomomotollia cominan (1)		Formal charge
Organometallic seminar (1)		Electron counting
		18-electron rule
		Oxidation state
General properties and		
reactivities of transition	3	Several important steps in transition-metal complex catalyzed reactions are discussed, including
metal organometallic	3	coordination, oxidative addition, insertion, reductive elimination.
complexes		
		Wacker process
Recent research trends in	1	Various cross-coupling reaction
homogeneous catalysis (1)	1	Mizoroki-Heck reaction
Recent research trends in	1	C-H and C-C bond activation
homogeneous catalysis (2)	1	C-11 and C-C bond activation
Organometallics in materials	2	A sympatria catalysis
science (1)	2	Asymetric catalysis
Organometallics in materials science (2)	1	Strucural metarials
Organometallic seminar (2)	1	Electronic and optoelectronic applications

【Textbook】No textbooks are used.

[Textbook(supplemental)] R.H.Crabtree, The Organometallic Chemistry of the Transition MetalsFourth Edition; Wiley-Interscience: Hoboken, 2005.

[Prerequisite(s)] Basic knowledge in organic chemistry, physical chemistry, and inorganic chemistry is requisite.

[Independent Study Outside of Class]

[Web Sites]

10H218

Design of Solid Catalysts

固体触媒設計学

[Code] 10H218 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor]K.Eguchi,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	2	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Material Transformation Chemistry

物質変換化学

[Code] 10H222 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 2nd [Location] A2-303 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] M.Nakamura, H. Takaya, (K. Isozaki),

[Course Description] This course explains the basic chemistry of functional organometallics, aiming to help students understand the syntheses/structures/reactivities/functions of these compounds with a focus on applications in molecular transformation and organic synthesis.

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
course guidance and	1	across and demand and introduction
introduction	1	course guidance and introduction
syntheses, properties,		
and applications of	2	
functional metal	2	
nano particles		
syntheses, properties,		
and applications of	4	
organo main group	4	
metal compounds		
syntheses, properties,		
and applications of		
functional organo	3	
transition metal		
compounds		
achievement check	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] knowledge of undergraduate organic chemistry

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] This course is provided at Uji campus in the odd-number academic years and at Katsura campus in the even-number academic years.

Structural Organic Chemistry

構造有機化学

[Code] 10H219 [Course Year] Master and Doctor Course [Term] [Class day & Period] Tue 5th [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Y. Murata,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	1	
	1	
	1	
	1	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Radiochemistry, Adv.

放射化学特論

[Code] 10H238 [Course Year] Master and Doctor Course [Term] [Class day & Period] Thu 2nd

[Location] A2-303 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】T.Ohtsuki,

【Course Description】

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemistry of Well-Defined Catalysts

錯体触媒設計学

[Code] 10H226 [Course Year] Master and Doctor Course [Term] [Class day & Period] Tue 2nd

[Location] A2-303 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] F.Ozawa,

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H208

Seminar on Energy & Hydrocarbon Chemistry (A)

物質エネルギー化学特別セミナー A

[Code] 10H208 [Course Year] Master 2nd [Term] 1st term [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] Intensive Lecture [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	r

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Organic Chemistry

先端有機化学

[Code] 10H818 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 1st

[Location] A2-306 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Professor Jun-ichi Yoshida and other professors

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
Chemoselectivity	2	Introduction and chemoselectivity
Regioselectivity	2	Controlled Aldol Reactions
Stereoselectivity	2	Stereoselective Aldol Rections
Strategies	2	Alternative Strategies for Enone Synthesis
Choosing a Strategy	2	The Synthesis of Cyclopentenones
Summary	1	Summary and outlook

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P818

Advanced Organic Chemistry 2 Continued

先端有機化学続論

[Code] 10P818 [Course Year] Master 1st [Term] 1st term [Class day & Period] Tue 1st

[Location] A2-306 [Credits] [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese

[Instructor]

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organotransition Metal Chemistry 1

有機金属化学1

[Code] 10H041 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location] A2-306 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】Nakamura,Matsubara,Suginome,Tsuji,Kurahashi,Omura,Murakami

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Organomagnesium	1	Counth sais atmost are and asset in a formation and asset in a formation and
compounds	1	Synthesis, structure, and reaction of organomagnesium compounds
Organolithium	1	
compounds	1	Synthesis, structure, and reaction of organolithium compounds
Organozinc	1	Sounds are a towards and an action of a managina and a
compounds		Synthesis, structure, and reaction of organozinc compounds
Organoboron	1	Synthesis, structure, and reaction of organoboron compounds
compounds		Synthesis, structure, and reaction of organoboron compounds
Organosilicon	1	Synthesis, structure, and reaction of organosilicon compounds
compounds		Synthesis, structure, and reaction of organosmeon compounds
Organocopper	1	Synthesis, structure, and reaction of organocopper compounds
compounds		
Rare earth metals	1	Synthesis, structure, and reaction of rare earth metals
Other		Synthesis, structure, and reaction of other transition-metal compounds such as
transition-metal	1	Ti, Zr, Cr, and Fe
compounds		11, 21, C1, and 1 C
Basic reaction of		Ligand substitution reaction, oxidative addition, oxidative cyclization,
organotransition-metal	l 1	reductive elimination, transmetallation, carbonyl insertion
compounds		reductive elimination, transmetanation, carbonyl insertion
Catalytic		Enantioselective hydrogenation, enantioselective oxidation (Sharpless
enantioselective	1	reactions), enantioselective C-C bond formation
reaction		reactions), enantioselective C-C bond formation
Coupling reaction	1	C-C Bond forming reactions (cross coupling reactions)

【Textbook】none

【Textbook(supplemental)】 J. F. Hartwig, Organotransition metal chemistry. From bonding to catalysis., University Science Books, Mill Valley, CA, 2010.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organotransition Metal Chemistry 2

有機金属化学 2

[Code] 10H042 [Course Year] Master Course [Term] [Class day & Period] Fri 1st [Location] A2-306

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Tsuji, Ozawa, Kondo, Sawamoto, Akagi, Kurahashi, Miki

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	3	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Energy and Hydrocarbon Chemistry, Adv. I

物質エネルギー化学特論第一

[Code] 10D228 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description] A number of challenges have been made on development of artificial DNA, RNA and proteins. These intelligent materials are promising for next generation diagnostics and therapy. In this lecture, we discuss the molecular design of these artificial biological materials and their chemical biology.

【Grading】 attendance and report

[Course Goals] Chemical structures and basic function of DNA, RNA and protein//Design of chemical compounds to manipulate biological function of nucleic acids and protein//Applications of artificial DNA, RNA and protein to medical treatment and diagnostics

【Course Topics】

Theme	Class number of times	Description			
Chemical structure	1	Constration the contration of constraints			
and synthesis	1	Synthetic chemistry of nucleic acids			
Design of artificial					
molecules that act in	2	Design and function of artificial nucleic acids and proteins			
biological system					
Molecular probe	1	Design of molecular probes for diagnostics			
Gene manipulation	1	Gene manipulation by photo-irradiation and X-irradiation//Expansion of			
	1	genetic code			
Recent topics	2				

[Textbook] No textbooks are used.

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge in organic chemistry and biological chemistry is requisite.

【Independent Study Outside of Class】

[Web Sites]

Energy and Hydrocarbon Chemistry, Adv. II

物質エネルギー化学特論第二

[Code] 10D229 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor], Tanabe, Kobayashi,

【Course Description】 --Geochemistry-- Chemistry, often referred to as the central science, concerns matter and the transformations it can undergo. While much of the curriculum focuses on how chemistry can be applied to solving various problems relevant to our society, chemistry also offers a convenient framework to understand the complexity of the natural world surrounding us. The goal of this class is to apply chemical principles to understand the natural (non-living) world around us and appreciate its complexity.

[Grading] Grades will be determined by a combination of attendance, homework, and final exam

[Course Goals] To understand the main chemical processes and chemical history of the Earth

[Course Topics]

Theme	Class number of times	Description		
Basic Introduction	1	Earth's history, generation of the elements, basic minerology		
Aquatic Chemistry	1	Hydrological cycle, carbonate cycle, ion exchange, clays/minerals		
Trace				
Elements/Igneous	1			
Processes				
Isotope	1	(Dadio cario icatana acadamietra)		
Geochemistry		(Radiogenic isotope geochemistry)		
Isotope	1	(C4-11- i4 11i-4)		
Geochemistry	1	(Stable isotope geochemistry)		
Chemistry of the				
Solid Earth	1			
Other Topics	1			

[Textbook] There is no mandatory textbook, so lecture notes will be important.

【Textbook(supplemental)】

[Prerequisite(s)] A basic inorganic/physical chemistry background is necessary.

【Independent Study Outside of Class】

[Web Sites]

Energy and Hydrocarbon Chemistry, Adv. III

物質エネルギー化学特論第三

[Code] 10D230 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 2nd [Location] A2-303

[Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】Tassel, Higashi, (KUICR) Isozaki

Course Description The preparation of novel materials, their characterization and the optimization of their properties is a fundamental approach towards improving our production and use of energy towards sustainable goals. The role of this course will be to introduce various fields of chemistry, specifically solid state chemistry, catalysis and nanotechnology. The on-going research in different fields will be presented to provide students with a global picture of the different techniques and strategies towards improving the figure numbers of materials for energy.

【Grading】Reports will be graded.

[Course Goals] This lecture will aim at teaching students the importance of material research in the field of energy production, storage, and use.

【Course Topics】

Theme	Class number of times	Description		
Semiconductors and				
photocatalysis	2	Overview of semiconductors for photocatalysis.		
(Higashi)				
Light energy	2			
conversion (Higashi)	۷	Overview of light energy conversion.		
Structure and				
properties of metallic	2	Overview of structure and properties of metallic nanoparticles.		
nanoparticles	2	Overview of structure and properties of metanic nanoparticles.		
(Isozaki)				
Metallic nanoparticles	2	Overview of metallic papaparticles and catalysis		
and catalyis (Isozaki)		Overview of metallic nanoparticles and catalysis.		
Exotic Syntheses	2	Overview of various exotic syntheses.		
(Tassel)		Overview of various exotic syntheses.		
Topochemical	1	Overview of topochemical reactions.		
reactions (Tassel)		Overview of topochemical reactions.		
Experiments under				
high-pressure	2	Overview of experiments under high-pressure conditions.		
conditions (Tassel)				
High-pressure	1	Overview of high pressure synthesis techniques		
syntheses (Tassel)	1	Overview of high-pressure synthesis techniques.		
Feedback (All staff)	1	Feedback about the reports.		

【Textbook】 No textbooks. Handouts will be provided.

[Textbook(supplemental)] Solid State Chemistry and its Applications, 2nd Edition, Student Edition, Anthony R. West

[Prerequisite(s)] Fundamental knowledge in organic and inorganic chemistry at the undergraduate level.

【Independent Study Outside of Class】

[Web Sites]

Energy and Hydrocarbon Chemistry, Adv. IV

物質エネルギー化学特論第四

[Code] 10D231 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] A2-303 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】Tassel, Higashi, (KUICR) Isozaki

【Course Description】 Equivalent to Energy and Hydrocarbon Chemistry, Adv. III

【Grading 】Reports will be graded.

[Course Goals] Equivalent to Energy and Hydrocarbon Chemistry, Adv. III

【Course Topics】

Theme	Class number of times	Description			
Semiconductors and					
photocatalysis	2	Overview of semiconductors for photocatalysis.			
(Higashi)					
Light energy	2	O			
conversion (Higashi)	2	Overview of light energy conversion.			
Structure and					
properties of metallic	2				
nanoparticles	2	Overview of structure and properties of metallic nanoparticles.			
(Isozaki)					
Metallic					
nanoparticles and	2	Overview of metallic nanoparticles and catalysis.			
catalyis (Isozaki)					
Exotic syntheses	2	Overview of verious eventie syntheses			
(Tassel)	2	Overview of various exotic syntheses.			
Topochemical	1				
reactions (Tassel)	1	Overview of topochemical reactions.			
Experiments under					
high-pressure	2	Overview of experiments under high-pressure conditions.			
conditions (Tassel)					
High-pressure	1	Overview of high massage synthesis to shairnes			
syntheses (Tassel)	1	Overview of high-pressure synthesis techniques.			
Feedback (All staff)	1	Feedback about the reports.			

【Textbook】 Equivalent to Energy and Hydrocarbon Chemistry, Adv. III

【Textbook(supplemental)】 Equivalent to Energy and Hydrocarbon Chemistry, Adv. III

[Prerequisite(s)] Equivalent to Energy and Hydrocarbon Chemistry, Adv. III

【Independent Study Outside of Class】

[Web Sites]

Energy and Hydrocarbon Chemistry, Adv. V

物質エネルギー化学特論第五

[Code] 10D232 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor]H.Masuda,

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D233

Energy and Hydrocarbon Chemistry, Adv. IV

物質エネルギー化学特論第六

[Code] 10D233 [Course Year] Master Course [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	r

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Energy and Hydrocarbon Chemistry, Adv. VII

物質エネルギー化学特論第七

[Code] 10D235 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor],

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D236

Energy and Hydrocarbon Chemistry, Adv. VIII

物質エネルギー化学特論第八

[Code] 10D236 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10K001

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論 (英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called "high technologies", and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site for more information. You can find an attachment file, "通知版: 2016 先端マテリアル講義概要", where the term Credit will tell you the requirement.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description				
Hyperthermophiles and their thermostable biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)				
Theoretical Design for Organic Light-Emitting Diode Materials	1	Organic light-emitting diodes have multilayer structures consisting of carrier-transporting layers and a light emitting layer. The concepts employed in desining these materials and their examples are discussed.(T. Sato: Dept. of Molecular Engineering)				
In Vivo Optical and Photoacoustic Tumor Imaging using Near-infrared Dye-cinjugated Amphiphilic Polymers	1	Optical and photoacoustic imaging methods are one of the most powerful and noninvasive techniques with which to visualize organs as well as tumor tissues. In this lecture, students can learn the basic principles of molecular imaging as well as recent progress in this field. (K. Ohe: Dept. of Energy and Hydrocarbon Chemistry)				
Charge Carrier Transport in Conjugated Molecular Materials	1	How can we facilitate effective charge carrier transport pathway in organic conjugated molecular materials? The major topic of the present lecture is the mechanism of charge carrier transport in conjugated molecular materials. After an overview of electronic structure of conjugated molecular materials based on band models, a variety of measurement techniques is introduced to probe charge carrier mobility in the materials, to figure out characteristic behavior of conjugated molecules (and their aggregates) as electric conductive materials.(S. Seki: Dept. of Molecular Engineering)				
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed. (T. Koga: Dept. of Polymer Chemistry)				
Materials Processing using external fields for microstructure control	1	Properties of materials are not simply determined by atomic structure and chemical composition. Microstructure (crystal grain size, crystallographic orientation and so on) significantly influences the properties. Not a few techniques have been developed for controlling the microstructure. Materials processing using external fields will be demonstrated in this class.(H. Yasuda: Dept. of Materials Science and Engineering)				
Force acting on colloidal particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed.(R. Yamamoto: Dept. of Chemical Engineering)				
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced.(T. Asano: Dept. of Electronic Science and Engineering)				
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials.(Y. Nakao: Dept. of Material Chemistry)				
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)				
Introduction to Nuclear Materials	1	Nuclear materials are designed for using in irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked.(I. Takagi: Dept. of Nuclear Engineering)				
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed.(T. Koga: Dept. of Polymer Chemistry)				
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides.(K. Tanaka: Dept. of Material Chemistry)				
Solar Hydrogen Production using Semiconductor Photocatalyst	1	The development of a clean and renewable energy carrier that does not utilize fossil fuels is a great technological challenge. Photocatalytic water splitting using semiconductor materials has attracted considerable interest due to its potential to cleanly produce H2 from water by utilizing abundant solar light. In the present lecture, the basis and the recent progress in photocatalytic water splitting will be introduced.(R. Abe: Dept. of Energy and Hydrocarbon Chemistry)				
Electrodeposition and Electroless Deposition for Materials Processing	1	(1)Fundamentals chemistry, electrochemistry, and thermodynamics, and (2)applications of electrodeposition and electroless deposition materials processing.(K. Murase: Dept. of Materials Science and Engineering)				

【Textbook 】None

 $\begin{tabular}{ll} Textbook(supplemental) \begin{tabular}{ll} Textbook(supplemental) \end{tabular}$

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

10K005

Advanced Modern Science and Technology (English lecture)

現代科学技術特論(英語科目)

[Code] 10K005 [Cours	e Year I Master and Doctor Course	[Term]	【Class day & Period】Thu 5th	【Location】A2-306	【Credits】2(Semester system)	[Restriction] No Restriction
[Lecture Form(s)] Relay	Lecture 【Language】 English					

