SYLLABUS

2017

[C] Advanced Engineering Course Program

Kyoto University, Graduate School of Engineering

[C] Advanced Engineering Course Program

Civil and Earth Resources Engineering

10F251 Exercise on Project Planning	1
10U051 Integrated Seminar on Infrastracture Engineering A	2
10U052 Integrated Seminar on Infrastracture Engineering B	3
10U055 Seminar on Infrastructure Engineering A	4
10U056 Seminar on Infrastructure Engineering B	5
10U059 Internship on Infrastracture Engineering	6
10F063 Practice in Infrastructure Engineering	7
10U060 ORT on Infrastructure Engineering	8
10U064 Practice in Advanced Infrastructure Engineering A	9
10U065 Practice in Advanced Infrastructure Engineering B	10
10F003 Continuum Mechanics	11
10F067 Structural Stability	12
10F068 Material and Structural System & Management	13
10F261 Earthquake Engineering/Lifeline Engineering	14
10W001 Infrastructural Structure Engineering	15
10F009 Structural Design	16
10F010 Bridge Engineering	17
10A019 Concrete Structural Engineering	18
10F227 Structural Dynamics	19
10F263 Seismic Engineering Exercise	20
10F415 Ecomaterial and Environment-friendly Structures	21
10F089 Infrastructure Safety Engineering	22
10F075 Hydraulics & Turbulence Mechanics	23
10A216 Hydrology	24
10F019 River Engineering and River Basin Management	25
10A040 Sediment Hydraulics	26
10F464 Hydrologic Design and Management	27
10F245 Open Channel Hydraulics	28
10F462 Coastal Wave Dynamics	29
10F267 Hydro-Meteorologically Based Disaster Prevention	30
10A222 Water Resources Systems	31
10F077 River basin management of flood and sediment	32
10F269 Coastal and Urban Water Disasters Engineering	33
10F466 Basin Environmental Disaster Mitigation	34
10F011 Computational Fluid Dynamics	35
10F065 Hydraulic Engineering for Infrastructure Development and Management	36
10F100 Applied Hydrology	37
10F103 Case Studies Harmonizing Disaster Management and Environment Conservation	38
10F106 Integrated Disasters and Resources Management in Watersheds	39

10F025 Geomechanics	40
10K016 Computational Geotechnics	41
10F238 Geo-Risk Management	42
10F241 Construction of Geotechnical Infrastructures	43
10F405 Fundamental Geofront Engineering	44
10A055 Environmental Geotechnics	45
10F109 Disaster Prevention through Geotechnics	46
10F203 Public Finance	47
10F207 Urban Environmental Policy	48
10F219 Quantitative Methods for Behavioral Analysis	49
10F215 Intelligent Transportation Systems	50
10A805 Remote Sensing and Geographic Information Systems	51
10A808 Civic and Landscape Design	52
10F223 Risk Management Theory	53
10X333 Disaster Risk Management	54
693287 Disaster Information	55
10A845 Theory & Practice of Environmental Design Research	56
10A402 Resources Development Systems	57
10F053 Applied Mathematics in Civil & Earth Resources Engineering	58
10A405 Environmental Geosphere Engineering	59
10F071 Applied Elasticity for Rock Mechanics	60
10F073 Fundamental Theories in Geophysical Exploration	61
10F076 Underground space and petrophysics	62
10A420 Lecture on Exploration Geophysics	63
10F085 Measurement in the earth's crust environment	64
10F088 Earth Resources Engineering	65
10X311 Urban Infrastructure Management	66
10F113 Global Survivability Studies	67
693291 Emergency Management Systems	68
10F201 Information Technology for Urban Society	69
10Z001 Urban Transport Policy	70
10Z002 Policy for Low-Carbon Society	71
10Z003 Urban Transport Management	72
10F380 Engineering Seminar for Disaster Resilience in ASEAN countries	73
10F382 Disaster and Health Risk Management for Liveable City	74
10i049 Project Management in Engineering	75
10i050 Exercise on Project Management in Engineering	76

Urban Management

10F201 Information Technology for Urban Society	77
10F251 Exercise on Project Planning	78
10F253 Capstone Project	79
10U201 Integrated Seminar on Urban Management A	80
10U203 Integrated Seminar on Urban Management B	81

10F257 Seminar on Urban Management A	82
10F259 Seminar on Urban Managemen B	83
10F150 Long-Term Internship	84
10U210 Practice in Urban Management	85
10U216 ORT on Urban Management	86
10U224 Practice in Advanced Urban Management A	87
10U225 Practice in Advanced Urban Management B	88
10F003 Continuum Mechanics	89
10F067 Structural Stability	90
10F068 Material and Structural System & Management	91
10F261 Earthquake Engineering/Lifeline Engineering	92
10W001 Infrastructural Structure Engineering	93
10F009 Structural Design	94
10F010 Bridge Engineering	95
10A019 Concrete Structural Engineering	96
10F227 Structural Dynamics	97
10F263 Seismic Engineering Exercise	98
10F415 Ecomaterial and Environment-friendly Structures	99
10F089 Infrastructure Safety Engineering	100
10F075 Hydraulics & Turbulence Mechanics	101
10A216 Hydrology	102
10F019 River Engineering and River Basin Management	103
10A040 Sediment Hydraulics	104
10F464 Hydrologic Design and Management	105
10F245 Open Channel Hydraulics	106
10F462 Coastal Wave Dynamics	107
10F267 Hydro-Meteorologically Based Disaster Prevention	108
10A222 Water Resources Systems	109
10F077 River basin management of flood and sediment	110
10F269 Coastal and Urban Water Disasters Engineering	111
10F466 Basin Environmental Disaster Mitigation	112
10F011 Computational Fluid Dynamics	113
10F065 Hydraulic Engineering for Infrastructure Development and Management	114
10F100 Applied Hydrology	115
10F103 Case Studies Harmonizing Disaster Management and Environment Conservation	116
10F106 Integrated Disasters and Resources Management in Watersheds	117
10F025 Geomechanics	118
10K016 Computational Geotechnics	119
10F238 Geo-Risk Management	120
10F241 Construction of Geotechnical Infrastructures	121
10F405 Fundamental Geofront Engineering	122
10A055 Environmental Geotechnics	123
10F109 Disaster Prevention through Geotechnics	124
10F203 Public Finance	125

10F207 Urban Environmental Policy	126
10F219 Quantitative Methods for Behavioral Analysis	127
10F215 Intelligent Transportation Systems	128
10A805 Remote Sensing and Geographic Information Systems	129
10A808 Civic and Landscape Design	130
10F223 Risk Management Theory	131
10X333 Disaster Risk Management	132
693287 Disaster Information	133
10A845 Theory & Practice of Environmental Design Research	134
10A402 Resources Development Systems	135
10F053 Applied Mathematics in Civil & Earth Resources Engineering	136
10A405 Environmental Geosphere Engineering	137
10F071 Applied Elasticity for Rock Mechanics	138
10F073 Fundamental Theories in Geophysical Exploration	139
10F076 Underground space and petrophysics	140
10A420 Lecture on Exploration Geophysics	141
10F085 Measurement in the earth's crust environment	142
10F088 Earth Resources Engineering	143
10X311 Urban Infrastructure Management	144
10F113 Global Survivability Studies	145
693291 Emergency Management Systems	146
10Z001 Urban Transport Policy	147
10Z002 Policy for Low-Carbon Society	148
10Z003 Urban Transport Management	149
10F380 Engineering Seminar for Disaster Resilience in ASEAN countries	150
10F382 Disaster and Health Risk Management for Liveable City	151
10i049 Project Management in Engineering	152
10i050 Exercise on Project Management in Engineering	153

Environmental Engineering

10F439 Environmental Risk Analysis	154
10A632 Urban Metabolism Engineering	155
10F454 Systems Approach on Sound Material Cycles Society	156
10F441 Water Quality Engineering	157
10F234 Water Sanitary Engineering	158
10F461 Nuclear Environmental Engineering, Adv.	159
10F446 Atmospheric and Global Environmental Engineering, Adv.	160
10F400 Seminar on Urban and Environmental Engineering A	161
10F402 Seminar on Urban and Environmental Engineering B	162
10U401 Advanced Seminar on Urban and Environmental Engineering A	163
10U403 Advanced Seminar on Urban and Environmental Engineering B	164
10A643 Environmental Microbiology, Adv.	165
10A626 Advanced Environmental Health	166
10H424 Environmental-friendly Technology for Sound Material Cycle	167

10A622 Geohydro Environment Engineering. Adv.168	3
10X321 Lecture on Environmental Management Leader169)
10F456 New Environmental Engineering I, Advanced170)
10F458 New Environmental Engineering II, Advanced171	l
10F468 Environmental Organic Micropollutants Analysis Lab.172	2
10F470 Advanced Enivironmental Engineering Lab.173	3
10F472 Seminer on Practical Issues in Urban and Environmental Engineering174	1
10F449 Exercises in Urban and Environmental Engineering A175	5
10F450 Exercises in Urban and Environmental Engineering B176	5
10F475 ORT on Urban and Environmental Engineering177	7
10D051 Frontiers in Modern Science & Technology178	3
10i045 Exercise in Practical Scientific English179)
10i049 Project Management in Engineering180)
10i050 Exercise on Project Management in Engineering181	l

Architecture and Architectural Engineering (Advanced Engineering Course Program

(3yr Course))

10Q021 Advanced Theory of Architectureand Architectural Engineering I	182
10Q022 Advanced Theory of Architectureand Architectural Engineering II	183
10Q005 Seminar on Architectural Design and Planning I	184
10Q006 Seminar on Architectural Design and Planning II	185
10Q017 Seminar on Architectural Design and Planning III	186
10Q018 Seminar on Architectural Design and Planning IV	187
10Q008 Seminar on Structural Engineering of Buildings I	188
10Q009 Seminar on Structural Engineering of Buildings II	189
10Q015 Seminar on Structural Engineering of Buildings III	190
10Q016 Seminar on Structural Engineering of Buildings IV	191
10Q011 Seminar on Environmental Engineering I	192
10Q012 Seminar on Environmental Engineering II	193
10Q013 Seminar on Environmental Engineering III	194
10Q014 Seminar on Environmental Engineering IV	195
10D051 Frontiers in Modern Science & Technology	196
10i045 Exercise in Practical Scientific English	197
10i041 Professional Scientific Presentation Exercises (English lecture)	198
10i042 Advanced Engineering and Economy (English lecture)	199
10i010 International Internship in Engineering 1	200
10i011 International Internship in Engineering 2	201
10i049 Project Management in Engineering	202
10i050 Exercise on Project Management in Engineering	203

Mechanical Engineering and Science

10G001 Applied Numerical Methods	204
10G003 Solid Mechanics, Adv.	205
10G005 Thermal Science and Engineering	206

10C007 Introduction to Advanced Eluid Dynamics	207
10G007 Introduction to Advanced Fluid Dynamics 10G009 Quantum Condensed Matter Physics	207 208
10G011 Design and Manufacturing Engineering	208 209
10G013 Dynamic Systems Control Theory	20)
10G057 Engineering Ethics and Management of Technology	210
10G017 Fracture Mechanics	211 212
10B628 Physics of Neutron Scattering	212
10B407 Robotics	213 214
	214 215
10G025 Mechanical Functional Device Engineering 10G029 Patent Seminar	213 216
	210 217
10G036 Basic Seminar on Mechanical Engineering and Science A	
10G037 Basic Seminar on Mechanical Engineering and Science B	218
10G031 Seminar on Mechanical Engineering and Science A	219
10G032 Seminar on Mechanical Engineering and Science B	220
10G041 Advanced Finite Element Methods	221
10B418 Strength of Advanced Materials	222
10B622 Thermophysics for Thermal Engineering	223
10G039 Transport Phenomena	224
10G021 Engineering Optics and Spectroscopy	225
10G403 Optimum System Design Engineering	226
10B631 High Energy Radiation Effects in Solid	227
10B634 Advanced Experimental Techniques and Analysis in Engineering Physics	228
10Q807 Theory for Design Systems Engineering	229
10B828 High Precision Engineering	230
10V003 Biomechanics	231
10W603 Introduction to Biomedical Engineering	232
10B440 Environmental Fluid Dynamics	233
10Q402 Turbulence Dynamics	234
10G055 Crystallography of Metals	235
10Q610 Seminar: Dynamics of Atomic Systems	236
10V007 Neutron Science Seminor 1	237
10V008 Neutron Science Seminar II	238
10K013 Advanced Mechanical Engineering	239
10K005 Advanced Modern Science and Technology (English lecture)	240
10X411 Design of Complex Mechanical Systems	241
10X402 Theory for Designing Artifacts	242
693517 Theory of Symbiotic Systems	243
693510 Control Theory for Mechanical Systems	244
693513 Theory of Human-Machine Systems	245
693431 Dynamical Systems, Advanced	246
653316 Heat Engine Systems	247
653322 Combustion Science and Engineering	248
10V012 Advanced Exercise in Mechanical Engineering and ScienceA	249
10V013 Advanced Exercise in Mechanical Engineering and ScienceB	250

10V014 Advanced Exercise in Mechanical Engineering and ScienceC	251
10V015 Advanced Exercise in Mechanical Engineering and ScienceD	252
10V016 Advanced Exercise in Mechanical Engineering and ScienceE	253
10V017 Advanced Exercise in Mechanical Engineering and ScienceF	254
10G049 Internship M	255
10V019 Internship DS	256
10V020 Internship DL	257
10V025 Seminar of Complex Mechanical Engineering,A	258
10V027 Seminar of Complex Mechanical Engineering,B	259
10V029 Seminar of Complex Mechanical Engineering,C	260
10V031 Seminar of Complex Mechanical Engineering,D	261
10V033 Seminar of Complex Mechanical Engineering,E	262
10V035 Seminar of Complex Mechanical Engineering,F	263
10G051 Experiments on Mechanical Engineering and Science, Adv. I	264
10G053 Experiments on Mechanical Engineering and Science, Adv. II	265

Micro Engineering

10G001 Applied Numerical Methods	266
10G003 Solid Mechanics, Adv.	267
10G005 Thermal Science and Engineering	268
10G007 Introduction to Advanced Fluid Dynamics	269
10G009 Quantum Condensed Matter Physics	270
10G011 Design and Manufacturing Engineering	271
10G013 Dynamic Systems Control Theory	272
10G057 Engineering Ethics and Management of Technology	273
10G203 Micro Process and Material Engineering	274
10G205 Microsystem Engineering	275
10G209 Multi physics Numerical Analysis	276
10B619 Quantum Theory of Condensed Matter	277
10G211 Solid State Physics 1	278
10G223 Basic Seminar on Micro Engineering A	279
10G224 Basic Seminar on Micro Engineering B	280
10G216 Seminar on Micro Engineering A	281
10G217 Seminar on Micro Engineering B	282
10B418 Strength of Advanced Materials	283
10G214 Precision Measurement and Machining	284
10V003 Biomechanics	285
10V201 Introduction to the Design and Implementation of Micro-Systems	286
10G041 Advanced Finite Element Methods	287
10W603 Introduction to Biomedical Engineering	288
10B617 Quantum Theory of Molecular Physics	289
10Q408 Quantum Theory of Chemical Physics	290
10V205 Solid State Physics 2	291
10K013 Advanced Mechanical Engineering	292

10K005 Advanced Modern Science and Technology (English lecture)	293
10X411 Design of Complex Mechanical Systems	294
10X402 Theory for Designing Artifacts	295
10V210 Advanced Exercise in Micro Engineering A	296
10V211 Advanced Exercise in Micro Engineering B	297
10V212 Advanced Exercise in Micro Engineering C	298
10V213 Advanced Exercise in Micro Engineering D	299
10V214 Advanced Exercise in Micro Engineering E	300
10V215 Advanced Exercise in Micro Engineering F	301
10Z101 Micro/Nano Scale Material Engineering	302
10G049 Internship M	303
10V019 Internship DS	304
10V020 Internship DL	305
10V025 Seminar of Complex Mechanical Engineering,A	306
10V027 Seminar of Complex Mechanical Engineering,B	307
10V029 Seminar of Complex Mechanical Engineering,C	308
10V031 Seminar of Complex Mechanical Engineering,D	309
10V033 Seminar of Complex Mechanical Engineering, E	310
10V035 Seminar of Complex Mechanical Engineering,F	311
10G226 Experiments on Micro Engineering, Adv. I	312
10G228 Experiments on Micro Engineering, Adv. II	313