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto

Related professors

Course Description 1 Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description				
Who shake the dice?	1	Double slit phenomenon known as a prediction inability " quantum mechanics of the mystery (Feynman says) " can be every moment predicted by QED.(A. Tachibana: Dept. of Micro Engineering)				
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)				
Systems Control in Aeronautics and Astronautics	1	Systems control theory is used in several problems in aeronautics and astronautics. This lecture focuses on some of them and further gives an overview of this research based on them.(K. Fujimoto: Dept. of Aeronautics and Astronautics)				
Countermeasures of the Contaminated Water at Fukushima Daiichi Nuclear Power Station and that of the Contaminated Soil in Fukushima Area	1	The situation of contaminated water in Fukushima Daiichi Nuclear Power Station and soil contamination in and around Fukushima area and their technological countermeasures taken today will be introduced and discussed.(M. Yoneda: Dept. of Environmental Engineering)				
Polymer Synthesis beyond the 21st Century: Precision Polymerizations and Novel Polymeric Materials	1	We are now in the "Polymer Age", where synthetic polymer materials are indispensable in the modern human life: healthy, safe, comfortable, and sustainable. A critical challenge herein is to develop "precision polymerization", polymer-forming reactions that provide polymers of well-defined structures and designed functions. Given these backgrounds, this lecture will overview the following subjects: (a)What polymers are; (b)How to synthesize polymers; (c)How and where polymeric materials work and function; (d)Precision polymer synthesis; and (e)The future of polymeric materials.(M. Sawamoto: Dept. of Polymer Chemistry)				
Engineering Approach to Phase Behavior of Fluids Confined in Nanospace	1	Fluids confined in nano-scale pores exhibit peculiar phase behaviors that depends strongly on physico-chemical effects by pore walls and conditions of the bulk phase in equilibrium with the pore fluids, to which the engineering approach must be effective.(M. Miyahara: Dept. of Chemical Engineering)				
Elucidation of Principles for the Self-organization of Mesoscale Colloidal Particles	1	The process of so-called the colloid crystal has been pursued to find out the key principles for the structure evolution, employing the Brownian dynamics simulations. Also given in the lecture will be various pattern formations in the convective self-assembly of colloidal suspensions.(M. Miyahara: Dept. of Chemical Engineering)				
Architectural Design and Architectural Thinking	1	Architectural design is integration of thinking on architectural events and materials. I would like to discuss this architectural thinking and the method to embody it.(K. Takeyama: Dept. of Architecture and Architectural Engineering)				
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)				
Vacuum Nanoelectronics Devices in Harsh Environments	1	This lecture reviews the perspective of the modern vacuum electron devices based on miniaturized electron sources fabricated with contemporary semiconductor processes. The performance of the devices is evaluated in view of the device in harsh environments. (Y. Gotoh: Dept. of Electronic Science and Engineering)				
Advanced Digital Technology for Analytical Recording of Cultural Heritage Assets	1	(A. Ide: Dept. of Mechanical Engineering and Science)				
Protein Structure, Function, and Motion	1	Proteins work by fluctuating and changing their conformations. Protein structures and motions, which are essential for understanding their functions in detail, are introduced in conjunction with the state-of-art methods to analyze them.(K. Sugase: Dept. of Molecular Engineering)				
Laser-induced Breakdown Spectroscopy and Its Application to Underwater In-situ Elemental Analysis	1	Development of laser-induced breakdown spectroscopy (LIBS) for in-situ elemental analysis in water, and the application to resource exploration at sea bottom will be explained.(T. Sakka: Dept. of Energy and Hydrocarbon Chemistry)				
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)				
Modern Techniques for Material Characterization	1	Overview of modern techniques for material characterization is given with basic principles and practical applications. Impacts on the life people of characterization techniques are also included.(J. Matsuo: Dept. of Nuclear Engineering)				

【Textbook】 None

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 5th

[Location] Funai Hall [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Exercise in Practical Scientific English

実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] Thu 4th or 5th [Location] A2-304 [Credits] 1

[Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] Japanese and English

【Instructor】Y. Nakayama and T. Mizuno

[Course Description] Students learn about the basics of technical writing in English, and learn about and practice the format, style, and mechanics of the scientific research article. We may restrict the class size to enhance learning. The course is shared by Master 's and Doctoral Course students.

[Grading] Students are required to submit an initial report and a mid-term report. Students failing to submit the mid-term report will be given no credit.

[Course Goals] Students develop basic communication skills needed to work for international organizations through practicing scientific English writing.

[Course Topics]

Theme	Class number of times	Description
Course Outline and		Students examine the aim and requirements of the course, and look at the key
Introduction to	1	points for writing correctly, clearly, and concisely. (The class schedule may
Technical Writing		change without notice.)
Design of Tanhaical		Students learn about the definition and basic rules for technical writing, and
Basics of Technical	3	look at common mistakes made by non-native writers of English. Students also
Writing		learn about basic English grammar.
Japanese-to-English	3	Students learn about English grammar and practice revising their English
Translation Practice	3	writing.
Paragraphs	2	Students learn about paragraphs: the topic sentence and supporting sentences,
		and techniques for sequencing information in a paragraph.
Format of Research	3	Students learn about the standard format of a research article: the title, abstract,
Articles	3	method, results, discussion, and conclusion.
T. (. D (.	1	Students practice listening comprehension using videos presenting scientific
Listening Practice		and technical information.
Online Learning	2	Writing Paragraphs

[Textbook] No text - all materials are supplied by the teachers.

【Textbook(supplemental)】 Yukiko Nakayama, Gijutsu kei Eibun Raithingu Kyohon (Technical Writing Textbook), Japan Society for Technical Communication

Anne M. Coghill and Lorrin R. Garson, The ACS style guide, 3rd, The American Chemical Society.

[Prerequisite(s)] Students need to have basic English skills at undergraduate level.

【Independent Study Outside of Class】

Web Sites http://www.glc.t.kyoto-u.ac.jp/ja/study/grad/10d040

[Additional Information] We may restrict the class size to enhance students 'learning. Students who intend to join the course are required to attend the first-day guidance.

10i009

Internship

産学連携研究型インターンシップ

[Code] 10i009 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] Seminar and Exercise [Language] [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Experiments & Exercises in Energy and Hydrocarbon Chemistry, Adv.

物質エネルギー化学特別実験及演習

[Code] 10D234 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 8 [Restriction] No Restriction [Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme Class number of times Description	Theme	Class number of	Description
---	-------	-----------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S204

Energy and Hydrocarbon Chemistry Special Seminar 1

物質エネルギー化学特別セミナー1

[Code] 10S204 [Course Year] Doctor 1st [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S205

Energy and Hydrocarbon Chemistry Special Seminar 2

物質エネルギー化学特別セミナー2

[Code] 10S205 [Course Year] Doctor 2nd [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S206

Energy and Hydrocarbon Chemistry Special Seminar 3

物質エネルギー化学特別セミナー3

[Code] 10S206 [Course Year] Doctor 2nd [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	unies	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Statistical Thermodynamics

統計熱力学

[Code] 10H401 [Course Year] Master Course [Term] [Class day & Period] [Location] A2-304

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Hirofumu Sato, Atsushi Ikeda

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	3	
	1	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Chemistry

量子化学

[Code] 10H405 [Course Year] Master Course [Term] [Class day & Period] Tue 2nd [Location] A2-304

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Tohru Sato

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Chemistry

量子化学

[Code] 10H406 [Course Year] Master Course [Term] [Class day & Period] Mon 1st [Location] A2-304

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】Hirofumi Sato

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	3	
	2	
	2	
	1	
	2	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Spectroscopy

分子分光学

[Code] 10H408 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 2nd

[Location] A2-304 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] Japanese [Instructor] Seki, Shirakawa, Sugase, Kaji, Fukushima, related faculty

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	4	
	4	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H448

Biomolecular Function Chemistry

生体分子機能化学

[Code] 10H448 [Course Year] Master and Doctor Course [Term] (not held; biennially)

[Class day & Period] Mon 2nd [Location] A2-304 [Credits] 1.5 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Shirakawa, Sugase

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	3	
	2	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Materials

分子機能材料

[Code] 10H413 [Course Year] Master and Doctor Course [Term] (not held; biennially)

[Class day & Period] Wed 2nd [Location] A2-304 [Credits] 1.5 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] A. Ito

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	4	
	3	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Catalysis Science at Molecular Level

分子触媒学

[Code] 10H416 [Course Year] Master and Doctor Course [Term] [Class day & Period] Fri 2nd

[Location] A2-304 [Credits] 1.5 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Tsunehiro Tanaka, Kentaro Teramura

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	1	
	1	
	1	
	1	
	3	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Catalysis Science at Molecular Level 2

分子触媒学続論

[Code] 10P416 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location] A2-304 [Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Hosokawa

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Photochemistry

分子光化学

[Code] 10H417 [Course Year] Master and Doctor Course [Term] (not held; biennially)

[Class day & Period] Mon 2nd [Location] A2-304 [Credits] 1.5 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hiroshi Imahori, Tomokazu Umeyama

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Photochemistry 2

分子光化学続論

[Code] 10P417 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location] A2-304 [Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Tatsuya Murakami

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Reaction Dynamics

分子反応動力学

[Code] 10H419 [Course Year] Master and Doctor Course [Term] (not held; biennially)

[Class day & Period] Fri 2nd [Location] A2-304 [Credits] 1.5 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Seki, related faculty

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	3	
	2	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Materials Science

分子材料科学

[Code] 10H422 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 2nd

[Location] ICR N-338C [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Kaji, Goto

【Course Description】

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Inorganic Materials Science

分子無機材料

[Code] 10H425 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 1st

[Location] ICR N-338C [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Tokuda

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	2	
	1	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Rheology

分子レオロジー

[Code] 10H428 [Course Year] Master and Doctor Course [Term] spring semester

[Class day & Period] Wed 3rd [Location] ICR N-338C [Credits] 1.5 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] mostly Japanese (occasionally English)

[Instructor] H. Watanabe, Y. Matsumiya

[Course Description] Lecture is given for the rheology and dynamics of polymeric liquids and their molecular basis.

【Grading】 Mainly with report

[Course Goals] Understanding phenomenological aspect of rheology in general and molecular aspect of polymer rheology.

[Course Topics]

Theme	Class number of times	Description
D:	1	Rheology and its role in science and engineering, flow / deformation/ stress,
Basics of Rheology		viscosity, modulus
Rheological behavior	1	Rheological behavior of matter and classification, viscoelasticity,
of matter	1	non-Newtonian flow, plastic flow
Viscoelastic	2	Boltzmann's principle, relaxation functions, relaxation time, conversion among
relaxations		response functions, complex modulus
Viscoelasticity and	1	Glass transition, time-temperature superposition, WLF equation
temperature	1	Glass transition, time-temperature superposition, wer equation
Stress expression of	2	Stress expression, tension / free-energy / distribution-function of subchains
polymers		Suess expression, tension / free-energy / distribution-function of subchains
Rouse/Zimm model	1	Model description, model equation, derivation of stress and relaxation
Kouse/Zillilli lilodel		modulus, discussion on the relaxation behavior
		Model description, model equation, derivation of stress and relaxation
tube model	2	modulus, discussion on the relaxation behavior, comparison to Rouse
		dynamics
feedback of		
evaluation and	1	Feedback of evaluation of report etc, and confirmation of level of
confirmation of level	1	understanding
of understanding		

【Textbook】Original text will be distributed in the class

【Textbook(supplemental)】Y Matsushita ed, Structure and Property of Polymers (Kodansha)

M Doi & S F Edwards The Theory of Polymer Dynamics (Oxford press)

W Graessley Polymeric Liquids & Networks: Dynamics and Rheology (Garland Science)

[Prerequisite(s)] Some basics on differential equations and statistical physics of polymers

【Independent Study Outside of Class】

[Web Sites] http://rheology.minority.jp

[Additional Information] The M2 students needing "2" credit are offered to submit an additional report.

10H430

Molecular Porous Physical Chemistry

分子細孔物理化学

[Code] 10H430 [Course Year] Master Course [Term] [Class day & Period] Tue 2nd [Location] A2-304

[Credits] [Restriction] [Lecture Form(s)] Lecture [Language] English [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	r

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Laboratory and Exercises in Molecular Engineering I

分子工学特別実験及演習

[Code] 10D432 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor] related faculty

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Laboratory and Exercises in Molecular Engineering I I

分子工学特別実験及演習

[Code] 10D433 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor] related faculty

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description		Theme	times	Description
---	--	-------	-------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Engineering, Adv. IA

分子工学特論第一 A

[Code] 10D439 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	2 0001.pul

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Engineering, Adv. IB

分子工学特論第一 B

[Code] 10D445 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	r ·

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Engineering, Adv. IIA

分子工学特論第二 A

[Code] 10D440 [Course Year] Master Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	2 0001.pul

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Engineering, Adv. IIB

分子工学特論第二 B

[Code] 10D447 [Course Year] Master Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Engineering, Adv.

分子工学特論第三

[Code] 10H436 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	5.5	
	5.5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Engineering, Adv.

分子工学特論第四

[Code] 10D437 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Engineering, Adv. V

分子工学特論第五

[Code] 10D438 [Course Year] Master and Doctor Course [Term] [Class day & Period] Fri 1st [Location] A2-304 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Ravi Subramanian

[Course Description] This course is designed to provide a comprehensive and general overview of all aspects related to solar energy utilization. The course begins with a basic discussion on the science of solar energy and a historical perspective of this topic. This is followed by a discussion on subjects related to materials development, technological advancement, and future potential.

[Grading] One final exam will be conducted at the end of the course. It will be for 100 points.

¹ All lecture content would be supported with PowerPoint presentations. ² Prof. Imahori Lab demonstration. ³ Open notes allowed for Part B. only.

[Course Goals] The goals of the course are to i) demonstrate to the students that solar energy is an evolving and interdisciplinary topic, ii) emphasize that a collaborative understanding of the concepts related to the traditional topics of physics, chemistry, and biology are required, and iii) indicate that several approaches are required to be considered to harvest the full potential of the sun.

[Course Topics]

Theme	Class number of times	Description
Fundamentals ¹	1	Fundamental of solar energy processes. Properties of light, atomic structure and light-matter interaction at the atomic level, fundamental problems related to light
History	2	Historical aspects and earlier attempts to solar energy utilization. Here we will discuss pre-historic and preliminary approaches to solar energy conversion, the timelines, evolution of the concepts, and current trends
Materials	3	Photocatalyst: Types and synthesis approach. The common types of photoactive materials, the various generic approaches to the synthesis of these materials including composites
Materials characteristics	4	Photocatalyst: Characterization. The methods used to characterize the optical, surface, electronic, and photocatalytic properties of the photoactive materials
Concepts (PV)	5	Solar-to-electric conversion. Mechanism of solar-to-electric conversion, materials properties, types of solar cells, concept of efficiency measurements
Concepts (Eco)	6	Environmental remediation. Photocatalytic process applied to various types of liquid and gas phase pollutant conversion to less toxic and benign products
Concept (Fuel)	7	Solar-assisted water splitting. Special case of clean fuel production from water using solar – based technologies, some representative configurations for designing photocatalyst for improving the splitting processes
Concept (Eco)	8	CO2 conversion. CO2 activation processes, interaction between CO2 and H-source to produce hydrocarbon, challenge and importance of catalyst design
Biological system	9	Solar-driven biochemical processes. Biological processes that use solar energy for value added product formation limited to algae and bacteria – based processes for biofuel production
High temperature solar system	10	Solar thermal processes. The principle of operation and focus on the concentrated solar power approach with a little discussion on value-added product formation using emerging technologies at the interface of CSPs
Applications	11	Laboratory demonstration of assembly of a solar cell and testing of the device. An integrated video demonstration of the assembly of a state-of-the-art solar cell using current research grade materials and measuring efficiency ²
Applications	12	Examples of commercial systems operating on solar energy utilization. Identifying various solar energy utilizing facilities throughout the world, its main objective, and impact on the local communities
Future	13	Advantages and challenges to solar energy utilization. Comparison of solar energy with other technology areas and determining its similarity and differences (limitations) with those of other green technologies
Reminiscence	14	Question answer session. On this day the students can participate in a discussion on any concept related to the topics discussed in the last 12 weeks.
Exam	15	Final Exam. On this day the students will be tested on the content presented over the last 12 weeks. The exam will be in 2 part (A+B) & open notes. ³ Structure: a) objectives (Fill in blanks, True/False, Matching, 1 line and 3 -4 lines questions)
Outcomes	16	Results and Feedback. The exam results will be provided to each student within 3 days. They will have an opportunity to meet with me to discuss any modifications/concerns. Final results will then be posted. Feedback accepted.

【Textbook】 Class notes and power point presentation

【Textbook(supplemental)】None

[Prerequisite(s)] 1st year chemistry, physics, biology, and mathematics

【Independent Study Outside of Class】

[Web Sites] None

 $\begin{tabular}{l} \textbf{Additional Information 2 Meeting time can be scheduled on an as required basis. Please email ravisv@unr.edu} \\$

Vaidyanathan (Ravi) Subramanian Associate Professor Director, SOLAR Lab Chemical and Materials Engineering Department University of Nevada, Reno LME 309, MS 388 89557-NV, USA Ph (775) 784 4686, Fax (775) 327 5059 http://wolfweb.unr.edu/homepage/ravisv/

Copyright: Elsevier Publications, All rights Reserved [Take notes only please] Currently this course is unavilable.

10P439

Molecular Engineering, Adv.

分子工学特論第六

[Code] 10P439 [Course Year] Master Course [Term] [Class day & Period] [Location] [Credits] 0.5

[Restriction] [Lecture Form(s)] [Language] [Instructor] Tsunehiro Tanaka, related faculty

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	2 0001.pul

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Engineering, Adv.

分子工学特論第七

[Code] 10P440 [Course Year] Master Course [Term] [Class day & Period] [Location] [Credits] 0.5

[Restriction] [Lecture Form(s)] Relay Lecture [Language] Japanese

[Instructor] Higashino, Sakurai, related faculty

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P448

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P448 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

【Course Description】 This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description

【Textbook】 A copy of related contents is offered.

【Textbook(supplemental)】Announced in the lecture.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Professors of the faculty of engineering who are doing similar research support a student's study. In some cases, this course consists of a series of lectures by two or more researchers.

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P450 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

【Course Description】 This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description

【Textbook】 A copy of related contents is offered.

【Textbook(supplemental)】 Announced in the lecture.

[Prerequisite(s)]

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Professors of the faculty of engineering who are doing similar research support a student's study. In some cases, this course consists of a series of lectures by two or more researchers.

10P452

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P452 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

【Course Description】 This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description

【Textbook】 A copy of related contents is offered.

【Textbook(supplemental)】Announced in the lecture.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Professors of the faculty of engineering who are doing similar research support a student's study. In some cases, this course consists of a series of lectures by two or more researchers.

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P454 [Course Year] Master and Doctor Course [Term] 2016/ 1st+2nd term [Class day & Period]

[Location] [Credits] [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of	Description
	times	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P456

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P456 [Course Year] Master and Doctor Course [Term] 2016/1st+2nd term [Class day & Period]

[Location] [Credits] [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P457 [Course Year] Master and Doctor Course [Term] 2016/1st+2nd term [Class day & Period]

[Location] [Credits] [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor]

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

(T)	Class number of	Degarintion
1 neme	Class hamber of	Description
	times	T

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called "high technologies", and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site for more information. You can find an attachment file, "通知版: 2016 先端マテリアル講義概要", where the term Credit will tell you the requirement.

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
Hyperthermophiles and their thermostable biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Theoretical Design for Organic Light-Emitting Diode Materials	1	Organic light-emitting diodes have multilayer structures consisting of carrier-transporting layers and a light emitting layer. The concepts employed in desining these materials and their examples are discussed.(T. Sato: Dept. of Molecular Engineering)
In Vivo Optical and Photoacoustic Tumor Imaging using Near-infrared Dye-cinjugated Amphiphilic Polymers	1	Optical and photoacoustic imaging methods are one of the most powerful and noninvasive techniques with which to visualize organs as well as tumor tissues. In this lecture, students can learn the basic principles of molecular imaging as well as recent progress in this field. (K. Ohe: Dept. of Energy and Hydrocarbon Chemistry)
Charge Carrier Transport in Conjugated Molecular Materials	1	How can we facilitate effective charge carrier transport pathway in organic conjugated molecular materials? The major topic of the present lecture is the mechanism of charge carrier transport in conjugated molecular materials. After an overview of electronic structure of conjugated molecular materials based on band models, a variety of measurement techniques is introduced to probe charge carrier mobility in the materials, to figure out characteristic behavior of conjugated molecules (and their aggregates) as electric conductive materials.(S. Seki: Dept. of Molecular Engineering)
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Materials Processing using external fields for microstructure control	1	Properties of materials are not simply determined by atomic structure and chemical composition. Microstructure (crystal grain size, crystallographic orientation and so on) significantly influences the properties. Not a few techniques have been developed for controlling the microstructure. Materials processing using external fields will be demonstrated in this class.(H. Yasuda: Dept. of Materials Science and Engineering)
Force acting on colloidal particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed.(R. Yamamoto: Dept. of Chemical Engineering)
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced.(T. Asano: Dept. of Electronic Science and Engineering)
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials.(Y. Nakao: Dept. of Material Chemistry)
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Introduction to Nuclear Materials	1	Nuclear materials are designed for using in irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked.(I. Takagi: Dept. of Nuclear Engineering)
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed.(T. Koga: Dept. of Polymer Chemistry)
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides.(K. Tanaka: Dept. of Material Chemistry)
Solar Hydrogen Production using Semiconductor Photocatalyst	1	The development of a clean and renewable energy carrier that does not utilize fossil fuels is a great technological challenge. Photocatalytic water splitting using semiconductor materials has attracted considerable interest due to its potential to cleanly produce H2 from water by utilizing abundant solar light. In the present lecture, the basis and the recent progress in photocatalytic water splitting will be introduced.(R. Abe: Dept. of Energy and Hydrocarbon Chemistry)
Electrodeposition and Electroless Deposition for Materials Processing	1	(1)Fundamentals chemistry, electrochemistry, and thermodynamics , and (2)applications of electrodeposition and electroless deposition for materials processing.(K. Murase: Dept. of Materials Science and Engineering)

【Textbook 】None

 $\begin{tabular}{ll} Textbook(supplemental) \begin{tabular}{ll} Textbook(supplemental) \end{tabular}$

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10 H 012) should attend first 11 lectures.

10K005

Advanced Modern Science and Technology (English lecture)

現代科学技術特論(英語科目)

【Code】10K005	[Course Year]	Master and Doctor Course	【Term】	【Class day & Period】Thu 5th	【Location】A2-306	【Credits 】2(Semester system)	【Restriction】No Restriction
[Lecture Form(s)]	Relay Lecture	[Language] English					

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto Related professors

Course Description 1 Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Who shake the dice?	1	Double slit phenomenon known as a prediction inability " quantum mechanics of the mystery (Feynman says) " can be every moment predicted by QED.(A. Tachibana: Dept. of Micro Engineering)
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)
Systems Control in Aeronautics and Astronautics	1	Systems control theory is used in several problems in aeronautics and astronautics. This lecture focuses on some of them and further gives an overview of this research based on them.(K. Fujimoto: Dept. of Aeronautics and Astronautics)
Countermeasures of the Contaminated Water at Fukushima Daiichi Nuclear Power Station and that of the Contaminated Soil in Fukushima Area	1	The situation of contaminated water in Fukushima Daiichi Nuclear Power Station and soil contamination in and around Fukushima area and their technological countermeasures taken today will be introduced and discussed.(M. Yoneda: Dept. of Environmental Engineering)
Polymer Synthesis beyond the 21st Century: Precision Polymerizations and Novel Polymeric Materials	1	We are now in the "Polymer Age", where synthetic polymer materials are indispensable in the modern human life: healthy, safe, comfortable, and sustainable. A critical challenge herein is to develop "precision polymerization", polymer-forming reactions that provide polymers of well-defined structures and designed functions. Given these backgrounds, this lecture will overview the following subjects: (a)What polymers are; (b)How to synthesize polymers; (c)How and where polymeric materials work and function; (d)Precision polymer synthesis; and (e)The future of polymeric materials.(M. Sawamoto: Dept. of Polymer Chemistry)
Engineering Approach to Phase Behavior of Fluids Confined in Nanospace	1	Fluids confined in nano-scale pores exhibit peculiar phase behaviors that depends strongly on physico-chemical effects by pore walls and conditions of the bulk phase in equilibrium with the pore fluids, to which the engineering approach must be effective.(M. Miyahara: Dept. of Chemical Engineering)
Elucidation of Principles for the Self-organization of Mesoscale Colloidal Particles	1	The process of so-called the colloid crystal has been pursued to find out the key principles for the structure evolution, employing the Brownian dynamics simulations. Also given in the lecture will be various pattern formations in the convective self-assembly of colloidal suspensions.(M. Miyahara: Dept. of Chemical Engineering)
Architectural Design and Architectural Thinking	1	Architectural design is integration of thinking on architectural events and materials. I would like to discuss this architectural thinking and the method to embody it.(K. Takeyama: Dept. of Architecture and Architectural Engineering)
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Vacuum Nanoelectronics Devices in Harsh Environments	1	This lecture reviews the perspective of the modern vacuum electron devices based on miniaturized electron sources fabricated with contemporary semiconductor processes. The performance of the devices is evaluated in view of the device in harsh environments. (Y. Gotoh: Dept. of Electronic Science and Engineering)
Advanced Digital Technology for Analytical Recording of Cultural Heritage Assets	1	(A. Ide: Dept. of Mechanical Engineering and Science)
Protein Structure, Function, and Motion	1	Proteins work by fluctuating and changing their conformations. Protein structures and motions, which are essential for understanding their functions in detail, are introduced in conjunction with the state-of-art methods to analyze them.(K. Sugase: Dept. of Molecular Engineering)
Laser-induced Breakdown Spectroscopy and Its Application to Underwater In-situ Elemental Analysis	1	Development of laser-induced breakdown spectroscopy (LIBS) for in-situ elemental analysis in water, and the application to resource exploration at sea bottom will be explained.(T. Sakka: Dept. of Energy and Hydrocarbon Chemistry)
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)
Modern Techniques for Material Characterization	1	Overview of modern techniques for material characterization is given with basic principles and practical applications. Impacts on the life of the people of characterization techniques are also included.(J. Matsuo: Dept. of Nuclear Engineering)

【Textbook】 None

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

 $\label{thm:conditional} \mbox{ Additional Information \ref{D} Students who take Autumn term should register "Lecture code 10H006"}.$

Exercise in Practical Scientific English

実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] Thu 4th or 5th [Location] A2-304 [Credits] 1

[Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] Japanese and English

【Instructor】Y. Nakayama and T. Mizuno

[Course Description] Students learn about the basics of technical writing in English, and learn about and practice the format, style, and mechanics of the scientific research article. We may restrict the class size to enhance learning. The course is shared by Master 's and Doctoral Course students.

[Grading] Students are required to submit an initial report and a mid-term report. Students failing to submit the mid-term report will be given no credit.

[Course Goals] Students develop basic communication skills needed to work for international organizations through practicing scientific English writing.

[Course Topics]

Theme	Class number of times	Description
Course Outline and		Students examine the aim and requirements of the course, and look at the key
Introduction to	1	points for writing correctly, clearly, and concisely. (The class schedule may
Technical Writing		change without notice.)
Darias of Tarksiani		Students learn about the definition and basic rules for technical writing, and
Basics of Technical	3	look at common mistakes made by non-native writers of English. Students also
Writing		learn about basic English grammar.
Japanese-to-English	2	Students learn about English grammar and practice revising their English
Translation Practice	3	writing.
Danaganaha	2	Students learn about paragraphs: the topic sentence and supporting sentences,
Paragraphs	2	and techniques for sequencing information in a paragraph.
Format of Research	3	Students learn about the standard format of a research article: the title, abstract,
Articles	3	method, results, discussion, and conclusion.
T	1	Students practice listening comprehension using videos presenting scientific
Listening Practice		and technical information.
Online Learning	2	Writing Paragraphs

【Textbook 】 No text — all materials are supplied by the teachers.

【Textbook(supplemental)】 Yukiko Nakayama, Gijutsu kei Eibun Raithingu Kyohon (Technical Writing Textbook), Japan Society for Technical Communication

Anne M. Coghill and Lorrin R. Garson, The ACS style guide, 3rd, The American Chemical Society.

[Prerequisite(s)] Students need to have basic English skills at undergraduate level.

【Independent Study Outside of Class】

Web Sites http://www.glc.t.kyoto-u.ac.jp/ja/study/grad/10d040

[Additional Information] We may restrict the class size to enhance students 'learning. Students who intend to join the course are required to attend the first-day guidance.

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 5th

[Location] Funai Hall [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme Class number of times	Description
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10i009

Internship

産学連携研究型インターンシップ

[Code] 10i009 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] Seminar and Exercise [Language] [Instructor],

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Molecular Engineering

分子工学特論

[Code] 10S401 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S404

Advanced Seminar on Molecular Engineering 1

分子工学特別セミナー1

[Code] 10S404 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar on Molecular Engineering 2

分子工学特別セミナー2

[Code] 10S405 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Synthesis

高分子合成

[Code] 10H649 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] A2-306 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Physical Properties

高分子物性

[Code] 10D652 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location] A2-307

[Credits] 3 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Hirokazu Hasegawa, Takenao Yoshizaki, Tsuyoshi Koga, Mikihito Takenaka, Hiroyuki Aoki,

[Course Description] A concise explanation is given of physical properties of polymer solutions and polymeric solids along with relevant basic theories.

[Grading] Final grades will be evaluated in a comprehensive manner on the basis of attendance, reports, and examinations.

【Course Goals】Fundamental knowledge of physical properties of polymer materials.

[Course Topics]

Theme	Class number of times	Description
		After a clarification of basic factors which determine the conformations of real
Polymer Chain		polymer chains in dilute solutions, some polymer chain models are introduced
Conformation in	5	to describe the equilibrium conformational behavior of the real chains. Further,
Dilute Solutions		behavior of average chain dimensions as a functions of molecular weight is
		considered based on the chain models.
		Various phase transition phenomena in polymer solutions (phase separation,
Thermodynamics		hydration, association, gelation, etc.) are systematically explained from
and Phase Behavior	5	thermodynamic and statistical-mechanical viewpoints. "Phase separation of
of Polymer Solutions		polymer solutions", "Aqueous polymer solutions", and "Association and
		gelation of polymers" are discussed in the lectures.
Exercise	1	Exercise in polymer solutions.
Structure and		Polymeric solids such as rubber and plastics, especially thermodynamics of
Mechanical		rubber elasticity, polymer crystallization and crystalline/amorphous
Properties of	10	higher-order structures, are discussed. Moreover, fundamentals of viscoelastic
Polymeric Solids		properties of polymers are introduced to provide the understandings of
		relaxation phenomena such as glass transition.
Electronic and		The electronic and optical properties of polymers is reviewed. The application
Optical Properties of	3	of polymer materials in the opto-electronics and display devices is also
Polymeric Solids		presented.
Exercise	1	Exercise in polymeric solids.

【Textbook】 Lecture notes distributed in the class.

【Textbook(supplemental)】

[Prerequisite(s)] Fundamental knowledge of physical chemistry.

[Independent Study Outside of Class]

[Web Sites]

10S604

Advanced Seminar on Polymer Chemistry 1

高分子化学特別セミナー1

[Code] 10S604 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar on Polymer Chemistry 2

高分子化学特別セミナー2

[Code] 10S605 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Functional Chemistry

高分子機能化学

[Code] 10H645 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd [Location] A2-307 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	2	
	2	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Design of Polymerization Reactions

高分子生成論

[Code] 10H607 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 3rd

[Location] A2-302 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Mitsuo Sawamoto and Makoto Ouchi,

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H610

Reactive Polymers

反応性高分子

[Code] 10H610 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] A2-307 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Structure and Function

高分子機能学

[Code] 10H613 [Course Year] Master Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] A2-307 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] H. Ohkita

【Course Description】 In this class, optoelectronic functions of polymeric materials are discussed on the basis of photochemistry and photophysics. In particular, the importance of designing nanostructures of polymer assembly is highlighted by explaining examples of state-of-the-art applications, which include optical fibers, organic light-emitting diode, and organic solar cells.

[Grading] Evaluated with the grade on the final test or the quality of report submitted after the final class.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Conductive Polymers	3	
Photofunctional	2	
Polymers	3	
Optoelectronic	4	
Polymers	4	

【Textbook】 None: Some handouts will be dealt in the class of every lecture.

【Textbook(supplemental)】None:

[Prerequisite(s)] Students are expected to have knowledge of Physical Chemistry and Polymer Chemistry provided in chemisty course for undergraduate.

【Independent Study Outside of Class】

[Web Sites]

Polymer Supermolecular Structure

高分子集合体構造

[Code] 10H616 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Hirokazu Hasegawa, Mikihito Takenaka,

【Course Description】 Polymers self-assemble or self-organize by intra- and/or intermolecular interaction to form assembled structures of polymer molecules. Such structures are closely related to the properties of the polymeric materials, it is necessary to control the assembled structures of the constituent polymer molecules in order to control the properties of polymeric materials, especially solid materials. In this lecture particularly, formation mechanisms, analytical techniques, and elucidated structures of crystalline polymers, phase-separated structures of polymer mixtures, microphase-separated structures of block and graft copolymers will be discussed.

【Grading 】 The grading is based on the short tests and report assignments.

Course Goals This course aims for the development of the faculty to infer the properties of polymeric materials from their morphology based on the knowledge of structure-property relationships of higher-order structures of crystalline polymers, phase-separated structures of polymer mixtures (blends), microdomain stuctures of block copolymers, etc.

[Course Topics]

Theme	Class number of times	Description
Self-assembly and	1	The differences between self-assembly and self-organization will be discussed
Self-organization	1	by referring the examples in natural phenomena and polymeric systems.
		In the lectures, unit cell structures and hierarchical higher-order structures of
Crystalline Polymers	3	polymer crystals such as folded-chain lamellar crystals and spherulites, as well
		as deformation and thermal behavior of polymer crystals will be discussed.
		Miscibility, phase-diagrams, mechanisms and dynamics of phase transitions,
Polymer Blends	3	relationships between phase-separated structures and properties, methods to
		control the phase-separated structures will be discussed.
		The lectures include nano-scale domain formation of block copolymers by
		microphase-separation, miscibility and phase diagrams, order-disorder and
Block and Graft	3	order-order transitions, bicontinuous structures, structure formation in thin
Copolymers		films, blends with homopolymers or other block copolymers, multi-component
		multi-block copolymers, miktoarm star block copolymers, and more.
Evaluation of Degree		Degree of understandings of the lectures will be evaluated by means of a short
of Understandings	1	test and group discussions.

[Textbook] Not used.

【Textbook(supplemental)】 Introduced in the lectures.

[Prerequisite(s)] Thermodynamics preferable.

【Independent Study Outside of Class】

[Web Sites]

Biomacromolecular Science

生体機能高分子

[Code] 10H611 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] A1-001 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

【Course Description】

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	5	
	3	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Solution Science

高分子溶液学

[Code] 10H643 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd [Location] A2-307 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Takenao Yoshizaki, Yo Nakamura,

[Course Description] Effects of stiffness and local conformations of polymer chains on polymer solution properties observed in the light scattering and viscosity experiments are considered based on appropriate polymer chain models.

【Grading】Term-end examination.

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Daview	1	Definitions of physical quantities determined from the light scattering and
Review	1	viscosity measurements and the theoretical formulations of those quantities.
Experiments in dilute	2	Dringin leg of the light scottening and viscosity symptometry
polymer solutions	2	Principles of the light scattering and viscosity experiments.
Polymer chain		Static models for polymer chains: the Gaussian chain, the wormlike chain, and
models and their	2	the helical wormlike chain. A comparison of experimental data for the
statistics		mean-square radius of gyration with relevant theories.
Excluded-volume	2	Intra- and intermolecular excluded-volume effects represented by the
effects	Δ	expansion factors and the second virial coefficient, respectively.
Steady-state	2	A comparison of experimental data for the intrinsic viscosity and diffusion
transport properties	Δ	coefficient with relevant theories.
		Dynamic models for polymer chains: the Rouse-Zimm spring-bead model and
Dynamic properties	2	the dynamic helical wormlike chain. A comparison of experimental data for
		the first cumulant of the dynamic structure factor with relevant theories.

【Textbook】 Lecture note distributed in the class.

【Textbook(supplemental)】

【Prerequisite(s)】 Basic knowledge of polymer solutions given in the lecture "Polymer Physical Properties (10 D651)."

【Independent Study Outside of Class】

[Web Sites]

Physical Chemistry of Polymers

高分子基礎物理化学

[Code] 10H622 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd [Location] A2-307 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] lecture [Language] Japanese [Instructor] Tsuyoshi Koga

【Course Description】 Molecular mechanism of characteristic physical properties of polymeric systems is lectured on the basis of the equilibrium and non-equilibrium statistical mechanics. Main topics are phase separation of polymer solutions and mixtures, microphase separation of block copolymers, gelation, rubber elasticity, and rheology of physical gels.