Aeronautics and Astronautics

10G001 Applied Numerical Methods	314
10G003 Solid Mechanics, Adv.	315
10G005 Thermal Science and Engineering	316
10G007 Introduction to Advanced Fluid Dynamics	317
10G009 Quantum Condensed Matter Physics	318
10G011 Design and Manufacturing Engineering	319
10G013 Dynamic Systems Control Theory	320
10G057 Engineering Ethics and Management of Technology	321
10G401 Jet Engine Engineering	322
10G405 Propulsion Engineering, Adv.	323
10G406 Gas Dynamics, Adv.	324
10G409 Aerospace Systems and Control	325
10G411 Fluid Dynamics for Aeronautics and Astronautics	326
10C430 Advanced Flight Dynamics of Aerospace Vehicle	327
10G230 Dynamics of Solids and Structures	328
10G423 Transport Phenomena in Reactive Flows	329
10G041 Advanced Finite Element Methods	330
10V401 Seminar on Engineering Science of Ionized Gases	331
10V412 Seminar on Gas Dynamics	332
10V405 Seminar on Fluid Dynamics for Aeronautics and Astronutics	333
10R410 Seminar on Aerospace systems	334

10R419 Seminar on Systems and Control	335
10V407 Seminar on Optimum System Design Engineering	336
10V409 Thermal Engineering Seminar	337
10V413 Seminar on Mechanics of Functional Solids and Structures	338
10X411 Design of Complex Mechanical Systems	339
10K013 Advanced Mechanical Engineering	340
693431 Dynamical Systems, Advanced	341
693410 Mathematical Analysis, Advanced	342
693320 Topics in Nonlinear Dynamics A	343
693321 Topics in Nonlinear Dynamics B	344
10M226 Meteorology I	345
10M227 Meteorology II	346
10V019 Internship DS	347
10V020 Internship DL	348
10V025 Seminar of Complex Mechanical Engineering,A	349
10V027 Seminar of Complex Mechanical Engineering,B	350
10V029 Seminar of Complex Mechanical Engineering,C	351
10V031 Seminar of Complex Mechanical Engineering,D	352
10V033 Seminar of Complex Mechanical Engineering, E	353
10V035 Seminar of Complex Mechanical Engineering,F	354
10G418 Experiments and Exercises in Aeronautics and Astronautics I	355
10G420 Experiments and Exercises in Aeronautics and Astronautics II	356

Nuclear Engineering

10C070 Introduction to Quantum Science	357
10C072 Introduction to Advanced Nuclear Engineering	358
10C004 Quantum Field Theory	359
10C074 Quantum Science	360
10C013 Nuclear Materials	361
10C014 Nuclear Fuel Cycle 1	362
10C017 Radiation Physics and Engineering	363
10C018 Neutron Science	364
10C031 Quantum Manipulation Technology	365
10C076 Fundamentals of Magnetohydrodynamics	366
10C034 Nuclear Energy Conversion and Reactor Engineering	367
10C037 Multiphase Flow Engineering and Its Application	368
10C038 Physics of Fusion Plasma	369
10C078 Hybrid Advanced Accelerator Engineering	370
10C080 Nuclear Reactor Safety Engineering	371
10C082 Applied Neutron Engineering	372
10C047 Radiation Medical Physics	373
10C084 Nuclear Engineering, Adv.	374
10C068 Nuclear Engineering Application Experiments	375
10R001 Quantum Beam Science, Adv.	376

10R004 Quantum Physics, Adv.	377
10R013 Nonlinear Physics in Fusion Plasmas	378
10C086 Introduction to Nucelar Engineering 1	379
10C087 Introduction to Nucelar Engineering 2	380
10W620 Radiation Measurement for Medicine	381
10K001 Introduction to Advanced Material Science and Technology (English lecture)	382
10K005 Advanced Modern Science and Technology (English lecture)	383
10D051 Frontiers in Modern Science & Technology	384
10i045 Exercise in Practical Scientific English	385
10C050 Internship M	386
10C063 Experiments and Exercises on Nuclear Engineering, Adv. I	387
10C064 Experiments and Exercises on Nuclear Engineering, Adv. II	388
10C089 Seminar on Nuclear Engineering A	389
10C090 Seminar on Nuclear Engineering B	390
10R017 Engineering Internship D	391
10R019 Seminar on Nuclear Engineering, Adv. A	392
10R021 Seminar on Nuclear Engineering, Adv. B	393
10R023 Seminar on Nuclear Engineering, Adv. C	394
10R025 Seminar on Nuclear Engineering, Adv. D	395
10R027 Seminar on Nuclear Engineering, Adv. E	396
10R029 Seminar on Nuclear Engineering, Adv. F	397
Materials Science and Engineering	
10C209 Non-ferrous extractive metallurgy, Adv.	398
10C210 Material and Chemical Information Analysis	399
10C214 Microstructure, solidification and crystal growth	400
10C267 Ceramic Materials Science	401
10C263 Physical Properties of Crystals Adv.	402
10C271 Magnetism and magnetic materials	403
10C286 Atomic-molecular scale engineering	404
10C288 Microstructure theory and structure evaluation	405
10C289 Advanced Structural Metallic Materials	406
10C290 Electrochemistry for Materials Processing,	407
10K001 Introduction to Advanced Material Science and Technology (English lecture)	408
10C273 Social Core Advanced Materials I	409
10C275 Social Core Advanced Materials I I	410
10C277 Internship M for Materials Science & Engineering	411
10C251 Seminar on Materials Science and Engineering A	412
10C253 Seminar on Materials Science and Engineering B	413
10C240 Laboratory & Seminar in Materials Science and Engineering, Adv.	414
10C241 Laboratory & Seminar in Materials Science and Engineering, Adv.II	415
10R241 Seminar on Materials Science and Engineering, Adv. B	416
10R242 Seminar on Materials Science and Engineering, Adv. B	417
10R243 Seminar on Materials Science and Engineering, Adv. C	418

10R244 Seminar on Materials Science and Engineering, Adv. D	419
10R245 Seminar on Materials Science and Engineering, Adv. E	420
10R247 Seminar on Materials Science and Engineering, Adv. A ~ F	421
10W410 Nano Materials Science	422
10D051 Frontiers in Modern Science & Technology	423
10C292 International Standards	424
10i010 International Internship in Engineering 1	425
10i011 International Internship in Engineering 2	426
10i049 Project Management in Engineering	427
10i050 Exercise on Project Management in Engineering	428

Electrical Engineering

10C643 Advanced Experiments and Exercises in Electrical Engineering ,	429
10C646 Advanced Experiments and Exercises in Electrical Engineering II	430
10R610 Advanced Electrical Engineering Seminar	431
10C628 State Space Theory of Dynamical Systems	432
10C604 Applied Systems Theory	433
10C601 Applied Mathematics for Electrical Engineering	434
10C647 Electrical and Electromagnetic Circuits	435
10C610 Electromagnetic Theory, Adv.	436
10C613 Superconductivity Engineering	437
10C614 Biological Function Engineering	438
10C621 Applied Hybrid System Engineering	439
10C625 Theory of Electric Circuits, Adv.	440
10C631 Design of Control Systems	441
10C616 Electric Power Transmission System	442
10C611 Computer Simulations of Electrodynamics	443
10C612 Space Radio Engineering	444
10C617 Applied Microwave Engineering	445
10C714 Spacio-Temporal Media Analysis	446
10C716 Visualized Simulation Technology	447
10K010 Recent Advances in Electrical and Electronic Engineering	448
693622 Digital Communication Engineering	449
693628 Information Network	450
10X001 Prospects of Interdisciplinary Photonics and Electronics	451
10C718 Advanced Seminar in Electrical Engineering I	452
10C720 Advanced Seminar in Electrical Engineering II	453
10C627 Research Internship(M)	454
10R630 Research Internship (D)	455
10R632 Advanced Exercises on Electrical Engineering I, II	456
10R633 Advanced Exercises on Electrical Engineering I, II	457
10D051 Frontiers in Modern Science & Technology	458
10i045 Exercise in Practical Scientific English	459
10K001 Introduction to Advanced Material Science and Technology (English lecture)	460