[Grading]

[Course Goals] Understanding the molecular mechanism of characteristic physical properties of polymeric systems based on the equilibrium and non-equilibrium statistical mechanics.

[Course Topics]

Theme	Class number of times	Description
phase separation of polymer solutions and mixtures	2	phase diagram, Flory-Huggins theory, mean-field theory, phase separation, spinodal decomposition
microphase separation of block copolymers	1	microphase separation, density functional theory, directed self-assembly
gelation	1	definition of gels, classification of gels, classical theory of gels, sol-gel transition, elastically effective chains
rubber elasticity	3	affine network theory, phantom network theory, tetra-PEG gel, slide-ring gel
rheology of associating polymers	3	telechelic associating polymers, linear viscoelasticity, Maxwell model, shear thickening, transient network theory, colloid/polymer mixture, shear-induced gel
verification of understanding	1	

[Textbook]

【Textbook(supplemental)】 P.J. Flory, "Principles of Polymer Chemistry" (Cornell Univ. Press, New York, 1955) M. Rubinstein, R.H. Colby, "Polymer Physics" (Oxford Univ. Press, New York, 2003)

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Spectroscopy

高分子分光学

[Code] 10H625 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] ICR Seminar Room [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] K. Nishida

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
Outline of Polymer	2	
Spectroscopy	2	
Basic Mathematics	2	
for Spectroscopy	2	
Neutron	2	
Spectroscopy	2	
Infrared, Raman,		
Brillouin	3	
Spectroscopy		
Photon Correlation	2	
Spectroscopy		

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Design of Polymer Materials

高分子材料設計

[Code] 10H628 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd

[Location](Uji campus) ICR Seminar Room [Credits] [Restriction]No Restriction [Lecture Form(s)]Lecture

[Language] Japanese [Instructor] Yoshinobu TSUJII, Kohji OHNO

[Course Description] This course aims at better understanding of fundamentals on living radical polymerization and describes its application to graft polymerization for novel surface modification as well as its related matters.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
Introduction to			
radical	1	radical polymerization, mechanism, kinetics, elementary reaction	
polymerization			
Fundamentals on			
living radical		lining and in landamentation and having this first for the stime of a stimulation of	
polymerization and	2	living radical polymerization, mechanism, kinetics, functional polymer,	
its application to		material design	
material design			
Physical chemistry			
on surfaces and	2	Surface, interface, physical chemistry, polymer brush, theory, structure, property	
polymer brushes			
Living radical		Living radical polymorization surface initiated polymorization polymor	
polymerization and	2	Living radical polymerization, surface-initiated polymerization, polymer	
polymer particles		brush, hairy particle, star polymer	
Synthesis of polymer		Emulsion polymerization, suspension polymerization, dispersion	
particles by radical	2	polymerization, precipitation polymerization, self-organized precipitation,	
polymerizations		nonspherical particle	
Applications of	2	Self-assembly, dispersion and aggregation, depletion force, pickering	
polymer particles	2	emulsion, composites, biochemical and biomedical applications	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Controlled Synthesis

高分子制御合成

[Code] 10H647 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 4th

[Location] [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	2	
	1	
	1	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Design for Biomedical and Pharmaceutical Applications

医薬用高分子設計学

[Code] 10H636 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] A2-307 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	2	
	1	
	1	
	1	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Biomaterials Science and Engineering

高分子医工学

[Code] 10H633 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] A2-307 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	2	
	2	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar on Polymer Industry

高分子産業特論

[Code] 10H638 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 3rd and 4th[Location] A2-306 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	2	
	2	
	2	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D640

Polymer Chemistry Laboratory & Exercise

高分子化学特別実験及演習

[Code] 10D640 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 8 [Restriction] [Lecture Form(s)] Experiment and Exercise [Language] Japanese

[Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme Class number of times Description	Theme	Class number of	Description
---	-------	-----------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10K001

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論 (英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called "high technologies", and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site for more information. You can find an attachment file, "通知版: 2016 先端マテリアル講義概要", where the term Credit will tell you the requirement.

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
Hyperthermophiles and their	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules,
thermostable biomolecules		such as proteins, nucleic acids and lipids.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Theoretical Design for Organic Light-Emitting Diode Materials	1	Organic light-emitting diodes have multilayer structures consisting of carrier-transporting layers and a light emitting layer. The concepts employed in desining these materials and their examples are discussed.(T. Sato: Dept. of Molecular Engineering)
In Vivo Optical and Photoacoustic Tumor Imaging using Near-infrared Dye-cinjugated Amphiphilic Polymers	1	Optical and photoacoustic imaging methods are one of the most powerful and noninvasive techniques with which to visualize organs as well as tumor tissues. In this lecture, students can learn the basic principles of molecular imaging as well as recent progress in this field. (K. Ohe: Dept. of Energy and Hydrocarbon Chemistry)
Charge Carrier Transport in Conjugated Molecular Materials	1	How can we facilitate effective charge carrier transport pathway in organic conjugated molecular materials? The major topic of the present lecture is the mechanism of charge carrier transport in conjugated molecular materials. After an overview of electronic structure of conjugated molecular materials based on band models, a variety of measurement techniques is introduced to probe charge carrier mobility in the materials, to figure out characteristic behavior of conjugated molecules (and their aggregates) as electric conductive materials.(S. Seki: Dept. of Molecular Engineering)
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Materials Processing using external fields for microstructure control	1	Properties of materials are not simply determined by atomic structure and chemical composition. Microstructure (crystal grain size, crystallographic orientation and so on) significantly influences the properties. Not a few techniques have been developed for controlling the microstructure. Materials processing using external fields will be demonstrated in this class.(H. Yasuda: Dept. of Materials Science and Engineering)
Force acting on colloidal particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed.(R. Yamamoto: Dept. of Chemical Engineering)
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced.(T. Asano: Dept. of Electronic Science and Engineering)
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials.(Y. Nakao: Dept. of Material Chemistry)
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Introduction to Nuclear Materials	1	Nuclear materials are designed for using in irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked.(I. Takagi: Dept. of Nuclear Engineering)
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides.(K. Tanaka: Dept. of Material Chemistry)
Solar Hydrogen Production using Semiconductor Photocatalyst	1	The development of a clean and renewable energy carrier that does not utilize fossil fuels is a great technological challenge. Photocatalytic water splitting using semiconductor materials has attracted considerable interest due to its potential to cleanly produce H2 from water by utilizing abundant solar light. In the present lecture, the basis and the recent progress in photocatalytic water splitting will be introduced.(R. Abe: Dept. of Energy and Hydrocarbon Chemistry)
Electrodeposition and Electroless Deposition for Materials Processing	1	(1)Fundamentals chemistry, electrochemistry, and thermodynamics , and (2)applications of electrodeposition and electroless deposition for materials processing.(K. Murase: Dept. of Materials Science and Engineering)

[Textbook] None

 $\begin{tabular}{ll} Textbook(supplemental) \begin{tabular}{ll} Textbook(supplemental) \end{tabular}$

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

10K005

Advanced Modern Science and Technology (English lecture)

現代科学技術特論(英語科目)

[Code] 10K005 [Course Year] Master and Doctor Course [Term] [Class day & Period] Thu 5th [Location] A2-306 [Credits] 2(Semester s	tem) 【Restriction】 No Restriction
---	-----------------------------------

[Lecture Form(s)] Relay Lecture [Language] English

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto Related professors

Course Description 1 Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Who shake the dice?	1	Double slit phenomenon known as a prediction inability " quantum mechanics of the mystery (Feynman says) " can be every moment predicted by QED.(A. Tachibana: Dept. of Micro Engineering)
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)
Systems Control in Aeronautics and Astronautics	1	Systems control theory is used in several problems in aeronautics and astronautics. This lecture focuses on some of them and further gives an overview of this research based on them.(K. Fujimoto: Dept. of Aeronautics and Astronautics)
Countermeasures of the Contaminated Water at Fukushima Daiichi Nuclear Power Station and that of the Contaminated Soil in Fukushima Area	1	The situation of contaminated water in Fukushima Daiichi Nuclear Power Station and soil contamination in and around Fukushima area and their technological countermeasures taken today will be introduced and discussed.(M. Yoneda: Dept. of Environmental Engineering)
Polymer Synthesis beyond the 21st Century: Precision Polymerizations and Novel Polymeric Materials	1	We are now in the "Polymer Age", where synthetic polymer materials are indispensable in the modern human life: healthy, safe, comfortable, and sustainable. A critical challenge herein is to develop "precision polymerization", polymer-forming reactions that provide polymers of well-defined structures and designed functions. Given these backgrounds, this lecture will overview the following subjects: (a)What polymers are; (b)How to synthesize polymers; (c)How and where polymeric materials work and function; (d)Precision polymer synthesis; and (e)The future of polymeric materials.(M. Sawamoto: Dept. of Polymer Chemistry)
Engineering Approach to Phase Behavior of Fluids Confined in Nanospace	1	Fluids confined in nano-scale pores exhibit peculiar phase behaviors that depends strongly on physico-chemical effects by pore walls and conditions of the bulk phase in equilibrium with the pore fluids, to which the engineering approach must be effective.(M. Miyahara: Dept. of Chemical Engineering)
Elucidation of Principles for the Self-organization of Mesoscale Colloidal Particles	1	The process of so-called the colloid crystal has been pursued to find out the key principles for the structure evolution, employing the Brownian dynamics simulations. Also given in the lecture will be various pattern formations in the convective self-assembly of colloidal suspensions.(M. Miyahara: Dept. of Chemical Engineering)
Architectural Design and Architectural Thinking	1	Architectural design is integration of thinking on architectural events and materials. I would like to discuss this architectural thinking and the method to embody it.(K. Takeyama: Dept. of Architecture and Architectural Engineering)
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Vacuum Nanoelectronics Devices in Harsh Environments	1	This lecture reviews the perspective of the modern vacuum electron devices based on miniaturized electron sources fabricated with contemporary semiconductor processes. The performance of the devices is evaluated in view of the device in harsh environments. (Y. Gotoh: Dept. of Electronic Science and Engineering)
Advanced Digital Technology for Analytical Recording of Cultural Heritage Assets	1	(A. Ide: Dept. of Mechanical Engineering and Science)
Protein Structure, Function, and Motion	1	Proteins work by fluctuating and changing their conformations. Protein structures and motions, which are essential for understanding their functions in detail, are introduced in conjunction with the state-of-art methods to analyze them.(K. Sugase: Dept. of Molecular Engineering)
Laser-induced Breakdown Spectroscopy and Its Application to Underwater In-situ Elemental Analysis	1	Development of laser-induced breakdown spectroscopy (LIBS) for in-situ elemental analysis in water, and the application to resource exploration at sea bottom will be explained.(T. Sakka: Dept. of Energy and Hydrocarbon Chemistry)
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)
Modern Techniques for Material Characterization	1	Overview of modern techniques for material characterization is given with basic principles and practical applications. Impacts on the life of the people of characterization techniques are also included.(J. Matsuo: Dept. of Nuclear Engineering)

【Textbook】 None

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

 $\label{thm:conditional} \mbox{ Additional Information \ref{D} Students who take Autumn term should register "Lecture code 10H006"}.$

Organotransition Metal Chemistry 1

有機金属化学1

[Code] 10H041 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location] A2-306 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】Nakamura,Matsubara,Suginome,Tsuji,Kurahashi,Omura,Murakami

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Organomagnesium	1	Synthesis, structure, and reaction of organomagnesium compounds
compounds		
Organolithium	1	Synthesis, structure, and reaction of organolithium compounds
compounds		
Organozinc	1	Synthesis, structure, and reaction of organozinc compounds
compounds		
Organoboron	1	Synthesis, structure, and reaction of organoboron compounds
compounds		
Organosilicon	1	Synthesis, structure, and reaction of organosilicon compounds
compounds		
Organocopper	1	Synthesis, structure, and reaction of organocopper compounds
compounds	1	
Rare earth metals	1	Synthesis, structure, and reaction of rare earth metals
Other	1	Synthesis, structure, and reaction of other transition-metal compounds such as
transition-metal		Ti, Zr, Cr, and Fe
compounds		11, 21, C1, und 1 C
Basic reaction of	l 1	Ligand substitution reaction, oxidative addition, oxidative cyclization, reductive elimination, transmetallation, carbonyl insertion
organotransition-metal		
compounds		
Catalytic		Enantioselective hydrogenation, enantioselective oxidation (Sharpless reactions), enantioselective C-C bond formation
enantioselective	1	
reaction		
Coupling reaction	1	C-C Bond forming reactions (cross coupling reactions)

【Textbook】none

【Textbook(supplemental)】 J. F. Hartwig, Organotransition metal chemistry. From bonding to catalysis., University Science Books, Mill Valley, CA, 2010.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organotransition Metal Chemistry 2

有機金属化学 2

[Code] 10H042 [Course Year] Master Course [Term] [Class day & Period] Fri 1st [Location] A2-306

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Tsuji, Ozawa, Kondo, Sawamoto, Akagi, Kurahashi, Miki

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	3	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Organic Chemistry

先端有機化学

[Code] 10H818 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 1st

[Location] A2-306 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Professor Jun-ichi Yoshida and other professors

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Chemoselectivity	2	Introduction and chemoselectivity
Regioselectivity	2	Controlled Aldol Reactions
Stereoselectivity	2	Stereoselective Aldol Rections
Strategies	2	Alternative Strategies for Enone Synthesis
Choosing a Strategy	2	The Synthesis of Cyclopentenones
Summary	1	Summary and outlook

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P818

Advanced Organic Chemistry 2 Continued

先端有機化学続論

[Code] 10P818 [Course Year] Master 1st [Term] 1st term [Class day & Period] Tue 1st

[Location] A2-306 [Credits] [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese

[Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 5th

[Location] Funai Hall [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme Class number of times	Description
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Exercise in Practical Scientific English

実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] Thu 4th or 5th [Location] A2-304 [Credits] 1

[Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] Japanese and English

[Instructor] Y. Nakayama and T. Mizuno

[Course Description] Students learn about the basics of technical writing in English, and learn about and practice the format, style, and mechanics of the scientific research article. We may restrict the class size to enhance learning. The course is shared by Master 's and Doctoral Course students.

[Grading] Students are required to submit an initial report and a mid-term report. Students failing to submit the mid-term report will be given no credit.

[Course Goals] Students develop basic communication skills needed to work for international organizations through practicing scientific English writing.

[Course Topics]

Theme	Class number of times	Description
Course Outline and		Students examine the aim and requirements of the course, and look at the key
Introduction to	1	points for writing correctly, clearly, and concisely. (The class schedule may
Technical Writing		change without notice.)
D : CT 1 : 1		Students learn about the definition and basic rules for technical writing, and
Basics of Technical	3	look at common mistakes made by non-native writers of English. Students also
Writing		learn about basic English grammar.
Japanese-to-English	2	Students learn about English grammar and practice revising their English
Translation Practice	3	writing.
Donogonaka	2	Students learn about paragraphs: the topic sentence and supporting sentences,
Paragraphs	2	and techniques for sequencing information in a paragraph.
Format of Research	2	Students learn about the standard format of a research article: the title, abstract,
Articles	3	method, results, discussion, and conclusion.
Listening Practice	1	Students practice listening comprehension using videos presenting scientific
		and technical information.
Online Learning	2	Writing Paragraphs

[Textbook] No text - all materials are supplied by the teachers.

【Textbook(supplemental)】 Yukiko Nakayama, Gijutsu kei Eibun Raithingu Kyohon (Technical Writing Textbook), Japan Society for Technical Communication

Anne M. Coghill and Lorrin R. Garson, The ACS style guide, 3rd, The American Chemical Society.

[Prerequisite(s)] Students need to have basic English skills at undergraduate level.

【Independent Study Outside of Class】

[Web Sites] http://www.glc.t.kyoto-u.ac.jp/ja/study/grad/10d040

[Additional Information] We may restrict the class size to enhance students 'learning. Students who intend to join the course are required to attend the first-day guidance.

Professional Scientific Presentation Exercises (English lecture)

科学技術者のためのプレゼンテーション演習(英語科目)

[Code] 10i041 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Wed 5th

【Location】B-Cluster 2F Seminar Room 【Credits】1

【Restriction】 The number of students might be limited if too many students will get enrolled.

[Lecture Form(s)] Semina r [Language] English

【Instructor】 Juha Lintuluoto, Associate Professor, Department of Synthetic Chemistry and Biological Chemistry 【Course Description】 It is imperative for future engineers to be able to communicate and deliver effectively scientific information to large variety of audiences. This skill enables engineers to share and absorb information to more extended audiences, and facilitates success in selling ideas and products, publishing and team working. The purpose of this course is to teach the basic rules needed for successful professional scientific presentation, both orally and written. The course also prepares students to deliver scientific information presentations to wide audiences. The course is consisted of excessive exercises, of which the student should complete seven (7) tasks. The course holds 3-4 tasks for oral presentation exercises, and 3-4 tasks for professional scientific writing exercises. The exact number of both exercises is adjusted for each student's needs. The course is aimed for doctor course (DC) students, both Japanese and Foreign nationals

【Grading】Reports, class activity, presentation

【Course Goals】 This course is aimed to foster engineering students' scientific presentation skills. The successfully course completed students will be able to express and present complicated and specific scientific information at more generally understandable level. The students will also be able to pose relevant questions and effectively answer to the wide variety of questions.

[Course Topics]

Theme	Class number of times	Description
	1	Guidance and Professional presentation rules and etiquette
	3	Oral presentations & questioning I, Written report I
	3	Oral presentations & questioning I, Written report I
	3	Oral presentations & questioning II, Written report II
	3	Oral presentations & questioning II, Written report II
	2	Oral presentations & questioning III, Written report III
		Oral presentations & questioning III, Written report III
		Oral presentations & questioning IV, Written report IV
		Oral presentations & questioning IV, Written report IV I
		Course summary and discussion

【Textbook】Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] -Fundamental skills about scientific presentation

- -Advanced English skills
- -Sufficient personal research results

【Independent Study Outside of Class】

[Web Sites] The web-site is listed in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credit of this course is counted as the unit for graduation requirement at department level. Course starts at April 13th, and the 1st lesson is repeated on April 20th. The course schedule is irregular. Most classes are biweekly, the detailed schedule is provided at the 1st lecture.