Electronic Science and Engineering	
10C710 Advanced Experiments and Exercises in Electronic Science and Engineering ,	462
10C713 Advanced Experiments and Exercises in Electronic Science and Engineering II	463
10R701 Advanced Seminar on Electronic Science and Engineering	464
10C825 Quantum Mechanics for Electronics Engineering	465
10C800 Semiconductor Nanospintronics	466
10C801 Charged Particle Beam Apparatus	467
10C803 Quantum Information Science	468
10C810 Semiconductor Engineering Adv.	469
10C813 Electronic Materials Adv.	470
10C816 Molecular Electronics	471
10C819 Surface Electronic Properties	472
10C822 Optical Properties and Engineering	473
10C828 Quantum Optoelectronics Devices	474
10C829 Quantum Optics	475
10C830 Quantum Measurement	476
10C851 Electrical Conduction in Condensed Matter	477
10C834 High Performance Thin Film Engineering	478
10K010 Recent Advances in Electrical and Electronic Engineering	479
693631 Integrated Circuits Engineering, Advanced.	480
10X001 Prospects of Interdisciplinary Photonics and Electronics	481
10C846 Advanced Seminar in Electronic Science and Engineering I	482
10C848 Advanced Seminar in Electronic Science and Engineering II	483
10C821 Research Internship(M)	484
10R823 Research Internship(D)	485
10R825 Advanced Exercises on Electronic Science and Engineering I, II	486
10R827 Advanced Exercises on Electronic Science and Engineering I, II	487
10D051 Frontiers in Modern Science & Technology	488
10i045 Exercise in Practical Scientific English	489
10K001 Introduction to Advanced Material Science and Technology (English lecture)	490
10K005 Advanced Modern Science and Technology (English lecture)	491

461

 $10K005\ \text{Advanced}\ \text{Modern}\ \text{Science}\ \text{and}\ \text{Technology}$ (English lecture)

Material Chemistry

10H001 Chemistry of Inorganic Materials	492
10H004 Chemistry of Organic Materials	493
10H007 Chemistry of Polymer Materials	494
10H010 Chemistry of Functional Materials	495
10H013 Chemistry and Structure of Inorganic Compounds	496
10H016 Synthetic Chemistry of Inorganic Solids	497
10H019 Synthesis of Organic Materials	498
10H022 Chemistry of Organic Natural Products	499
10H025 Analysis and Characterization of Materials	500

10H029 Polymer Physics and Function	501
10H031 Chemistry of Biomaterials	502
10H034 Analysis and Characterization of Materials	503
10D037 Laboratory and Exercise in Material Chemistry	504
10K001 Introduction to Advanced Material Science and Technology (English lecture)	505
10K005 Advanced Modern Science and Technology (English lecture)	506
10i045 Exercise in Practical Scientific English	507
10D051 Frontiers in Modern Science & Technology	508
10D043 Instrumental Analysis, Adv.	509
10D046 Instrumental Analysis, Adv.	510
10H041 Organotransition Metal Chemistry 1	511
10H042 Organotransition Metal Chemistry 2	512
10P055 Material Chemistry Adv. I	513
10P056 Material Chemistry Adv. II	514
10P057 Material Chemistry Adv.	515
10P058 Material Chemistry Adv.	516
10S001 Design of Functional Materials	517
10S002 Design of Functional Materials, Advanced	518
10S003 Inorganic Structural Chemistry, Advanced	519
10S006 Industrial Solid-State Chemistry, Advanced	520
10S010 Organic Reaction Chemistry, Advanced	521
10S013 Organic Chemistry of Natural Products, Advanced	522
10S016 Analytical Chemistry of Materials, Advanced	523
10S019 Physical Properties of Polymer Materials, Advanced	524
10S022 Synthesis of Polymer Materials, Advanced	525
10i041 Professional Scientific Presentation Exercises (English lecture)	526
10i042 Advanced Engineering and Economy (English lecture)	527
10i049 Project Management in Engineering	528
10i050 Exercise on Project Management in Engineering	529
10Z101 Micro/Nano Scale Material Engineering	530
10i009 Internship	531
10P011 General Material Chemistry	532
10P111 Chemical Industry, Advanced	533

Energy and Hydrocarbon Chemistry

10H201 Energy Conversion Reactions	534
10H202 Green and Sustainable Chemistry	535
10H205 Inorganic Solid-State Chemistry	536
10H200 Electrochemistry Advanced	537
10H215 Chemistry of Functional Interfaces	538
10H213 Catalysis in Organic Reactions	539
10H207 Excited-State Hydrocarbon Chemistry	540
10H209 Advanced Biomedical Engineering	541
10H217 Chemical Conversion of Carbon Resources	542

10H210 Chemistry of Organometallic Complexes	543
10H218 Design of Solid Catalysts	544
10H222 Material Transformation Chemistry	545
10H219 Structural Organic Chemistry	546
10H238 Radiochemistry, Adv.	547
10H226 Chemistry of Well-Defined Catalysts	548
10H208 Seminar on Energy & Hydrocarbon Chemistry (A)	549
10H818 Advanced Organic Chemistry	550
10H041 Organotransition Metal Chemistry 1	551
10H042 Organotransition Metal Chemistry 2	552
10D228 Energy and Hydrocarbon Chemistry, Adv. I	553
10D229 Energy and Hydrocarbon Chemistry, Adv. II	554
10D230 Energy and Hydrocarbon Chemistry, Adv. III	555
10D231 Energy and Hydrocarbon Chemistry, Adv. IV	556
10D232 Energy and Hydrocarbon Chemistry, Adv. V	557
10D233 Energy and Hydrocarbon Chemistry, Adv. IV	558
10D235 Energy and Hydrocarbon Chemistry, Adv. VII	559
10D236 Energy and Hydrocarbon Chemistry, Adv. VIII	560
10K001 Introduction to Advanced Material Science and Technology (English lecture)	561
10K005 Advanced Modern Science and Technology (English lecture)	562
10D043 Instrumental Analysis, Adv.	563
10D046 Instrumental Analysis, Adv.	564
10D051 Frontiers in Modern Science & Technology	565
10i045 Exercise in Practical Scientific English	566
10i009 Internship	567
10D234 Experiments & Exercises in Energy and Hydrocarbon Chemistry, Adv.	568
10S204 Energy and Hydrocarbon Chemistry Special Seminar 1	569
10S205 Energy and Hydrocarbon Chemistry Special Seminar 2	570
10S206 Energy and Hydrocarbon Chemistry Special Seminar 3	571

Molecular Engineering

10H401 Statistical Thermodynamics	572
10H405 Quantum Chemistry	573
10H406 Quantum Chemistry	574
10H408 Molecular Spectroscopy	575
10H448 Biomolecular Function Chemistry	576
10H413 Molecular Materials	577
10H416 Catalysis Science at Molecular Level	578
10P416 Catalysis Science at Molecular Level 2	579
10H417 Molecular Photochemistry	580
10P417 Molecular Photochemistry 2	581
10H423 Condensed Matter Physical Chemistry	582
10H422 Molecular Materials Science	583
10H427 Quantum Materials Science	584

10H129 Moleculer Dheelegy	585
10H428 Molecular Rheology	
10H430 Molecular Porous Physical Chemistry	586
10D432 Laboratory and Exercises in Molecular Engineering I	587
10D433 Laboratory and Exercises in Molecular Engineering I I	588
10D439 Molecular Engineering, Adv. IA	589
10D445 Molecular Engineering, Adv. IB	590
10D440 Molecular Engineering, Adv. IIA	591
10D447 Molecular Engineering, Adv. IIB	592
10H436 Molecular Engineering, Adv.	593
10D437 Molecular Engineering, Adv.	594
10D438 Molecular Engineering, Adv. V	595
10P439 Molecular Engineering, Adv.	596
10P440 Molecular Engineering, Adv.	597
10P448 Japan Gateway Project Seminar	598
10P450 Japan Gateway Project Seminar	599
10P452 Japan Gateway Project Seminar	600
10P454 Japan Gateway Project Seminar	601
10P456 Japan Gateway Project Seminar	602
10P457 Japan Gateway Project Seminar	603
10P459 Japan Gateway Project Seminar	604
10P461 Japan Gateway Project Seminar	605
10P463 Japan Gateway Project Seminar	606
10P465 Japan Gateway Project Seminar	607
10P467 Japan Gateway Project Seminar ?	608
10P469 Japan Gateway Project Seminar ?	609
10K001 Introduction to Advanced Material Science and Technology (English lecture)	610
10K005 Advanced Modern Science and Technology (English lecture)	611
10i045 Exercise in Practical Scientific English	612
10D043 Instrumental Analysis, Adv.	613
10D046 Instrumental Analysis, Adv.	614
10D051 Frontiers in Modern Science & Technology	615
10i009 Internship	616
10S401 Advanced Molecular Engineering	617
10S404 Advanced Seminar on Molecular Engineering 1	618
10S405 Advanced Seminar on Molecular Engineering 2	619