10i009

Internship

産学連携研究型インターンシップ

[Code] 10i009 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] Seminar and Exercise [Language] [Instructor],

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organic System Design

有機設計学

[Code] 10H802 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd [Location] A2-308 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
•	1	
	4	
	1	
	3	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H804

Synthetic Organic Chemistry

有機合成化学

[Code] 10H804 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] A2-308 [Credits] [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese

【Instructor】 Department of Synthetic Chemistry and Biological Chemistry, Professor, Jun-ichi Yoshida Department of Synthetic Chemistry and Biological Chemistry, Lecturer, Aiichioro Nagaki

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
oxidation	3	
reduction	2	
carbon-carbon bond	3	
formation		
new methods in	2	
organic synthesis	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Functional Coordination Chemistry

機能性錯体化学

[Code] 10H805 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] A2-308 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
Fundamental		
coordination	2	
chemistry		
Properties of		
coordination	3	
polymers		
Solid state chemistry		
and materials	3	
chemistry		
Nanomaterials and	3	
nanotechnology	J	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H808

Physical Organic Chemistry

物理有機化学

[Code] 10H808 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] A2-308 [Credits] [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Kenji Matsuda

【Course Description】 Properties of organic compounds, such as electric conductivity, magnetism, photophysical properties, are discussed in terms of molecular structure and electronic structure

【Grading】Report

【Course Goals】 To understand principles of photochemistry

【Course Topics】

Theme	Class number of times	Description	
Photochemical		Photochemistry, Photophysics, einstein (unit), Jablonski diagram, Excitation,	
	1	Internal conversion, Intersystem crossing, Fluorescence, Phosphorescence,	
Reaction		Photochemical reaction	
Excited States in		Born-Oppenheimer approximation, Flanck-Condon principle, Singlet, Triplet,	
Molecular Orbital	2	Energy gap, n-pi*, pi-pi*, Potential energy surface, Conical intersection,	
Theory		Solvatochromism	
		Transition probability, Fermi's golden rule, Transition moment, Oscillator	
Electronic Transition	2	strength, Polarized light, Stimulated emission, Einstein coefficient,	
		Beer-Lambert law, Selection rule, Spin-orbit coupling	
		Fluorescence, Phosphorescence, Fluorescence excitation spectrum, Mirror	
Radiative Transition	2	relationship, Vibrational structure, Fluorescence quantum yield, Emission rate	
		constant	
Behavior of	2	Energy Transfer, Quenching, Trivial, Foerster, Dexter, FRET, Stern-Volmer	
		plot, Excimer, Exciplex, Triplet sensitization	
Phororeaction,	2	Quantum viold Photochromism Conversion in photoisomerization	
Photoisomerization		Quantum yield, Photochromism, Conversion in photoisomerization	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Fine Synthetic Chemistry

精密合成化学

[Code] 10H834 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd [Location] A2-308 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Masahiro Murakami, Tomoya Miura,

[Course Description]

【Grading 】Paper test

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
principle and		1. Hammond Postulate and Curtin-Hammett Principle 2. Chemo- and
examples of selective	4	Stereoselectivities of Hydride Reduction 3. Cram Model and Felkin-Anh
reaction		Model (Basic Rule) 4. Cram Model and Felkin-Anh Model (Application)
		5. (+)-Himbacine (Chackalamannil 1999) (key point: Diels-Alder) 6. ZK-EPO
		(Schering AG 2006) (key point: Macrolactonization) 7. (-)-Dactylolide
total synthesis of	6	(McLeod 2006) (key point: Ireland-Claisen) 8. (-)-Scopadulcic Acid
natural products	6	(Overman 1999) (key point: Heck Reaction) 9. (+)-Paniculatine (Sha 1999)
		(key point: Radical Cyclization) 10. Hirsutine (Tietze 1999) (key point:
		Domino Reaction)
	1	11. Confirmation of achievement degree

【Textbook】 nothing

【Textbook(supplemental)】Organic Synthesis Workbook II (Wiley-VCH), Organic Synthesis Workbook III (Wiley-VCH)

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H813

Bioorganic Chemistry

生物有機化学

[Code] 10H813 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd [Location] A2-308 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Biology

分子生物化学

[Code] 10H812 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd [Location] A2-308 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

【Course Description】 Biological responses are elicited at the interface of intrinsic genetic information and extrinsic environmental factors. This course discusses on molecular aspects of brain function and immunity. Experimental tools such as fluorescent probes for second messenger molecules are also explained through performance of experiments using the probes.

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Basics	1	
Principles of	2	
neurotransmission	3	
Immunity and	2	
inflammation	2	
Gaseous bioactive	2	
molecules	2	
Experiments to		
observe cellular	3	
responses		

【Textbook】Provided in the course

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H815

Biorecognics

生体認識化学

[Instructor],

[Code] 10H815 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd [Location] A2-308 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Microbiology and Biotechnology

生物工学

[Code] 10H816 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd [Location] A2-308 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】 Haruyuki Atomi, Tamotsu Kanai

Course Description This lecture will introduce the various forms of life that are present on our planet as well as the mechanisms involved in sustaining their life. Commonly used tools in the fields of biochemistry, molecular biology and genetics will also be discussed. In addition, methods to utilize cells and their enzymes in biotechnology will be introduced. Lectures will be given in English, with the aim to improve communication/discussion skills.

[Grading] Grading will be based on presentations (60%) and attendance (40%).

[Course Goals] Basic knowledge on the various forms of life that are present on our planet as well as the mechanisms involved in sustaining their life. An understanding of the commonly used tools in the fields of biochemistry, molecular biology and genetics as well as methods to utilize cells and their enzymes in biotechnology. Lectures will be given in English, with the aim to improve communication/discussion skills.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Diversity of life, classification of organisms, structure and function of
		fundamental biomolecules.
Basic mechanisms to	3	Strategies to conserve energy biographesis, call division, call differentiation
sustain life	3	Strategies to conserve energy, biosynthesis, cell division, cell differentiation.
Strategies to adapt to		Effect of anxing months and divine on calls and his melecules, the month is a
environmental	2	Effect of environmental conditions on cells and biomolecules, thermophiles,
conditions		acidophiles and their enzymes.
Protein anginaspina	2	Methods to study enzymes and enzyme reactions, methods to enhance their
Protein engineering		performance.
Cell engineering	2	Methods utilized in metabolic engineering, cell surface engineering, synthetic
		biology.
Topic discussion	1	Particular topics will be chosen for discussion

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H818

Advanced Organic Chemistry

先端有機化学

[Code] 10H818 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 1st

[Location] A2-306 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Professor Jun-ichi Yoshida and other professors

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Chemoselectivity	2	Introduction and chemoselectivity
Regioselectivity	2	Controlled Aldol Reactions
Stereoselectivity	2	Stereoselective Aldol Rections
Strategies	2	Alternative Strategies for Enone Synthesis
Choosing a Strategy	2	The Synthesis of Cyclopentenones
Summary	1	Summary and outlook

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Organic Chemistry 2 Continued

先端有機化学続論

[Code] 10P818 [Course Year] Master 1st [Term] 1st term [Class day & Period] Tue 1st

[Location] A2-306 [Credits] [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese

[Instructor]

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Biological Chemistry

先端生物化学

[Code] 10H836 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location] A2-308

[Credits] 3 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	4	
	4	
	3	
	4	
	2	
	2	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P836

Advanced Biological Chemistry 2 Continued

先端生物化学続論

[Code] 10P836 [Course Year] Master Course [Term] [Class day & Period] [Location] [Credits] 1

[Restriction] [Lecture Form(s)] Intensive Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H041

Organotransition Metal Chemistry 1

有機金属化学1

[Code] 10H041 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location] A2-306 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】Nakamura,Matsubara,Suginome,Tsuji,Kurahashi,Omura,Murakami

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Organomagnesium	1	Counth said atmost and added in a formation and added and a section of an added and a section and added and a section of an added and a section and added and a section of an added and a section and added and a section of an added and a section and a sect
compounds	1	Synthesis, structure, and reaction of organomagnesium compounds
Organolithium	1	
compounds	1	Synthesis, structure, and reaction of organolithium compounds
Organozinc	1	C
compounds	1	Synthesis, structure, and reaction of organozinc compounds
Organoboron	1	Synthesis, structure, and reaction of organoboron compounds
compounds	1	Synthesis, structure, and reaction of organoporon compounds
Organosilicon	1	Synthesis, structure, and reaction of organosilicon compounds
compounds		Synthesis, structure, and reaction of organosmeon compounds
Organocopper	1	Synthesis, structure, and reaction of organocopper compounds
compounds	1	Synthesis, structure, and reaction of organocopper compounds
Rare earth metals	1	Synthesis, structure, and reaction of rare earth metals
Other		Synthesis, structure, and reaction of other transition-metal compounds such as
transition-metal	1	Ti, Zr, Cr, and Fe
compounds		11, 21, C1, and 1 C
Basic reaction of		Ligand substitution reaction, oxidative addition, oxidative cyclization,
organotransition-metal	1	reductive elimination, transmetallation, carbonyl insertion
compounds		reductive elimination, transmetanation, carbonyl insertion
Catalytic		Enantioselective hydrogenation, enantioselective oxidation (Sharpless
enantioselective	1	reactions), enantioselective C-C bond formation
reaction		reactions), enantioselective C-C bond formation
Coupling reaction	1	C-C Bond forming reactions (cross coupling reactions)

【Textbook】 none

【Textbook(supplemental)】 J. F. Hartwig, Organotransition metal chemistry. From bonding to catalysis., University Science Books, Mill Valley, CA, 2010.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organotransition Metal Chemistry 2

有機金属化学 2

[Code] 10H042 [Course Year] Master Course [Term] [Class day & Period] Fri 1st [Location] A2-306

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Tsuji, Ozawa, Kondo, Sawamoto, Akagi, Kurahashi, Miki

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	3	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthetic Chemistry and Biological Chemistry, Adv,A

合成・生物化学特論 A

[Code] 10D839 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Thoma	Class number of	Description
Theme	times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthetic Chemistry and Biological Chemistry, Adv,B

合成・生物化学特論 B

[Code] 10D840 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	2 0001.pul

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthetic Chemistry and Biological Chemistry, Adv,C

合成・生物化学特論 C

[Code] 10D841 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits]1 [Restriction]No Restriction [Lecture Form(s)]Intensive Lecture [Language]Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	r

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthetic Chemistry and Biological Chemistry, Adv,D

合成・生物化学特論 D

[Code] 10D842 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits]1 [Restriction]No Restriction [Lecture Form(s)]Intensive Lecture [Language]Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	2 0001.pul

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthetic Chemistry and Biological Chemistry, Adv,E

合成・生物化学特論 E

[Code] 10D843 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits]1 [Restriction]No Restriction [Lecture Form(s)]Intensive Lecture [Language]Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of	Description
	times	2 0001.pul

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthetic Chemistry and Biological Chemistry, Adv,F

合成・生物化学特論 F

[Code] 10D844 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits]1 [Restriction]No Restriction [Lecture Form(s)]Intensive Lecture [Language]Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	2 0001.pul

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Special Experiments and Exercises in Synthetic Chemistry and Biological Chemistry

合成・生物化学特別実験及演習

[Code] 10D828 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 8 [Restriction] No Restriction [Lecture Form(s)] Experiment and Exercise [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number of times Description	Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10K001

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論 (英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called "high technologies", and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site for more information. You can find an attachment file, "通知版: 2016 先端マテリアル講義概要", where the term Credit will tell you the requirement.

[Course Goals]

【Course Topics】

Theme	Class number of	Description
	times	
Hyperthermophiles and their thermostable biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Theoretical Design for Organic Light-Emitting Diode Materials	1	Organic light-emitting diodes have multilayer structures consisting of carrier-transporting layers and a light emitting layer. The concepts employed in desining these materials and their examples are discussed.(T. Sato: Dept. of Molecular Engineering)
In Vivo Optical and Photoacoustic Tumor Imaging using Near-infrared Dye-cinjugated Amphiphilic Polymers	1	Optical and photoacoustic imaging methods are one of the most powerful and noninvasive techniques with which to visualize organs as well as tumor tissues. In this lecture, students can learn the basic principles of molecular imaging as well as recent progress in this field. (K. Ohe: Dept. of Energy and Hydrocarbon Chemistry)
Charge Carrier Transport in Conjugated Molecular Materials	1	How can we facilitate effective charge carrier transport pathway in organic conjugated molecular materials? The major topic of the present lecture is the mechanism of charge carrier transport in conjugated molecular materials. After an overview of electronic structure of conjugated molecular materials based on band models, a variety of measurement techniques is introduced to probe charge carrier mobility in the materials, to figure out characteristic behavior of conjugated molecules (and their aggregates) as electric conductive materials.(S. Seki: Dept. of Molecular Engineering)
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed.(T. Koga: Dept. of Polymer Chemistry)
Materials Processing using external fields for microstructure control	1	Properties of materials are not simply determined by atomic structure and chemical composition. Microstructure (crystal grain size, crystallographic orientation and so on) significantly influences the properties. Not a few techniques have been developed for controlling the microstructure. Materials processing using external fields will be demonstrated in this class.(H. Yasuda: Dept. of Materials Science and Engineering)
Force acting on colloidal particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed.(R. Yamamoto: Dept. of Chemical Engineering)
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced.(T. Asano: Dept. of Electronic Science and Engineering)
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials.(Y. Nakao: Dept. of Material Chemistry)
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Introduction to Nuclear Materials	1	Nuclear materials are designed for using in irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked.(I. Takagi: Dept. of Nuclear Engineering)
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed.(T. Koga: Dept. of Polymer Chemistry)
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides.(K. Tanaka: Dept. of Material Chemistry)
Solar Hydrogen Production using Semiconductor Photocatalyst	1	The development of a clean and renewable energy carrier that does not utilize fossil fuels is a great technological challenge. Photocatalytic water splitting using semiconductor materials has attracted considerable interest due to its potential to cleanly produce H2 from water by utilizing abundant solar light. In the present lecture, the basis and the recent progress in photocatalytic water splitting will be introduced.(R. Abe: Dept. of Energy and Hydrocarbon Chemistry)
Electrodeposition and Electroless Deposition for Materials Processing	1	(1)Fundamentals chemistry, electrochemistry, and thermodynamics , and (2)applications of electrodeposition and electroless deposition for materials processing.(K. Murase: Dept. of Materials Science and Engineering)

【Textbook 】None

 $\begin{tabular}{ll} Textbook(supplemental) \begin{tabular}{ll} Textbook(supplemental) \end{tabular}$

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 Check the notice on the bulletin board.

Students who take Spring term (Lecture code $10\mbox{H}012$) should attend first 11 lectures.

10K005

Advanced Modern Science and Technology (English lecture)

現代科学技術特論(英語科目)

[Code] 10K005	[Course Year]	Master and Doctor Course	[Term]	【Class day & Period】Thu 5th	【Location】A2-306	【Credits】2(Semester system)	[Restriction] No Restriction
[Lecture Form(s)]	Relay Lecture	[Language] English					

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto Related professors

Course Description 1 Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
Who shake the dice?	1	Double slit phenomenon known as a prediction inability "quantum mechanics of the mystery (Feynman says)" can be every moment predicted by QED.(A. Tachibana: Dept. of Micro Engineering)	
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)	
Systems Control in Aeronautics and Astronautics	1	Systems control theory is used in several problems in aeronautics and astronautics. This lecture focuses on some of them and further overview of this research based on them.(K. Fujimoto: Dept. of Aeronautics and Astronautics)	
Countermeasures of the Contaminated Water at Fukushima Daiichi Nuclear Power Station and that of the Contaminated Soil in Fukushima Area	1	The situation of contaminated water in Fukushima Daiichi Nuclear Power Station and soil contamination in and around Fukushima area and their technological countermeasures taken today will be introduced and discussed.(M. Yoneda: Dept. of Environmental Engineering)	
Polymer Synthesis beyond the 21st Century: Precision Polymerizations and Novel Polymeric Materials	1	We are now in the "Polymer Age", where synthetic polymer materials are indispensable in the modern human life: healthy, safe, comfortable, and sustainable. A critical challenge herein is to develop "precision polymerization", polymer-forming reactions that provide polymers of well-defined structures and designed functions. Given these backgrounds, this lecture will overview the following subjects: (a)What polymer are; (b)How to synthesize polymers; (c)How and where polymeric materials work and function; (d)Precision polymer synthesis; and (e)The future of polymeric materials.(M. Sawamoto: Dept. of Polymer Chemistry)	
Engineering Approach to Phase Behavior of Fluids Confined in Nanospace	1	Fluids confined in nano-scale pores exhibit peculiar phase behaviors that depends strongly on physico-chemical effects by pore walls and conditions of the bulk phase in equilibrium with the pore fluids, to which the engineering approach must be effective.(M. Miyahara: Dept. of Chemical Engineering)	
Elucidation of Principles for the Self-organization of Mesoscale Colloidal Particles	1	The process of so-called the colloid crystal has been pursued to find out the key principles for the structure evolution, employing the Brownian dynamics simulations. Also given in the lecture will be various pattern formations in the convective self-assembly of colloidal suspensions. (Miyahara: Dept. of Chemical Engineering)	
Architectural Design and Architectural Thinking	1	Architectural design is integration of thinking on architectural events and materials. I would like to discuss this architectural thinking and the method to embody it.(K. Takeyama: Dept. of Architecture and Architectural Engineering)	
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are not available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)	
Vacuum Nanoelectronics Devices in Harsh Environments	1	This lecture reviews the perspective of the modern vacuum electron devices based on miniaturized electron sources fabricated with contemporary semiconductor processes. The performance of the devices is evaluated in view of the device in harsh environments. (Y. Gotoh: Dept. of Electronic Science and Engineering)	
Advanced Digital Technology for Analytical Recording of Cultural Heritage Assets	1	(A. Ide: Dept. of Mechanical Engineering and Science)	
Protein Structure, Function, and Motion	1	Proteins work by fluctuating and changing their conformations. Protein structures and motions, which are essential for understanding their functions in detail, are introduced in conjunction with the state-of-art methods to analyze them.(K. Sugase: Dept. of Molecular Engineering)	
Laser-induced Breakdown Spectroscopy and Its Application to Underwater In-situ Elemental Analysis	1	Development of laser-induced breakdown spectroscopy (LIBS) for in-situ elemental analysis in water, and the application to resource exploration at sea bottom will be explained.(T. Sakka: Dept. of Energy and Hydrocarbon Chemistry)	
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)	
Modern Techniques for Material Characterization	1	Overview of modern techniques for material characterization is given with basic principles and practical applications. Impacts on the life of the people of characterization techniques are also included.(J. Matsuo: Dept. of Nuclear Engineering)	

【Textbook】None

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

 $\label{thm:conditional} \mbox{ Additional Information \ref{D} Students who take Autumn term should register "Lecture code 10H006"}.$

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 5th

[Location] Funai Hall [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number of times	Description
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Exercise in Practical Scientific English

実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] Thu 4th or 5th [Location] A2-304 [Credits] 1

[Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] Japanese and English

【Instructor】Y. Nakayama and T. Mizuno

[Course Description] Students learn about the basics of technical writing in English, and learn about and practice the format, style, and mechanics of the scientific research article. We may restrict the class size to enhance learning. The course is shared by Master 's and Doctoral Course students.