Polymer Chemistry

10H649 Polymer Synthesis	620
10D652 Polymer Physical Properties	621
10S604 Advanced Seminar on Polymer Chemistry 1	622
10S605 Advanced Seminar on Polymer Chemistry 2	623
10H645 Polymer Functional Chemistry	624
10H607 Design of Polymerization Reactions	625
10H610 Reactive Polymers	626

10H613 Polymer Structure and Function	627
10H616 Polymer Supermolecular Structure	628
10H611 Biomacromolecular Science	629
10H643 Polymer Solution Science	630
10H622 Physical Chemistry of Polymers	631
10H625 Polymer Spectroscopy	632
10H628 Design of Polymer Materials	633
10H647 Polymer Controlled Synthesis	634
10H636 Polymer Design for Biomedical and Pharmaceutical Applications	635
10H633 Biomaterials Science and Engineering	636
10D640 Polymer Chemistry Laboratory & Exercise	637
10K001 Introduction to Advanced Material Science and Technology (English lecture)	638
10K005 Advanced Modern Science and Technology (English lecture)	639
10H041 Organotransition Metal Chemistry 1	640
10H042 Organotransition Metal Chemistry 2	641
10H818 Advanced Organic Chemistry	642
10D043 Instrumental Analysis, Adv.	643
10D046 Instrumental Analysis, Adv.	644
10D051 Frontiers in Modern Science & Technology	645
10i045 Exercise in Practical Scientific English	646
10i041 Professional Scientific Presentation Exercises (English lecture)	647
10i009 Internship	648
10i010 International Internship in Engineering 1	649
10i011 International Internship in Engineering 2	650
10i049 Project Management in Engineering	651
10i050 Exercise on Project Management in Engineering	652

Synthetic Chemistry and Biological Chemistry

10H802 Organic System Design653	;
10H804 Synthetic Organic Chemistry654	ŀ
10H805 Functional Coordination Chemistry655	5
10H808 Physical Organic Chemistry656	5
10H834 Fine Synthetic Chemistry657	7
10H813 Bioorganic Chemistry658	3
10H812 Molecular Biology659)
10H815 Biorecognics660)
10H816 Microbiology and Biotechnology661	
10H818 Advanced Organic Chemistry662	2
10H836 Advanced Biological Chemistry663	;
10P836 Advanced Biological Chemistry 2 Continued664	ŀ
10H041 Organotransition Metal Chemistry 1665	;
10H042 Organotransition Metal Chemistry 2666	5
10D839 Synthetic Chemistry and Biological Chemistry, Adv,A667	7
10D840 Synthetic Chemistry and Biological Chemistry, Adv,B668	3

10D841 Synthetic Chemistry and Biological Chemistry, Adv,C	669
10D842 Synthetic Chemistry and Biological Chemistry, Adv,D	670
10D843 Synthetic Chemistry and Biological Chemistry, Adv,E	671
10D844 Synthetic Chemistry and Biological Chemistry, Adv,F	672
10D828 Special Experiments and Exercises in Synthetic Chemistry and Biological Chemistry	673
10K001 Introduction to Advanced Material Science and Technology (English lecture)	674
10K005 Advanced Modern Science and Technology (English lecture)	675
10D043 Instrumental Analysis, Adv.	676
10D046 Instrumental Analysis, Adv.	677
10D051 Frontiers in Modern Science & Technology	678
10i045 Exercise in Practical Scientific English	679
10i041 Professional Scientific Presentation Exercises (English lecture)	680
10i042 Advanced Engineering and Economy (English lecture)	681
10i010 International Internship in Engineering 1	682
10i011 International Internship in Engineering 2	683
10i049 Project Management in Engineering	684
10i050 Exercise on Project Management in Engineering	685
10S807 Special Seminar 1in Synthetic Chemistry and Biological Chemistry	686
10S808 Special Seminar 2in Synthetic Chemistry and Biological Chemistry	687
10S809 Special Seminar 3 in Synthetic Chemistry and Biological Chemistry	688

Chemical Engineering

10H002 Special Topics in Transport Phenomena	689
10H003 Advanced Topics in Transport Phenomena (English lecture)	690
10H005 Separation Process Engineeering, Adv.	691
10H008 Chemical Reaction Engineering, Adv.	692
10H009 Chemical Reaction Engineering, Adv. (English lecture)	693
10H011 Advanced Process Systems Engineering	694
10H053 Process Data Analysis	695
10H017 Fine Particle Technology, Adv.	696
10H020 Surface Control Engineering	697
10H021 Engineering for Chemical Materials Processing	698
10H023 Environmental System Engineerig	699
10H037 Special Topics in English for Chemical Engineering	700
10E038 Process Design	701
10H030 Special Topics in Chemical Engineering I	702
10H032 Special Topics in Chemical Engineering II	703
10H033 Special Topics in Chemical Engineering III	704
10H035 Special Topics in Chemical Engineering IV	705
10H040 Research Internship in Chemical Engineering	706
10P043 Chemical Engineering Seminar	707
10P044 Chemical Engineering Seminar	708
10P045 Chemical Engineering Seminar	709
10P046 Chemical Engineering Seminar	710

10E045 Reseach in Chemical Engineering	711
10E047 Reseach in Chemical Engineering	712
10E049 Reseach in Chemical Engineering	713
10E051 Reseach in Chemical Engineering	714
10K001 Introduction to Advanced Material Science and Technology (English lecture)	715
10K005 Advanced Modern Science and Technology (English lecture)	716
10D043 Instrumental Analysis, Adv.	717
10D046 Instrumental Analysis, Adv.	718
10D051 Frontiers in Modern Science & Technology	719
10i049 Project Management in Engineering	720
10i050 Exercise on Project Management in Engineering	721
10T004 Special Seminar of Chemical Engineering 1	722
10T005 Special Seminar in Chemical Engineering 2	723
10T006 Special Seminar of Chemical Engineering 3	724
10T007 Special Seminar in Chemical Engineering 4	725
10T008 Special Seminar in Chemical Engineering 5	726
10T009 Special Seminar in Chemical Engineering 6	727
10T010 Special Seminar in Chemical Engineering 7	728

10F251

Exercise on Project Planning

自主企画プロジェクト

[Code] 10F251 [Course Year] Master 1st [Term] 1st+2nd term

[Class day & Period] 1st term: Thu 3rd, 2nd term: Wed 5th [Location] C1-173 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese and English

[Instructor] Related instructors,

(Course Description **)** The purpose of this seminar is to bring out the self-initiative, the planning ability, the creativity of students. From project and to practice, the students set up the goals of projects, go ahead with the projects by themselves, and finally make the presentations of project results. Specifically, about the internship activities in enterprises, the training activities in enterprises or universities at home and abroad, the planning and operation of collaborative projects with citizen, the student makes the perfect plannings including the purposes, the ways, the results and so on. For a final, the students do practice, they write the reports and make the presentations about the project results.

[Grading] Planning, implementation of project and reports are comprehensively evaluated.

[Course Goals] Goals are cultivating ability for self-initiative, planning and creativity.

[Course Topics]

Theme	Class number of times	Description
Course introduction	1	
Proposal of project	6	
Management of	12	
project	12	
Progress report	1	
Final report	8	
Presentation	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details are provided in the first lecture.

Integrated Seminar on Infrastracture Engineering A

社会基盤工学総合セミナーA

[Code] 10U051 [Course Year] Doctor 1st [Term] 1st term [Class day & Period] Fri 5th [Location] C1-173

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] English [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	10	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】

10U052

Integrated Seminar on Infrastracture Engineering B

社会基盤工学総合セミナー B

[Code] 10U052 [Course Year] Doctor 1st [Term] 2nd term [Class day & Period] Tue 5th

[Location]C1-173 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Seminar [Language]English

[Instructor] Related instructors,

[Course Description] On the investigation of themes by the students, they make the presentation and discussion in English. The themes are about the technology innovation of infrastructure on the international viewpoint, the ideal style of infrastructure management, the standardization of project technology for internationalization, and about the technology movement or the role of Japan in the world on the construction of infrastructure and the usage of resource energy such as the development and utilization of international crust or resource energy.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	10	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be provided in the guidance and first lecture.

Seminar on Infrastructure Engineering A

社会基盤工学セミナー A

[Code] 10U055 [Course Year] Master Course [Term] 1st+2nd term

[Class day & Period] 1st term: Wed&Fri 5th, 2nd term: Mon&Tue 5th [Location] [Credits] 4 [Restriction]
[Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description] This lecture focuses on the movement and content of the most advanced research at home and abroad on Infrastructure Engineering. The students are individually instructed about the planning of study schedule, the way of collecting datas, the way of doing the research and summarizing the results of research.

[Grading] Points are allocated for research activities such as a presentation at laboratory seminars, domestic conferences, international conferences, research paper presentation etc. Students are required to obtain the points in total which are more than predefined points.

Students are required to get no less than 10 points in total for two years from M1 to M2, no less than 3 points in each year.

1 point: Presentation at laboratory seminar (only if supervisor agrees), oral presentation in the annual meeting in the Society of Civil Engineers.

 $1 \sim 5$ point: Attending the lecture held by Academic Society (Certification is required), number of points is determined by your supervisor in accordance to the level of difficulty for approval.

3 point : Presentation in English in international conference. If the papers are peer-reviewed, the points are determined as journal papers (see below).

 $5 \sim 10$ point: Fist author or coauthor of published and/or accepted journal papers (e.g., for Journal of Society of Civil Engineers, ASCE Journal, etc.) (Number of points is determined by your supervisor depending on level of journal and/or your contribution.)

Others: Exercise on project or training course (Number of points is determined by your supervisor). However, the activities related to the other courses are not admitted, which are Exercise on Project Planning, Capstone Project, Internship on Infrastructure Engineering, Long-Term Internship, Practice in Infrastructure Engineering or Practice in Urban Management.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	6	
	8	
	6	
	8	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】

10U056

Seminar on Infrastructure Engineering B

社会基盤工学セミナー B

[Code] 10U056 [Course Year] Master Course [Term] 1st+2nd term

[Class day & Period] 1st term: Thu 5th & Fri 4th, 2nd term: Thu 4th & Fri 5th [Location] [Credits] 4
[Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor] Related instructors,
[Course Description] The students make the collection of data, study and summarize the research results about the specific themes on Infrastructure Engineering. In addition, the students are individually instructed about the way of presentation of research results through the presentations at the conferences at home and abroad, the ones at laboratory and participation in training course.

[Grading] Points are allocated for research activities such as a presentation at laboratory seminars, domestic conferences, international conferences, research paper presentation etc. Students are required to obtain the points in total which are more than predefined points.

Students are required to get no less than 10 points in total for two years from M1 to M2, no less than 3 points in each year.

1 point: Presentation at laboratory seminar (only if supervisor agrees), oral presentation in the annual meeting in the Society of Civil Engineers.

 $1 \sim 5$ point: Attending the lecture held by Academic Society (Certification is required), number of points is determined by your supervisor in accordance to the level of difficulty for approval.

3 point : Presentation in English in international conference. If the papers are peer-reviewed, the points are determined as journal papers (see below).

 $5 \sim 10$ point: Fist author or coauthor of published and/or accepted journal papers (e.g., for Journal of Society of Civil Engineers, ASCE Journal, etc.) (Number of points is determined by your supervisor depending on level of journal and/or your contribution.)

Others: Exercise on project or training course (Number of points is determined by your supervisor). However, the activities related to the other courses are not admitted, which are Exercise on Project Planning, Capstone Project, Internship on Infrastructure Engineering, Long-Term Internship, Practice in Infrastructure Engineering or Practice in Urban Management.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
-11	2	Each supervisor navigates students thorough their presentations and
all	2	discussion.
	6	
	8	
	6	
	8	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】

Internship on Infrastracture Engineering

社会基盤工学インターンシップ

[Code] 10U059 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description] Through the long-term internship outside the university, the students can get the practical techniques, the way of finding and solving the problems, the way of integrating the techniques, the way of summarizing the results and making the presentation in each field of Urban Management.

[Grading] Writing plans, completing internship, final report and presentation are comprehensively evaluated.

[Course Goals]

[Course Topics]

Theme Class number of times	Description
-----------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

10F063

Practice in Infrastructure Engineering 社会基盤工学実習

[Code] 10F063 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 1st

[Location] C1-173 [Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese

【Instructor】Related instructors,

【Course Description】 To develop fundamental and practical understandings on Civil and Earth Resources Engineering and cultivate problem-solving abilities, students are encouraged to attend a practical education and engineering program offered by educational institutes such as universities, international and domestic associations. Students attend a program under the instructions of academic supervisors. Programs are limited to the ones certified by the department.

[Grading] Attendance and reports are comprehensively evaluated.

[Course Goals] To develop fundamental and practical understandings on Civil and Earth Resources Engineering and cultivate problem-solving abilities by attending a practical education and engineering program offered by educational institutes such as universities, international and domestic associations.

[Course Topics]

	Theme	Class number of times	Description
all		1	study practical knowledge.
		5	
		6	
		3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

ORT on Infrastructure Engineering 社会基盤工学ORT

[Code] 10U060 [Course Year] Doctor Course [Term] 1st+2nd term

[Class day & Period]1st term: Thu 3rd&4th, 2nd term: Thu 4&5th [Location]C1-173 [Credits]4 [Restriction]

[Lecture Form(s)] [Language] [Instructor] Related instructors,

[Course Description] By practicing about the research themes on Infrastructure Engineering and making the presentations of the research results at the conferences, the students can develop the advanced specialities and the ability of finding out the new fields of research. Also, the students get the practical ability which is necessary for researchers and engineers. The students can participate in the conferences at home and abroad, in the presentations of research at laboratory, in some kinds of seminars, symposiums, lecture classes, internship to the enterprises or research organizations at home and abroad. The director of the department and the supervisor totally evaluate the reports made about these activities by the students.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	6	
	8	
	6	
	8	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be provided in the guidance.

10U064

Practice in Advanced Infrastructure Engineering A 社会基盤工学総合実習 A

[Code] 10U064 [Course Year] Doctor 1st [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	5	
	2	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Practice in Advanced Infrastructure Engineering B

社会基盤工学総合実習 B

[Code] 10U065 [Course Year] Doctor 1st [Term] 2nd term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	5	
	2	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】

Continuum Mechanics

連続体力学

[Code] 10F003 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Kunitomo Sugiura, Tomomi Yagi,

[Course Description] Continuum mechanics is a unified basis for solid mechanics and fluid mechanics. The aims of this course are to introduce the continuum mechanics from their basics to the some forms of constitutive law and also to provide students with

mathematical way of understanding the continuum mechanics. This course contains the fundamentals of vector and tensor calculus, the basic equations of continuum mechanics, the tensor expressions of elastic problems and further applications.

[Grading] Assessment will be based on exam, report and participation.

[Course Goals] Fundamental theorems on structural mechanics and design will be learned, and ability to judge the proprieties of each computational structural analysis will be acquired.