[Grading] Students are required to submit an initial report and a mid-term report. Students failing to submit the mid-term report will be given no credit.

[Course Goals] Students develop basic communication skills needed to work for international organizations through practicing scientific English writing.

【Course Topics】

Theme	Class number of times	Description
Course Outline and		Students examine the aim and requirements of the course, and look at the key
Introduction to	1	points for writing correctly, clearly, and concisely. (The class schedule may
Technical Writing		change without notice.)
Design of Tanhaical		Students learn about the definition and basic rules for technical writing, and
Basics of Technical	3	look at common mistakes made by non-native writers of English. Students also
Writing		learn about basic English grammar.
Japanese-to-English	2	Students learn about English grammar and practice revising their English
Translation Practice	3	writing.
Davagrapha	2	Students learn about paragraphs: the topic sentence and supporting sentences,
Paragraphs		and techniques for sequencing information in a paragraph.
Format of Research	3	Students learn about the standard format of a research article: the title, abstract,
Articles	3	method, results, discussion, and conclusion.
Listening Practice	1	Students practice listening comprehension using videos presenting scientific
		and technical information.
Online Learning	2	Writing Paragraphs

【Textbook】No text - all materials are supplied by the teachers.

【Textbook(supplemental)】 Yukiko Nakayama, Gijutsu kei Eibun Raithingu Kyohon (Technical Writing Textbook), Japan Society for Technical Communication

Anne M. Coghill and Lorrin R. Garson, The ACS style guide, 3rd, The American Chemical Society.

[Prerequisite(s)] Students need to have basic English skills at undergraduate level.

【Independent Study Outside of Class】

Web Sites http://www.glc.t.kyoto-u.ac.jp/ja/study/grad/10d040

[Additional Information] We may restrict the class size to enhance students 'learning. Students who intend to join the course are required to attend the first-day guidance.

Professional Scientific Presentation Exercises (English lecture)

科学技術者のためのプレゼンテーション演習(英語科目)

[Code] 10i041 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Wed 5th

【Location】B-Cluster 2F Seminar Room 【Credits】1

【Restriction】 The number of students might be limited if too many students will get enrolled.

[Lecture Form(s)] Semina r [Language] English

【Instructor】 Juha Lintuluoto, Associate Professor, Department of Synthetic Chemistry and Biological Chemistry 【Course Description】 It is imperative for future engineers to be able to communicate and deliver effectively scientific information to large variety of audiences. This skill enables engineers to share and absorb information to more extended audiences, and facilitates success in selling ideas and products, publishing and team working. The purpose of this course is to teach the basic rules needed for successful professional scientific presentation, both orally and written. The course also prepares students to deliver scientific information presentations to wide audiences. The course is consisted of excessive exercises, of which the student should complete seven (7) tasks. The course holds 3-4 tasks for oral presentation exercises, and 3-4 tasks for professional scientific writing exercises. The exact number of both exercises is adjusted for each student 's needs. The course is aimed for doctor course (DC) students, both Japanese and Foreign nationals

【Grading】Reports, class activity, presentation

【Course Goals】 This course is aimed to foster engineering students' scientific presentation skills. The successfully course completed students will be able to express and present complicated and specific scientific information at more generally understandable level. The students will also be able to pose relevant questions and effectively answer to the wide variety of questions.

[Course Topics]

Theme	Class number of times	Description
	1	Guidance and Professional presentation rules and etiquette
	3	Oral presentations & questioning I, Written report I
	3	Oral presentations & questioning I, Written report I
	3	Oral presentations & questioning II, Written report II
	3	Oral presentations & questioning II, Written report II
	2	Oral presentations & questioning III, Written report III
		Oral presentations & questioning III, Written report III
		Oral presentations & questioning IV, Written report IV
		Oral presentations & questioning IV, Written report IV I
		Course summary and discussion

【Textbook】Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] -Fundamental skills about scientific presentation

- -Advanced English skills
- -Sufficient personal research results

【Independent Study Outside of Class】

[Web Sites] The web-site is listed in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credit of this course is counted as the unit for graduation requirement at department level. Course starts at April 13th, and the 1st lesson is repeated on April 20th. The course schedule is irregular. Most classes are biweekly, the detailed schedule is provided at the 1st lecture.

Advanced Engineering and Economy (English lecture)

工学と経済(上級)(英語科目)

[Code] 10i042 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 5th [Location] B-Cluster 2F Seminar Room [Credits] 2 [Restriction] The number of students might be limited if too many students will get enrolled.

[Lecture Form(s)] Lectures, Group works&tasks [Language] English

[Instructor] Juha Lintuluoto, Associate Professor, Department of Synthetic Chemistry and Biological Chemistry

[Course Description] Engineering economics plays central role in any industrial engineering project. For an engineer, it is important to apply the engineering know-how with the economic analysis skills to obtain the best available materials, methods, devices, etc. in the most economical way. This course is aimed to teach engineering students the basic economic methods to manage economically an engineering project. In addition, the report writing on various engineering economic issues prepares to write reports in a professional form. The lab sessions are meant for the verbal skills improvement as well as improvement of analytical thinking. The topics are of current relevant topics Small-group brain-storming method is used. The exercise sessions cover the use of Ms-Excel for various quantitative economic analyses.

[Grading] Final test, reports, class activity

[Course Goals] This course is aimed to strengthen engineering students' skills in economics. The course concept is to teach students selectively those subjects which serve as major tools to solve economic tasks in engineering environment. The reports and lab sessions provide students stimulating and analytical thinking requiring tasks, and presentation skills training is an important part of this course.

【Course Topics】

Theme	Class number of times	Description
Student orientation and	umes	
Introduction to engineering	1	
economy	•	
Cost concepts and design		
economics	1	
Cost estimation techniques	1	
The time value of money	1	
Evaluating a single project	1	
Comparison and selection		
among alternatives	1	
Depreciation and income		
taxes	1	
Price changes and exchange	1	
Parlacement analysis	1	
Replacement analysis	1	
Evaluating projects with the	1	
benefit-cost ratio method		
Breakeven and sensitivity	1	
analysis		
Probabilistic risk analysis	1	
The capital budgeting	1	
process		
Decision making	1	
considering multiattributes		
Final test	1	
		Additionally, students will submit five reports during the course on given engineering economy subjects.
		Also, required are the five lab participations (ca.60 min/each) for each student. Additionally, three
		exercise sessions (ca.60 min/each), where use of Ms-Excel will be practiced for solving various
		engineering economy tasks, should be completed

【Textbook】 Engineering Economy 15th ed. William G. Sullivan (2011)

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] -This course is highly recommended for those who attend "Engineering Project Management" course, Small group working method Independent Study Outside of Class]

[Web Sites] The web-site is listed in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credits of this course are counted as the units for graduation requirement at department level. The course starts on Apr.12th.

Engineering Project Management (English lecture)

エンジニアリングプロジェクトマネジメント (英語科目)

[Code] 10i047 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 4th [Location] B-Cluster 2F Seminar Room

[Credits] 1 [Restriction] [Lecture Form(s)] Lectures, Group works&tasks [Language] English

[Instructor] GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto

Assoc.Prof. Lintuluoto, J. Assoc.Prof. Nishi

[Course Description] The purpose of this course is to teach the basic skills needed for expressing and initiating ideas, and presenting information in successful international engineering group work. The course provides simulations for students in group managing and decision making in international engineering teams. International teamwork ethics subjects for successful engineering project will be practiced. The course consists of lectures, case studies, the invited lecture from an industry representative and the final examination. Also, a project report exercise is included in this course. The course is basically designed for doctor course (DC) students, both Japanese and foreign nationals. If place are available they may be given to master course students.

【Grading 】Report, class activity, presentation

[Course Goals] This course is the pre-course for Engineering Project Management II which will be held in the second semester. Students will learn project management tools, apply project strategies and perform qualitative risk analyses. Also students will learn how to carry out projects with group members from various countries and engineering fields.

[Course Topics]

Theme	Class number of times	Description	
Introduction to the course	1	4/8 The introduction to the course and preliminary knowledge about the engineering project management	
		will be given. (All)	
Project Management	1	4/15 I (Lintuluoto)	
Project Management	1	4/22 II (Lintuluoto)	
Management of abroad	1	5/6 Through an abroad dispatched project of Graduate School of Engineering, Kyoto University, the	
dispatched project	1	development and management of the project in University will be given. (Mizuno)	
TBA	1	5/13	
Leadership Skills	1	5/20 I (Tanaka)	
Leadership Skills	1	5/27 II (Tanaka)	
Risk Identification and	1	(OLOU 1)	
Assessment for Engineers	1	6/3 I (Nishi)	
		6/10 II	
Risk Identification and	1	Products failure potentially causes serious economic and human damages. This lecture firstly overviews	
		some mechanisms of failure, and introduces actual examples of failure accidents and their costs. And	
Assessment for Engineers		then, damage-tolerance-design methodology in which remaining life and inspection intervals are	
		quantified through fracture mechanics analyses is explained.(Matsumoto)	
Design and design thinking	1	6/17 I (Takatori)	
Design and design thinking	1	6/24 II (Takatori)	
Special Lecture from	1	7/1	
Industry	1	7/1	
Special Lecture from	1	7/9	
Industry	1	7/8	
Special Lecture from	1	7/15	
Industry	1	//13	
Review of the course	1	7/22 Review of the course	

【Textbook】 Course materials will be provided.

[Textbook(supplemental)]

[Prerequisite(s)] '-This course is recommended for those who later intend to attend "Engineering Project Management II".

-Highly interactive lessons (discussion), Small group work methodologies.

[Independent Study Outside of Class]

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department. The course starts on Apr. 10th.

Engineering Project Management (English lecture)

エンジニアリングプロジェクトマネジメント (英語科目)

[Code] 10i048 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] B-Cluster 2F Seminar Room [Credits] 1 [Restriction] Student number will be limited.

【Lecture Form(s)】Seminar 【Language】English

[Instructor] GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto, Ashida,

Assoc.Prof. Lintuluoto

【Course Description】 In this course, students will apply the engineering know-how and the skills of management, group leadership, and international communication which they learned in the course of "Engineering Project Management I" to build and carry out a virtual inter-engineering project. This course provides a forum where students ' team-plan based on ideas and theories, decision making, and leadership should produce realistic engineering project outcomes. The course consists of intensive group work, presentations, and a few intermediate discussions. A written report will be required.

【Grading】Report, class activity, presentation

[Course Goals] This course prepares engineering students to work with other engineers within a large international engineering project. In particular this course will focus on leadership and management of projects along with applied engineering skills where the students learn various compromises, co-operation, responsibility, and ethics.

[Course Topics]

Theme	Class number of times	Description
		Introduction to Engineering Project Management
Guidance	1	Lecture on tools for the Engineering Project Management
		Practice
Practice I	2	Each student practices the tools for the Engineering Project Management
		Each project team may freely schedule the group works within given time
Group work I	2	frame. In addition to "Intermediate discussion" sessions, the course
		instructors are available if any such need is required.
Presentation I &		
Intermediate	1	Each project team has a presentation
discussion I		
Group work II	2	
Intermediate	1	
discussion II	1	
Group work III	2	
Presentation II	1	
Final discussion	1	

[Textbook] Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] Fundamental skills about group leading and communication, scientific presentation.

[Independent Study Outside of Class]

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department.

10S807

Special Seminar 1in Synthetic Chemistry and Biological Chemistry

合成・生物化学特別セミナー 1

[Code] 10S807 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	· · · · · · · · · · · · · · · · · · ·	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S808

Special Seminar 2in Synthetic Chemistry and Biological Chemistry

合成・生物化学特別セミナー2

[Code] 10S808 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme Class number of times Description	
---	--

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S809

Special Seminar 3 in Synthetic Chemistry and Biological Chemistry

合成・生物化学特別セミナー3

[Code] 10S809 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Special Topics in Transport Phenomena

移動現象特論

[Code] 10H002 [Course Year] Master and Doctor Course [Term] Spring term [Class day & Period] [Location]

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Department of Chemical Engineering, Professor, Ryoichi Yamamoto

Course Description After general introductions on the flow properties (Rheology) of polymeric liquids as typical examples of non-Newtonian fluids, the relationship (known as the constitutive equation) between strain rate and stress is explained. In addition to classical phenomenological approaches, molecular approaches based on statistical mechanics will be taught in this course. To this end, basic lectures on "Langevin Equation", "Hydrodynamic Interaction", and "Linear Response Theory" will also be given.

[Grading] Answers to several questions and exercises, which will be given during the course, are used to judge.

[Course Goals] To understand strength and weakness of both phenomenological and molecular approaches to formulate general behaviors of non-Newtonian fluids mathematically as forms of constitutive equations. Also to learn mathematical and physical methodologies necessarily to achieve this.

[Course Topics]

Theme	Class number of times	Description
		Shedding lights on the nature of polymeric liquids in comparisons with simple
- Polymeric Liquids /	6	Newtonian liquids. Various formulations on the characteristic behaviors of
Rheology		polymeric liquids based on both empirical and molecular approaches are
		lectured.
- Stochastic Process /	3	To deal with Brownian motions of particles in solvents, a lecture on Langevin
Langevin Equation	3	equation is given after some basic tutorials on stochastic process.
- Green Function /		To deal with motions of interacting particles in solvents, a lecture on the
Hydrodynamic	2	hydrodynamic interaction is given after some basic tutorials on Green function
Interaction		and Poisson equation.
Understanding	1	
Check	1	

[Textbook] Transport Phenomena 2nd Ed., Bird, Stewart, Lightfoot, (Wiley)

【Textbook(supplemental)】Introduction to Polymer Physics, Doi, (Oxford) Theory of Simple Liquids 4th Ed., Hansen, McDonald, (Academic Press) Colloidal Dispersions, Russel, Saville, and Schowlter, (Cambridge)

【Prerequisite(s)】 Under graduate level basic knowledge on "Fluid Mechanics / Transport Phenomena" and basic mathematics including "Vector Analyses" are required.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This is an biennial course which will be open in 2016, 2018, 2020, ...

Advanced Topics in Transport Phenomena (English lecture)

Advanced Topics in Transport Phenomena

[Code] 10H003 [Course Year] Master and Doctor Course [Term] Spring term

[Class day & Period] Tue 4th [Location] A2-305 [Credits] 1.5 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] English

[Instructor] Department of Chemical Engineering, Professor, Ryoichi Yamamoto

【Course Description】 After general introductions on the flow properties (Rheology) of polymeric liquids as typical examples of non-Newtonian fluids, the relationship (known as the constitutive equation) between strain rate and stress is explained. In addition to classical phenomenological approaches, molecular approaches based on statistical mechanics will be taught in this course. To this end, basic lectures on "Langevin Equation", "Hydrodynamic Interaction", and "Linear Response Theory" will also be given.

[Grading] Answers to several questions and exercises, which will be given during the course, are used to judge.

[Course Goals] To understand strength and weakness of both phenomenological and molecular approaches to formulate general behaviors of non-Newtonian fluids mathematically as forms of constitutive equations. Also to learn mathematical and physical methodologies necessarily to achieve this.

[Course Topics]

Theme	Class number of times	Description
		Shedding lights on the nature of polymeric liquids in comparisons with simple
- Polymeric Liquids /	6	Newtonian liquids. Various formulations on the characteristic behaviors of
Rheology		polymeric liquids based on both empirical and molecular approaches are
		lectured.
- Stochastic Process /	2	To deal with Brownian motions of particles in solvents, a lecture on Langevin
Langevin Equation	3	equation is given after some basic tutorials on stochastic process.
- Green Function /		To deal with motions of interacting particles in solvents, a lecture on the
Hydrodynamic	2	hydrodynamic interaction is given after some basic tutorials on Green function
Interaction		and Poisson equation.
Understanding	1	
Check	1	

【Textbook】Transport Phenomena 2nd Ed., Bird, Stewart, Lightfoot, (Wiley)

【Textbook(supplemental)】Introduction to Polymer Physics, Doi, (Oxford) Theory of Simple Liquids 4th Ed., Hansen, McDonald, (Academic Press) Colloidal Dispersions, Russel, Saville, and Schowlter, (Cambridge)

[Prerequisite(s)] Under graduate level basic knowledge on "Fluid Mechanics / Transport Phenomena" and basic mathematics including "Vector Analyses" are required.

【Independent Study Outside of Class】

[Web Sites]

Separation Process Engineeering, Adv.

分離操作特論

[Code] 10H005 [Course Year] Master and Doctor Course [Term] [Class day & Period] Mon 2nd

[Location] A2-305 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] H.Tamon, N.Sano,

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	2	
	1	
	1	
	1	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemical Reaction Engineering, Adv.