[Course Topics]

Theme	Class number of times	Description
Introductions	1	- Outline of Structural Analysis
muoducuons	1	- Mathematical Preliminaries(Vectors and Tensors)
Matrices and tenness	1	- Summation Convention
Matrices and tensors	1	- Eigenvalues and Eigenvectors
differential and integral	1	- Quotient Laws
calculus of tensors	1	- Divergence Theorem
		- Material Description
Kinematics	1	- Spatial Description
		- Material derivative
Defermention and studie	2	- Strain tensors
Deformation and strain	2	- Compatibility conditions
Stress and equilibrium	1	- Stress Tensors
equation	1	- Equilbrium Equations
Conservation law and	1	- Conservation of Mass
		- Conservation of Linear Momentum
governing equation		- Conservation of Energy
Constitutive equation of	1	- Perfect Fluid
idealized material	1	- Linear Elastic Material(Isotropic)
Elastic-plastic behavior		- Yield Criteria
and constitutive equation	1	- Flow Rule
of construction materials		- Hardening Rule
		- Governing Equations and Unknowns
Boundary value problem	1	- Navier-Stokes Equation
		- Navier Equation
Variational principle	1	- Principle of Virtual Work
variational principle	1	- Principle of Complementary Virtual Work
Various kinds of	2	- Weighted Residual Method
numerical analyses	۷.	- Finite Element Method
Confirmation of the		
attainment level of	1	Feedback based on the Final Examination
learning		

[Textbook]

Textbook(supplemental)

[Prerequisite(s)] Basic knowledge for structural mechanics, soil mechanics and fluid mechanics are required.

[Independent Study Outside of Class] As appropriate, the assignments are given based on the content of Lecture.

[Web Sites]

【Additional Information】

10F067

Structural Stability 構造安定論

[Code] 10F067 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd

[Location]C1-171 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]English

[Instructor] Hiromichi SHIRATO, Kunitomo SUGIURA,

[Course Description] Fundamental concept of static and dynamic stability of large-scale structures such as bridges is to be introduced in addition to the way to keep/improve their safety and to evaluate their performance. Basic concept of structural stability and its application and technical subjects to improve safety will be lectured systematically. Furthermore, the practical solutions to the subjects are to be introduced to assure the safety of structures.

[Grading] Grading will be evaluated by written examination, reports and attendance.

[Course Goals] The class aims to cultivate the understanding of static and dynamic stability problems for structural system and make understand the methodology to clarify the limit state. To get knowledge on countermeasures to assure the stability which is applicable to practical design and manufacturing will be also required.

[Course Topics]

Theme	Class number of times	Description
Elastic Stability under Static Loading	7	Stability of Structures and Failures Basis of Structural Stability Elastic Buckling of Columns Elastic Buckling of Beams & Frames Elastic Buckling of Plates Elasto-plastic Buckling
Basic theory of dynamic stability and its application	7	Buckling AnalysisThe stability around the equilibrium points based on the state equation of motion in which the nonlinearity of external, damping and restring forces are taken into account. Wind-induced vibration of a square prism (Galloping) and I dof system with nonlinear spring will be introduced as practical examples.Chaotic motion of a pendulum subjected to periodic external force is also explained as an introduction of chaos theory.
Achievement Check	1	Summary and Achievement Check.

【Textbook】 Not specified.

[Textbook(supplemental)] Introduced in class if necessary.

[Prerequisite(s)] It is desired for participants to master structural mechanics, continuum mechanics, mathematical analysis as well as vibration theory.

【Independent Study Outside of Class】

【Web Sites】 none

【Additional Information】 none

10F068

Material and Structural System & Management

材料・構造マネジメント論

[Code] 10F068 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd
[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture
[Language] English [Instructor] Hirotaka Kawano, Atsushi Hattori, Takashi Yamamoto,
[Course Description] With regard to the maintenance of concrete structures, the deterioration prediction procedures in material and structural properties are discussed based on durability and deterioration processes of concrete structures. Repair materials and methods are also introduced. Note: strengthening materials and methods are discussed in Concrete Structural Engineering, provided in the second semester. In the later half of this lecture, structures are focused as groups rather than an individual structure to understand the difference between asset

management and maintenance. By taking into consideration the economic aspect and human resources aspect as well as the physical aspect, the flow of the asset management for structures' groups with view points of the life cycle cost and the budget is provided.

[Grading] Reports , presentations and other activities are inclusively considered.

[Course Goals] To understand the maintenance for a single structure and the asset management for structures' group.

Theme	Class number of times	Description
1. Outline of		
maintenance for	1	
concrete structures		
2. Deterioration		
mechanisms of		
concrete structures	4	
and deterioration		
prediction		
3. Repair materials		
and methods for	1	
concrete structures		
4. Maintenance and	2	
asset management	2	
5. Maintenance for	2	
structures' group	2	
6. Management for	2	
structures' group	-	
7. Presentations and	3	
discussions		

[Textbook] Not specified. Some materials may be provided.

【Textbook(supplemental)】 Not specified.

[Prerequisite(s)] Basic knowledge on Construction Materials and Concrete Engineering.

[Independent Study Outside of Class] Check the handouts. Additional studies will also be instructed.

Web Sites

[Additional Information] Positive presence in the lecture is expected by joining discussions for example.

Earthquake Engineering/Lifeline Engineering

地震・ライフライン工学

[Code] 10F261 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 4th

[Location]C1-191 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]English

[Instructor] Kiyono,Igarashi,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	1	
	1	
	1	
Principles of seismic	2	Fundamental thories on dynamic response of nonlinear elastoplastic structural
design of structures	2	systems and representative seismic design principles
Seismic performance		
of concrete and steel	1	Essentials and current issues related to seismic performance and design of RC
structures		and steel structures
Seismic response		Idea and current issues on seismic isolation, seismic response control
control and seismic	1	techniques for enhancement of seismic performance of structures, and seismic
retrofit of structures		retrofit and rehabilitation of existing structures
	1	
	2	
	1	
	1	
Achievement	1	
evaluation	1	Students' achievements in understanding of the course material are evaluated.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

10W001

Infrastructural Structure Engineering 社会基盤構造工学

[Code] 10W001 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] English [Instructor] Related Faculty members,

[Course Description] Structural engineering problems related to planning, design, construction and maintenance of the infrastructures are discussed. Topics concerning structural engineering and management are widelly taken up including latest advanced knowledge and technology, future view and/or international topics. Special lectures by extramural lecturers are carried out if necessary.

[Grading] Coursework will be graded based on the reports.

[Course Goals] To grasp problems related to structural engineering and their specific solutions.

To understand applicability of advanced technologies and development prospects.

[Course Topics]

Theme	Class number of times	Description
Structural Materials,	4	Steel materials, Concrete materials, mechanical behavior of structures,
Structural Mechanics	4	Problems related to design, construction and maintenance
Applied Mechanics	1	Numerical analysis for structure performance evaluation
Earthquake and		Infrastructure and natural disaster,
Wind Resistance of	7	Trends of disaster prevention technology,
Structures		Problems related to Earthquake and wind resistant design
Maintenance of		International technology,
	3	Scenario design,
structure		International technological education and collaboration

[Textbook] The textbook is not required. Materials will be supplied by instructors.

[Textbook(supplemental)] Supplemental text books will be introduced by instructors.

[Prerequisite(s)] Structural Mechanics, Wind Resistant Design, Construction Materials, Dynamics of Structures, etc.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Structural Design

構造デザイン

[Code] 10F009 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Yoshiaki Kubota, Yoshikazu Takahashi, Masahide Matsumura

[Course Description] This course provides the knowledge of the structural planning and design for civil infrastructures. Fundamentals of the reliability of structures based on the probability and statistics are given. Emphasis is placed on the reliability index and the calibration of partial safety factors in the LRFD design format. Furthermore, the relationship between structure and form is discussed with various examples.

[Grading] Assessed by term-end examination, reports and quizes

[Course Goals] To understand the structural planning and design for civil infrastructures.

To understand the reliability-based design of structures.

To deepen the understanding of the relationship between structure and form.

[Course Topics]

Theme	Class number of times	Description
		Structural Planning of civil infrastructures is introduced. The concept, significance
Structural Planning	2	of planning, characteristics of civil infrastructures are discussed. Practical planning
		process of a bridge is explained.
		The bridge types such as girder, truss, arch and suspension bridge that have been
		regarded individually are explained as an integrated concept from the viewpoint of
Structure and Form	3	acting forces to understand the structural systems which have continuous or
		symmetrical relationships. Furthermore, various examples are discussed based on
		the understanding of the structural systems.
Structural Design and	3	Design theory of civil infrastructures is introduced. The allowable stress design
Structural Design and Performance-based		method and the limit state design method are explained. The basic of earthquake
		resistant design is discussed based on the dynamic response of structures.
Design		Performance-based design is also introduced.
Random Variables		Eurodementels of wordem variables, functions of rendem variables, probability of
and Functions of	1	Fundamentals of random variables, functions of random variables, probability of
Random Variables		failure and reliability index in their simplest forms are lectured.
Structural Safety	3	Limit states, probability of failure, FOSM reliability index, Hasofer-Lind reliability
Analysis	3	index, Monte Carlo method are lectured.
Desire Colleg	2	Code format as Load and Resistance Factors Design (LRFD) method, calibration
Design Codes	2	of partial safety factors based on the reliability method are given.
Assessment of the	1	Assess the level of attainment
Level of Attainment	1	Assess the level of attainment.