反応工学特論

[Code] 10H008 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 3rd [Location] A2-305 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Prof. Motoaki Kawase, Department of Chemical Engineering; Assoc. Prof. Hiroyuki Nakagawa, Department of Chemical Engineering

【Course Description】 The following contents are covered:

- Kinetic analysis of gas-solid-catalyst reaction, gas-solid reaction, CVD reaction, and enzymatic reaction,
- Operation and design of reactors for gas-solid-catalyst and gas-solid reactions, and
- Industrial reactors including fixed bed, fluidized bed, moving bed, simulated moving bed, and stirred tank types.

[Grading] Based on the result of examination at the end of term and the results of quizzes and reports imposed every week

[Course Goals] To understand kinetic analysis of chemical reactions utilized in the industry and procedure to design and operate industrial reactors.

【Course Topics】

Theme	Class number of times	Description
Gas-solid-catalyst	1	Commercial catalysts and industrial gas-solid-catalyst reactions are overviewed. Chemical
reaction (1) Overview	1	reaction engineering fundamentals of the gas-solid-catalyst reaction is explained.
Gas-solid-catalyst		
reaction (2) Generalized		The generalized effectiveness factor and the selectivity affected by mass transfer are explained.
effectiveness factor and	1	
selectivity in complex		
reactions		
Gas-solid-catalyst		
reaction (3) Deactivation	2	Deactivation mechanisms of solid catalysts are overviewed. The deactivation and consequent
and regeneration of	2	change in selectivity are explained in terms of the decay function and specific activity.
catalyst		
Gas-solid-catalyst		
reaction (4) Design and	1	Industrial catalytic reactors including fixed-bed and fluidized-bed reactors are overviewed.
operation of industrial		Design and operation of these reactors including thermal stability are explained.
catalytic reactors		
Liquid-solid-catalyst		Concepts and theories of simulated moving bed is explained. Its application to catalytic
reaction Simulated	1	reactions are reviewed.
moving bed reactor		reactions are reviewed.
CVD reaction (1)	1	Thermal and plasma chemical vapor deposition reactions and processes are overviewed.
Fundamentals	1	Fundamentals from chemical reaction engineering view point are explained.
CVD reaction (2) Vinctic		Kinetic analysis of CVD is described from CRE viewpoint. Reaction models including
CVD reaction (2) Kinetic analysis and modeling	1	elementary reaction model and overall reaction model are derived and applied to some
anarysis and moderning		examples.
Gas-solid reaction (1)		Kinetic measurement and analysis of complicated gas-solid reactions, particularly coal
Kinetic analysis	2	pyrolysis, are explained with the first-order reaction model to the distributed activation
		energy model (DAEM).
Gas-solid reaction (2)		Concepts and derivation of the reaction models including the grain model and the
Kinetic analysis of	1	random-pore model are explained. Application of the models to coal gasification is
gas-solid reaction		overviewed.

【Textbook】Prints are distributed.

【Textbook(supplemental)】

[Prerequisite(s)] Needs knowledge of chemical reaction engineering including heterogeneous reactions.

【Independent Study Outside of Class】

[Web Sites]

Chemical Reaction Engineering, Adv. (English lecture)

Chemical Reaction Engineering, Adv.

[Code] 10H009 [Course Year] Master and Doctor Course [Term] [Class day & Period] Fri 2nd [Location] A2-305 [Credits] [Restriction] [Lecture Form(s)] [Language] English

[Instructor] Prof. Motoaki Kawase, Department of Chemical Engineering; Assoc. Prof. Hiroyuki Nakagawa, Department of Chemical Engineering

[Course Description] This lecture is given in English. The following contents are covered: - Kinetic analysis of gas-solid-catalyst reaction, gas-solid reaction, and CVD reaction, - Operation and design of reactors for gas-solid-catalyst and gas-solid reactions, and - Industrial reactors including fixed bed, fluidized bed, moving bed, simulated moving bed, and stirred tank types.

[Grading] Based on the result of examination at the end of term and the results of quizzes and reports imposed every week.

[Course Goals] To understand kinetic analysis of chemical reactions utilized in the industry and procedure to design and operate industrial reactors.

[Course Topics]

Theme	Class number of times	Description
Gas-solid-catalyst		
reaction (1)	1	Commercial catalysts and industrial gas-solid-catalyst reactions are overviewed. Chemical reaction engineering fundamentals of the gas-solid-catalyst reaction is explained.
Fundamentals		
Gas-solid-catalyst		
reaction (2) Generalized		
effectiveness factor and	1	The generalized effectiveness factor and the selectivity affected by mass transfer are explained.
selectivity in complex		explained.
reactions		
Gas-solid-catalyst		
reaction (3) Deactivation	2	Deactivation mechanisms of solid catalysts are overviewed. The deactivation and consequent
and regeneration of	2	change in selectivity are explained in terms of the decay function and specific activity.
catalyst		
Gas-solid-catalyst		
reaction (4) Design and	1	Industrial catalytic reactors including fixed-bed and fluidized-bed reactors are overviewed. Design and operation of these reactors including thermal stability are explained.
operation of industrial	1	
catalytic reactors		
Liquid-solid-catalyst		Concept and applications of simulated moving bed reactor are explained. Model-based analysis of simulated moving bed reactor is explained.
reaction Simulated	1	
moving bed reactor		analysis of simulated moving bed reactor is explained.
	2	Fundamentals of CVD reactions are explained from chemical reaction engineering view
CVD reaction		point. Kinetic analysis of CVD is described. Reaction models including elementary reaction
		model and overall reaction model are derived and applied to some examples.
Gas-solid reaction (1)		Kinetic measurement and analysis of complicated gas-solid reactions, particularly coal
Kinetic analysis	2	pyrolysis, are explained with the first-order reaction model to the distributed activation
inition unury 515		energy model (DAEM).
Gas-solid reaction (2)		Concepts and derivation of the reaction models including the grain model and the
Kinetic analysis of	1	random-pore model are explained. Application of the models to coal gasification is
gas-solid reaction		overviewed.

【Textbook】Prints are hand out at the class.

【Textbook(supplemental)】

[Prerequisite(s)] Needs knowledge of chemical reaction engineering including heterogeneous reactions.

【Independent Study Outside of Class】

[Web Sites]

Advanced Process Systems Engineering

プロセスシステム論

[Code] 10H011 [Course Year] Master and Doctor Course [Term] 2016/ Fall term

[Class day & Period] Tue 2nd [Location] A2-305 [Credits] 1.5 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Dept. of Chem. Eng., Professor, Shinji Hasebe [Course Description] In the design and operation of chemical processes, various types of optimization problems arise. In this course, the formulation procedure of these problems and their solution methods are explained.

[Grading] The degree of understandings is evaluated by the homework (30 %) and final examination (70 %).

[Course Goals] The course goals are to obtain the ability of constructing the mathematical models, solving the optimization problems, and explaining the results of optimization.

【Course Topics】

Theme	Class number of times	Description
Formulations as the		For antimization problems which arise in the design and appretional problems
optimization	1	For optimization problems which arise in the design and operational problems,
problems		formulations as the optimization problems are introduced.
		For unconstrained single and multivariable optimization problems, analytical
Unconstraint	2	and numerical optimization methods are explained. For the design problem of
optimization	2	chemical plants, optimization procedure using numerical differentiation is also
		explained.
Linear programming	1	The applications of linear programming in the chemical engineering are
Linear programming	1	explained.
Lagrangian	1	For the problems containing equality constraints, it is explained that the
Lagrangian		necessary conditions for an extremum can be obtained by Lagrangian
multipliers		multipliers.
Nonlinear		The concepts of quadratic programming and successive linear programming
programming with	2	are explained, and their applications to chemical engineering problems are
constraints		introduced.
Dynamic	1	The concept of dynamic programming is explained, and its applications to
programming	1	chemical engineering problems are introduced.
Mixed integer		For process synthesis and scheduling problems, the mathematical formulations
	2	as mixed integer (non) linear programming problems are explained, and their
programming		solution procedures are illustrated.
	1	The concepts of meta-heuristic methods such as simulated annealing and
Meta-heuristics		genetic algorithm are explained using the examples which appear in the
		chemical engineering problems.

[Textbook] The supplemental prints are distributed in the class.

【Textbook(supplemental)】Optimization of Chemical Processes (McGraw-Hill)

最適化(岩波講座情報科学19,岩波書店)

これならわかる最適化数学(共立出版)

[Prerequisite(s)] The basic knowledge of unit operations, calculus and linear algebra is requested.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This course is not opened in the 2015 academic year.

Process Data Analysis

プロセスデータ解析学

[Code]10H053 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] S. Hasebe,

【Course Description】 Process data analysis methods for product quality prediction, fault detection and diagnosis, and product yield improvement is explained together with their industrial applications. The basics and methods covered in this lecture are: basics of probability and statistics, correlation analysis, regression analysis, multivariate analysis such as principal component analysis, discriminant analysis, and partial least squares. In addition, soft-sensor design and multivariate statistical process control are explained.

【Grading 】Based on both the examination result and reports.

【Course Goals】 To understand the basics of probability and statistics.

To understand multivariate analysis.

To be able to apply process data analysis to practical problems.

[Course Topics]

Theme	Class number of times	Description
what is process data	1	
analysis	1	
preparation for data	1	
analysis	1	
point estimation and	1	
interval estimation	1	
regression analysis	2	
	1	
multivariate analysis	1	
soft-sensor design	1	
multivariate		
statistical process	1	
control		
current topics	2	

[Textbook] Prints are distributed.

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Fine Particle Technology, Adv.

微粒子工学特論

[Code] 10H017 [Course Year] Master and Doctor Course [Term] Autumn [Class day & Period] Mon 2nd

[Location] A2-302 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Dept. of Chem. Eng., Professor, Shuji Matsusaka

【Course Description】 Analyses of particle behavior in gases, Particle handling operations, and measurement methods are lectured. Also, particle charging that affect particle behavior in gases are theoretically explained. Furthermore, the control of the particle charging and its applications are lectured.

【Grading 】 Examination

[Course Goals] Understand the analysis and modeling of dynamic behavior of particles. Furthermore develop the ability to apply the knowledge for particle handling and processing.

[Course Topics]

Theme	Class number of times	Description
Particle properties	3	Mathematical description of particle diameter distribution, properties of fine
and measurements	3	particles, and their measurement methods are explained.
Particle adhesion and		Measurement methods for adhesion forces of particles and dynamical analysis
dynamical analysis	3	method for particle collision and elastic deformation are lectured. Furthermore,
dynamical analysis		distinct element method is explained.
		Temporal and spatial distribution of deposition and reentrainment of fine
Behavior of particles	3	particles in gas-solid flow are explained using physical models and probability
in airflow	3	theory. In addition, complicated reentrainment phenomena during particle
		collision are discussed.
Doutiele chancine and	2	Concept of particle charging and quantitative analysis methods of charging
Particle charging and control		process are explained; also, charge distribution of particles is analyzed.
		Furthermore, new methods to control particle charge are introduced.

[Textbook] Lecture notes

【Textbook(supplemental)】 K. Okuyama, H. Masuda and S. Morooka: Biryuushi Kougaku — Fine particle technology, Ohmsha, Tokyo (1992)

[Prerequisite(s)] Basic knowledge on powder technology in bachelor course

【Independent Study Outside of Class】

[Web Sites]

Surface Control Engineering

界面制御工学

[Code] 10H020 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 2nd

[Location] A2-305 [Credits] [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

【Instructor】M.Miyahara,

[Course Description]

【Grading】

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	1	
	2	
	3	
	2	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Engineering for Chemical Materials Processing

化学材料プロセス工学

[Code] 10H021 [Course Year] Master and Doctor Course [Term] Spring [Class day & Period] Wed 4th [Location] A2-302 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Dept. of Chemical Engineering, Prof. M.Ohshima

,Dept of Chemical Engineering, Associate Prof. S.Nagamine,

[Course Description] Focusing on transport phenomena (flow & rheology, mass flux, heat flux) in polymer processing process, the key relationships among polymer properties, processing schemes, and processing machine are taught.

【Grading】40% midterm quiz, 60% exam at end

[Course Goals] The objective of this course is to know how the polymers are different in terms of thermal, rheological and mechanical properties. The attendees learn what Tg, Tc, Tm, G' and G" are, how those properties can be measured and how these obtained measurement data can be appreciated. Visual Observation movies relates those properties with the transport phenomena that occur in several polymer processing processes.

【Course Topics】

Theme	Class number of times	Description
Orientation &		The characteristics of polymers are reviewed by exercising the characterization of general
Introduction of Polymer	1	polymers, like PE, PP, PLA, PC, PS, PVC in terms of appearance, thermal and mechanical
Processing		properties.
State of Thermoplastic	1	The relationship among pressure-volume-temperature of thermoplastic polymer is described.
Polymer	1	The way of identifying the Tg, Tc is taught. Several equations of state are introduced.
		Several important thermal properties of thermoplastic polymers, such as glass transition
Thermal Properties of	2	temp, Tg, crystallization temp, Tc, and melting temp, Tm are explained together with the
Thermoplastic Polymers	2	measurement methods of those thermal properties. The latest measurement device, Flash
		DSC, is introduced with some of the interesting data of crystallization process.
		The basic of polymer rheology, viscosity and elasticity, is given. Several phenomena of
Dh 1: - 1 D		non-Newtonian fluid are introduced. The fundamental constitutive equations, Maxwell and
Rheological Properties	2	Voigt models, describing the viscoelasticity of the polymers are explained. Exercising on
of Thermoplastic		identification of polymer structures, such as the degree of entanglement, molecular weight,
Polymers		presence of long-chain branch from the rheological data, relationship between polymer
		rheology and polymer structure is explained.
		The basics of Polymer Processing are the series of Melt, Flow and Shape. Here the class
Basic Flows in Polymer	1	focus on the Flow. The two types flow, i.e., drag and pressure flows are explained together
Processing	1	with master equation. Without solving the mathematical equations, the skill of estimating the
		velocity profile is cultivated.
Visual Observation of		Entertaining several visual observation movies showing the flow phenomena in real polymer
Flow Phenomena in	1	processing machine like injection molding machine and extruder, The effects of thermal and
Processing Machine		rheological properties of polymer on those flow phenomena are clarified.
Phase separation and	2	The basic of phase separation of polymer-polymer, polymer-solvent are taught.
Morphology Formation	۷	The basic of phase separation of polymer-polymer, polymer-sorvent are taught.
Phase Separation		Several polymer processing schemes exploiting a phase separation phenomenon are
Phenomena in Polymer	1	introduced. Synergistic design of the polymer properties, processing scheme and processing
Processing		machine is stressed.
Check what we learn	1	During the class, plenty of quiz are given to check the understanding.

【Textbook 】 Handout

【Textbook(supplemental)】 Agassant, J.F., Polymer Processing: Principles and Modeling

[Prerequisite(s)] Basic of Transport Phenomena

【Independent Study Outside of Class】

[Web Sites]

Environmental System Engineerig

環境システム工学

[Code] 10H023 [Course Year] Master and Doctor Course [Term] [Class day & Period] Tue 2nd

[Location] A2-305 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Chemical Engineering, Professor, Kazuhiro Mae

Chemical Engineering, Associate professor, Taisuke Maki

[Course Description] First, we overview the concept of environmentally benign chemical processing based on the causal relation between energy and environmental issues. Then, we discuss various new technologies for energy production and environmentally harmonized processes from the viewpoint of chemical engineering.

【Grading】Coursework will be graded based on the reports.

[Course Goals] To learn methodology for system-up of environmentally benign process based on energy and exergy. To consider perspective of biomass and hydrogen utilization. To understand several environmental evaluation methods.

[Course Topics]

Theme	Class number of times	Description
Concept of		
environmentally	4	David of annual and advantage of annual formation and annual and annual and annual and annual and annual and annual annual and annual and annual annu
benign system based	4	Basic of exergy and calculation of exergy for various conversion process
on exergy		
Biomass conversion	3	Introduction of various conversion processes for baiomass and wastes from the
Diomass conversion	3	view point of kinetics
Environmental		Introduction of various environmental evaluation methods Calculation of LCA
evaluation method (1	2	
)		analysis
Environmental		Colorlation of E featon and anxinonmental officiancy for several shamical
evaluation method (2	2	Calculation of E-factor and environmental efficiency for sevaral chemical
)		processes
Confirmation of	1	
study achievement		Feedback of evaluation results for reports and exercises.

【Textbook 】 The textbook is not required. Materials will be supplied by instructors.

【Textbook(supplemental)】Pysical chemistry, Themodynamics

[Prerequisite(s)] Basic knowledge for chemical engieering themodynamics is required.

【Independent Study Outside of Class】

[Web Sites]

Special Topics in English for Chemical Engineering

化学技術英語特論

[Code]10H037 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	6	
	2	
	2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Process Design

プロセス設計

[Code] 10E038 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 3rd

[Location] A2-304 [Credits] 2 [Restriction] Yes. See the additional information at the bottom of this page.

[Lecture Form(s)] Lecture and exercise [Language] Japanese

【Instructor】Dept. of Chem. Eng., Professor, hinji Hasebe

Part-time lecturer, Kazuyoshi Baba

All the faculty members of Dept. of Chem. Eng.

[Course Description] The fundamental skills of designing chemical processes which consist of various unit operations are learned. Then, a conceptual design exercise of a chemical process is executed using the knowledge of chemical engineering and process simulation system.

[Grading] The results are evaluated by the contents of the final report and the oral presentation.

[Course Goals] It is requested to understand the way of conceptual design, and to have the skill of designing chemical processes by applying the knowledge of chemical engineering and related field.

[Course Topics]

Class number of times	Description
'	The assembly of the optimally designed unit operations does not result in the
1	total optimum system. The concepts of the system boundary and the total
	optimal design are explained.
	In an actual process design, use of a process simulator is indispensable. The
1	design technique using the sequential modular approach, which is mainly used
	in the process simulator, is explained.
2	How to use the process simulator which is widely used in the real process
<u> </u>	design is explained.
	Process design consists of successive steps such as the acquisition of market
	research and data, process synthesis, and an equipment design. For these steps,
O	the problems which should be taken into consideration are made clear, and the
	techniques which can be used at each step are explained.
1	The design exercise is executed by 2 to 3 students' group.
	The design result at each group is presented at the oral session where all the
4	faculty members attend.
	times 1

[Textbook] Lecture materials are distributed in the class.

【Textbook(supplemental)】

【Prerequisite(s)】 The basic knowledge of chemical engineering such as the unit operation and reaction engineering are requested.

[Independent Study Outside of Class] The design exercise is executed by 2 to 3 students' group.

[Web Sites] http://www.cheme.kyoto-u.ac.jp/processdesign/

[Additional Information] Each group of students is supervised by the professors of the affiliation laboratory. The credit obtained in this course cannot be counted as the credit for graduation if the students have taken the same subject at the undergraduate course of chemical process engineering.

Special Topics in Chemical Engineering I

化学工学特論第一

[Code] 10H030 [Course Year] Master Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] S.Nagamine

[Course Description] This course will give lectures and practical training on the characterization of solid materials using analytical instruments.

【Grading】 Evaluated based on reports and an examination

[Course Goals] To understand the principles of instruments

[Course Topics]

Theme	Class number of times	Description
SEM	2	
TEM	2	
XRD	2	
FT-IR	2	
Raman spectrometry	2	
Feedback	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Special Topics in Chemical Engineering II

化学工学特論第二

[Code] 10H032 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Noriaki Sano,

【Course Description】 Technologies based on electrochemistry and electric discharges, which are used for chemical engineering applications (chemical reactions, separations, etc.) will be explained from fundamentals. First, fundamentals in electric phenomena for chemical engineering applications (Chemical equilibria, electron excitation, mass transfer, reaction rate, etc.) will be explained, and the students will improve their ability to develop the technologies using the relevant phenomena for broad range of technological field.

【Grading】 class participation, report, exams

[Course Goals] The students will gain the ability to develop new applications of electrochemistry and high voltage technologies based on fundamental understanding.

[Course Topics]

Theme	Class number of times	Description
Ionization in gases and electrochemistry in solutions	2	The fundamentals of ionization in gases and solutions will be explained. The student will understand the features of ionization in gases and solutions. The knowledge gained here will be the fundamentals to understand the development of many applications of electrochemistry and gas discharges.
Electrochemistry for chemical analyses	3	Principles of analytical methods (measurement of PH, analysis of catalyst, etc.) will be explained. Based on the principles, the students will understand the important factors to use these methods.
Applications for batteries and fuel cells	3	Localized electric energy supplies (batteries, fuel cells, solar cells, capacitors, etc.) are driven by electrochemistry. The students understand their principles and features, and understand the problems to solve to improve their performance.
Chemistry by electric discharges and plasmas	2	Unique chemistries can be achieved by using electric discharges and plasmas for reactions in gases, surface treatment, and film synthesis. The students will understand the principles and features of these reactions, which can not be realized by other thermal reactions.
Assessment	1	Assessment

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] Non

Special Topics in Chemical Engineering III

化学工学特論第三

[Code] 10H033 [Course Year] Master Course [Term] [Class day & Period] Tue 5th [Location] A2-305

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Department of Chemical Engineering, Junior Associate Professor, Satoshi Watanabe

[Course Description] In this course, students will learn fundamental phenomena observed in colloidal dispersions and related characterization techniques.

【Grading】 Attendance, reports, and exams.

[Course Goals] To understand the basic phenomena in colloidal dispersions, including particle charging, interactions, and phase behaviors.

[Course Topics]

Theme	Class number of times	Description
Colloidal	1	The definition of colloidal dispersions and their wide applications will be
Dispersions		described.
Doubiele Changes and		In this theme, following topics will be explained: the formation of electric
Particle Charges and	5	double layer, the derivation of electric potential by solving the
Interpartticle	5	Poisson-Boltzmann equation, and the interaction between two charged
potentials in Liquids		surfaces.
Characterization of		In this theme, characterization techniques of colloidal particles will be
Colloidal	2	introduced, including dynamic light scattering, the measurements of
Dispersions		electrophoretic mobility and surface forces.
		Colloidal suspensions show an order-disorder transition, which is analogous to
Equilibrium Phase	3	the solid-liquid transition of molecular systems. This theme will deal with
Behavior		"colloidal crystals" formed through the order-disorder phase transition, and the
		formation process and their optical properties will be discussed.

【Textbook】 Reference materials will be distributed during the lectures if needed.

【Textbook(supplemental)】1) Colloidal Dispersions, W.B. Russel, D.A. Saville, and W.R. Schowalter, Cambridge University Press

2) Theory of The Stability of Lyophobic Colloids, E.J. W. Verwey and J.Th.G. Overbeek, Dover Publications

[Prerequisite(s)] Maths, Thermodynamics

【Independent Study Outside of Class】

[Web Sites]

Special Topics in Chemical Engineering IV

化学工学特論第四

[Code] 10H035 [Course Year] Master Course [Term] [Class day & Period] Tue 3rd [Location] A2-305

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Research Internship in Chemical Engineering

研究インターンシップ(化工)

[Code] 10H040 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] Exercise [Language] English [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	1	

[Textbook]

 $\begin{tabular}{ll} Textbook(supplemental) \begin{tabular}{ll} Tex$

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P043

Chemical Engineering Seminar

化学工学セミナー1

[Code] 10P043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times		Description
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemical Engineering Seminar

化学工学セミナー2

[Code] 10P044 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times		Description
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P045

Chemical Engineering Seminar

化学工学セミナー3

[Code] 10P045 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times		Description
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemical Engineering Seminar

化学工学セミナー4

[Code] 10P046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times		Description
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

化学工学特別実験及演習

[Code] 10E045 [Course Year] Master 1st [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor],

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme Class number of times Description	
---	--

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

化学工学特別実験及演習

[Code] 10E047 [Course Year] Master 1st [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

化学工学特別実験及演習

[Code] 10E049 [Course Year] Master 2nd [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme Class number of times Description	Theme	Class number of	Description
---	-------	-----------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

化学工学特別実験及演習

[Code] 10E051 [Course Year] Master 2nd [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor],

[Course Description]

【Grading】

【Course Goals】

【Course Topics】

Theme Class number of times Description	
---	--

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論 (英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called "high technologies", and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site for more information. You can find an attachment file, "通知版: 2016 先端マテリアル講義概要", where the term Credit will tell you the requirement.

[Course Goals]

【Course Topics】

Theme	Class number of	Description				
	times					
Hyperthermophiles and their thermostable biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)				
Theoretical Design for Organic Light-Emitting Diode Materials	1	Organic light-emitting diodes have multilayer structures consisting of carrier-transporting layers and a light emitting layer. The concepts employed in desining these materials and their examples are discussed.(T. Sato: Dept. of Molecular Engineering)				
In Vivo Optical and Photoacoustic Tumor Imaging using Near-infrared Dye-cinjugated Amphiphilic Polymers	1	Optical and photoacoustic imaging methods are one of the most powerful and noninvasive techniques with which to visualize organs as well as tumor tissues. In this lecture, students can learn the basic principles of molecular imaging as well as recent progress in this field. (K. Ohe: Dept. of Energy and Hydrocarbon Chemistry)				
Charge Carrier Transport in Conjugated Molecular Materials	1	How can we facilitate effective charge carrier transport pathway in organic conjugated molecular materials? The major topic of the present lecture is the mechanism of charge carrier transport in conjugated molecular materials. After an overview of electronic structure of conjugated molecular materials based on band models, a variety of measurement techniques is introduced to probe charge carrier mobility in the materials, to figure out characteristic behavior of conjugated molecules (and their aggregates) as electric conductive materials.(S. Seki: Dept. of Molecular Engineering)				
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed.(T. Koga: Dept. of Polymer Chemistry)				
Materials Processing using external fields for microstructure control	1	Properties of materials are not simply determined by atomic structure and chemical composition. Microstructure (crystal grain size, crystallographic orientation and so on) significantly influences the properties. Not a few techniques have been developed for controlling the microstructure. Materials processing using external fields will be demonstrated in this class.(H. Yasuda: Dept. of Materials Science and Engineering)				
Force acting on colloidal particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed.(R. Yamamoto: Dept. of Chemical Engineering)				
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced.(T. Asano: Dept. of Electronic Science and Engineering)				
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials.(Y. Nakao: Dept. of Material Chemistry)				
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)				
Introduction to Nuclear Materials	1	Nuclear materials are designed for using in irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked.(I. Takagi: Dept. of Nuclear Engineering)				
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed.(T. Koga: Dept. of Polymer Chemistry)				
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides.(K. Tanaka: Dept. of Material Chemistry)				
Solar Hydrogen Production using Semiconductor Photocatalyst	1	The development of a clean and renewable energy carrier that does not utilize fossil fuels is a great technological challenge. Photocatalytic water splitting using semiconductor materials has attracted considerable interest due to its potential to cleanly produce H2 from water by utilizing abundant solar light. In the present lecture, the basis and the recent progress in photocatalytic water splitting will be introduced.(R. Abe: Dept. of Energy and Hydrocarbon Chemistry)				
Electrodeposition and Electroless Deposition for Materials Processing	1	(1)Fundamentals chemistry, electrochemistry, and thermodynamics , and (2)applications of electrodeposition and electroless deposition for materials processing.(K. Murase: Dept. of Materials Science and Engineering)				

【Textbook 】None

 $\begin{tabular}{ll} Textbook(supplemental) \begin{tabular}{ll} Textbook(supplemental) \end{tabular}$

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information 】 Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

10K005

Advanced Modern Science and Technology (English lecture)

現代科学技術特論(英語科目)

【Code】10K005	[Course Year]	Master and Doctor Course	[Term]	【Class day & Period】Thu 5th	【Location】A2-306	【Credits】2(Semester system)	[Restriction] No Restriction
[Lecture Form(s)]	Relay Lecture	[Language] English					

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryosuke Matsumoto Related professors

Course Description 1 Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system. Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Who shake the dice?	1	Double slit phenomenon known as a prediction inability " quantum mechanics of the mystery (Feynman says) " can be every moment predicted by QED.(A. Tachibana: Dept. of Micro Engineering)
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)
Systems Control in Aeronautics and Astronautics	1	Systems control theory is used in several problems in aeronautics and astronautics. This lecture focuses on some of them and further gives an overview of this research based on them.(K. Fujimoto: Dept. of Aeronautics and Astronautics)
Countermeasures of the Contaminated Water at Fukushima Daiichi Nuclear Power Station and that of the Contaminated Soil in Fukushima Area	1	The situation of contaminated water in Fukushima Daiichi Nuclear Power Station and soil contamination in and around Fukushima area and their technological countermeasures taken today will be introduced and discussed.(M. Yoneda: Dept. of Environmental Engineering)
Polymer Synthesis beyond the 21st Century: Precision Polymerizations and Novel Polymeric Materials	1	We are now in the "Polymer Age", where synthetic polymer materials are indispensable in the modern human life: healthy, safe, comfortable, and sustainable. A critical challenge herein is to develop "precision polymerization", polymer-forming reactions that provide polymers of well-defined structures and designed functions. Given these backgrounds, this lecture will overview the following subjects: (a)What polymers are; (b)How to synthesize polymers; (c)How and where polymeric materials work and function; (d)Precision polymer synthesis; and (e)The future of polymeric materials.(M. Sawamoto: Dept. of Polymer Chemistry)
Engineering Approach to Phase Behavior of Fluids Confined in Nanospace	1	Fluids confined in nano-scale pores exhibit peculiar phase behaviors that depends strongly on physico-chemical effects by pore walls and conditions of the bulk phase in equilibrium with the pore fluids, to which the engineering approach must be effective.(M. Miyahara: Dept. of Chemical Engineering)
Elucidation of Principles for the Self-organization of Mesoscale Colloidal Particles	1	The process of so-called the colloid crystal has been pursued to find out the key principles for the structure evolution, employing the Brownian dynamics simulations. Also given in the lecture will be various pattern formations in the convective self-assembly of colloidal suspensions. (M. Miyahara: Dept. of Chemical Engineering)
Architectural Design and Architectural Thinking	1	Architectural design is integration of thinking on architectural events and materials. I would like to discuss this architectural thinking and the method to embody it.(K. Takeyama: Dept. of Architecture and Architectural Engineering)
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Vacuum Nanoelectronics Devices in Harsh Environments	1	This lecture reviews the perspective of the modern vacuum electron devices based on miniaturized electron sources fabricated with contemporary semiconductor processes. The performance of the devices is evaluated in view of the device in harsh environments. (Y. Gotoh: Dept. of Electronic Science and Engineering)
Advanced Digital Technology for Analytical Recording of Cultural Heritage Assets	1	(A. Ide: Dept. of Mechanical Engineering and Science)
Protein Structure, Function, and Motion	1	Proteins work by fluctuating and changing their conformations. Protein structures and motions, which are essential for understanding their functions in detail, are introduced in conjunction with the state-of-art methods to analyze them.(K. Sugase: Dept. of Molecular Engineering)
Laser-induced Breakdown Spectroscopy and Its Application to Underwater In-situ Elemental Analysis	1	Development of laser-induced breakdown spectroscopy (LIBS) for in-situ elemental analysis in water, and the application to resource exploration at sea bottom will be explained.(T. Sakka: Dept. of Energy and Hydrocarbon Chemistry)
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)
Modern Techniques for Material Characterization	1	Overview of modern techniques for material characterization is given with basic principles and practical applications. Impacts on the life of the people of characterization techniques are also included.(J. Matsuo: Dept. of Nuclear Engineering)

【Textbook】 None

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

 $\label{thm:conditional} \mbox{ Additional Information \ref{D} Students who take Autumn term should register "Lecture code 10H006"}.$

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 5th

[Location] Funai Hall [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

化学工学特別セミナー1

[Code] 10T004 [Course Year] Doctor 1st [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	1	
	2	
	1	
	2	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

化学工学特別セミナー2

[Code] 10T005 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor], K.Mae, T.Maki,

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	3	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

化学工学特別セミナー3

[Code] 10T006 [Course Year] Doctor 1st [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
1	
1	
2	
2	
2	
2	
2	
2	
1	
3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

化学工学特別セミナー4

[Code] 10T007 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Wed 4th

[Location] A2-305 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Chemical Engineering, Professor, Kazuhiro Mae

Chemical Engineering, Associate professor, Taisuke Maki

[Course Description]

【Grading】Coursework will be graded based on the reports.

[Course Goals] To Understand the dealing concept of solid phase reaction. To learn representative solid reaction models and the application methodology to industrial process using several process models.

[Course Topics]

Theme	Class number of times	Description	
Concept of solid	1	Introduction of solid phase reaction models based on the number of active	
reaction model	1	sites.	
Gas-solid reaction		Introduction of representative gas-solid reactions such as shrinking core	
	3	model, random pore mod, elgrain model etc. The construction methodology of	
model		the model is learned.	
Solid reaction model	2	The pyrolysis rate model of organic solid material based on DAEM. The data	
(Pyrolysis)	3	analysis of coal pyrolysis was exercised.	
	3	Introduction of the basic of lattice model. The model to describe cross-linking	
Percolation model		during the pyrolysis of organic solid such as polymer is considered to	
		understand the percolation model.	
Decetor of solid		Introduction of fixed bed, moving bed, and fluidized bed reactors for solid	
Reactor of solid reation	4	reactions. Each reactor model is explained to construct the design equation of	
		the reactor size.	
Confirmation of	1	Foodbook of avaluation mosults for rements and avancing	
study achievement	1	Feedback of evaluation results for reports and exercises.	

【Textbook 】 The textbook is not required. Materials will be supplied by instructors.

【Textbook(supplemental)】

[Prerequisite(s)] Required master degree knowledge on chemical engineering

【Independent Study Outside of Class】

[Web Sites]

化学工学特別セミナー5

[Code] 10T008 [Course Year] Doctor Course [Term] 1st term

[Class day & Period] a series of lectures-chemical engineering [Location] [Credits] 2 [Restriction]

[Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Dept. of Chemical Engineering, Profs. M. Miyahara, M. Ohshima, H. Tamon, and K. Mae

[Course Description] The state of the arts in chemical engineering is given in a series of lectures of professors who are experts in a specific field.

【Grading 】Presence to the lecture and Report submission

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
Polymer Processing		Introducing the processing schemes of polymeric porous materials, the
-How to make a fine	4	importance of the literacy of chemical engineering for the polymer processing
cellular foam		is discussed.
	4	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10T009

Special Seminar in Chemical Engineering 6

化学工学特別セミナー6

[Code] 10T009 [Course Year] Doctor Course [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] R. Yamamoto, M. Kawase, K. Miura, S. Hasebe, S. Matsuzaka,

[Course Description]

[Grading]

[Course Goals]

【Course Topics】

Theme	Class number of times	Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Required master degree knowledge on chemical engineering

【Independent Study Outside of Class】

[Web Sites]

化学工学特別セミナー7

[Code] 10T010 [Course Year] Doctor Course [Term] 2nd term

[Class day & Period] Intensive (10:00-17:00 on Nov 7, 14, 21) [Location] A2-305 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor] Department of Chemical Engineering, Related Professors and Associate Professors

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	unics	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This is an biennial course which will be open in 2017, 2019, ...

工学研究科シラバス 2016 年度版

([C] Advanced Engineering Course Program) Copyright ©2016 京都大学工学研究科 2016 年 4 月 1 日発行 (非売品)

編集者 京都大学工学部教務課 発行所 京都大学工学研究科 〒 615-8530 京都市西京区京都大学桂

デザイン 工学研究科附属情報センター

工学研究科シラバス 2016 年度版

- [A] Common Subjects of Graduate School of Engineering
- [B] Master's Program
- · [C] Advanced Engineering Course Program
- [D] Interdisciplinary Engineering Course Program
- ・オンライン版 http://www.t.kyoto-u.ac.jp/syllabus-gs/

本文中の下線はリンクを示しています.リンク先はオンライン版を参照してください.

オンライン版の教科書・参考書欄には京都大学蔵書検索(KULINE)へのリンクが含まれています.