[Textbook] Reliability of Structures, A. S. Nowak & K. R. Collins, McGraw-Hill, 2000

【Textbook(supplemental)】U.Baus, M.Schleich, Footbridges, Birkhauser, 2008 (Japanese ver.: Footbridges(translated by Kubota, et al.), 鹿島出版会, 2011)

久保田善明、『橋のディテール図鑑』, 鹿島出版会, 2010

Other books will be given in the lectures as necessary.

[Prerequisite(s)] Fundamental knowledge on Probability and Statistics, and Structural Mechanics

【Independent Study Outside of Class】N/A

[Web Sites]

[Additional Information] Structural planning and design will be given by Y. Takahashi, Structure and form by Y. Kubota, and Structural reliability analysis by M. Matsumura.

Bridge Engineering 橋梁工学

[Code] 10F010 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 3rd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】Hiromichi Shirato, Kunitomo Sugiura, Tomomi Yagi, Masahide Matsumura

[Course Description] The subject matter of bridge engineering can be divided into two main parts, which are steel structure and wind loading/wind resistant structure. The aim of this course is to provide details of mechanical behaviors, maintenance and design of bridge structures. The former part of this course contains the static instability of steel structures and the problems of corrosion, fatigue, brittleness, weldability on steel bridges. In the latter part, the basics of wind engineering, bridge aerodynamics and wind-resistant design including current problems to be solved are provided are provided. [Grading] Assessment will be based on exam, reports and participation.

[Course Goals]

Also, the basic knowledge for wind engineering and aerodynamic instabilities, which are necessary for the wind resistant design of bridges, will be acquired.

[Course Topics]

Course Topics] Theme	Class number of times	Description
Introduction	1	- Fundamental knowledge on steel structures
		- Types of steel structures
		- Future trend of steel structures
Material behavior, Initial imperfections and Damages	1	- Construction of steel structures
		- Residual stresses and initial deformations
		- Damages
Stress-strain relationship, Joints	1	- Yield surfaces
		- Bauschinger effect
		- Hardening effect
		- Welded joint
		- Bolted joint
Fatigue fracture, fatigue life and fatigue design	1	- S-N design curve
		- Fatigue crack growth, stress intensity factor
		- Miner's rule on damage accumulation
		- Repair of fatigue damage
Structural stability and design for buckling	1	- Structural instability and accident
		- Theory of Stability
		- Compressive members, etc.
Corrosion and anti-corrosion of steel structures	1	- Mechanism of corrosion
		- Micro- and Macro- cells
		- Anti-corrsion
		- Life-cycle costs
Wind resistant design of structures	3	- Natural winds due to Typhoon, Tornado and so on
		- Evaluation and estimation of strong winds
		- Wind resistant design methods
		- Various kinds of design codes
Aerodynamic instabilities of structures	3	- Introduction of aerodynamic instabilities (ex. vortex-induced vibration, galloping, flutter, buffeting,
		cable vibrations)
		- Mechanisms of aerodynamic instabilities
		- Evaluation methods and Countermeasures
Wind-induced disaster	1	- Accidents on structures due to strong winds
		- Disaster prevention
Topics	1	Introduction of current topics on bridge engineering by a visiting lecturer
Confirmation of the	1	
attainment level of learning	1	Confirm the attainment level of learning

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge for construction materials, structural mechanics and fluid mechanics are required.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information]

Concrete Structural Engineering コンクリート構造工学

[Code] 10A019 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd
[Location]C1-172 [Credits]2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese
[Instructor] Yoshikazu Takahashi, Takashi Yamamoto, Satoshi Takaya, Katsuhiko Mizuno (Sumitomo Mitsui Construction Co., LTD.)

[Course Description] Concrete is one of the most useful construction materials employed for an infrastructure. The structural properties of a reinforced concrete including a prestressed concrete are introduced among the various structural components of concrete. The engineering techniques in design, execution, diagnosis, repair, strengthening and management of reinforced and/or prestressed concrete structures are discussed from the point of view of the performance based system.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
	1		
	6		
	6		
	1		
	1		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Structural Dynamics

構造ダイナミクス

[Code] 10F227 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st [Location]C1-172 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor] Igarashi,Furukawa

[Course Description] This course deals with dynamics of structural systems and related topics, to provide the theoretical basis to deal with the problems of vibration, safety under dynamic loads and health monitoring associated with infrastructures. The students will study the dynamic response, properties of natural modes and methods of eigenvalue analysis for multi-DOF systems. The topics on the numerical time integration schemes, probabilistic evaluation of structural response to random excitation, and dynamic response control techniques for structures are also studied.

[Grading] Based on the results of a final examination, plus homework assignments

[Course Goals] (1) To aquire the knowledge on theories and principles of analysis of MDOF systems (2) Systematic understanding of frequency-domain structural response analysis (3) Concept of analysis of numerical time integration schemes (4) Understanding of fundamentals of the random vibration theory [Course Topics]

Theme	Class number of times	Description
Introduction	1	Fudamental concepts, harmonic motion
Dynamics of		Formulation of Eq. of Motion / Lagrange's method / Normal Modes / Modal
Multi-Degree-Of-Free	edom 2	Analysis / Modeling of System Damping
Systems		
Frequency-Domain		
Analysis of System	1	Frequency Response Funcs. / Fourier Transform
Response		
Numerical Time	2	Formulation / Stability and Accuracy Analysis of Integration
Integration	2	Formulation / Stability and Accuracy Analysis of Integration
		Overview / Probability Theory / Sequence of i.i.d. Random Variables /
		Concept of Random Processes / Correlation Funcs. / White Noise /
Dondom Witnetion	E	Stochastic Differential Eq. / Lyapunov Eq. / Response to White Noise
Random Vibration	6	Excitation / Covariance Matrix Approach / Correlation Funcs. of Random
		Response / Spectral Representation of Random Processes / Spectral
		Representation of Structural Response / Application
Structural Response	2	Asting Control (Sensi Asting Control
Control	2	Active Control / Semi-Active Control
Achievement	1	
Evaluation	1	Students' achievements in understanding of the course material are evaluated.

【Textbook】 Not used; Class hand-outs are distributed when necessary.

[Textbook(supplemental)]

[Prerequisite(s)] Mechanical vibration (undergraduate level), Complex calculus (integration of analytic functions,

Fourier transform, etc.), Probability theory, Linear algebra

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] There will be homework assignments at the end of most of the lectures.

Seismic Engineering Exercise

サイスミックシミュレーション

[Course Topics]

[Code] 10F263 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 4th
[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture and Exercise
[Language] Japanese [Instructor] Sawada, Takahashi, Goto

[Course Description] This course provides the knowledge of simulation methods for earthquake engineering.

Small groups of students are exercised in the prediction of ground motion generated by a specified seismic fault and the response analysis of structure selected by themselves considering soil-structure interaction.

[Grading] Based on the performance during the course (including homework) and the results of presentation and reports.

[Course Goals] At the end of this course, students will be required to have a good understanding of: - Prediction of ground motion generated by a specified seismic fault - Dynamic response analysis of structures and foundation (linear/nonlinear)

Theme	Class number of times	Description
Frequency domain	1	Basics of Fourier transformation is introduced.
analysis	1	Basics of Fourier transformation is introduced.
Modeling of		
structure - soil	1	Equation of motion of SR model is introduced and the integration method of
system and time	1	the equation in time domain is explained.
domain analysis		
Exercise of linear		Small groups of students are exercised in elastic modeling of structures and
seismic response	2	
analysis		linear response analysis in time domain and frequency domain.
Prediction of ground		
motion by empirical	2	Empirical Green's function method is introduced to predict large earthquakes
Green's function	3	based on observed small earthquakes.
method		
Seismic analysis	2	Seismic analysis method of layered half-space based on equivalent
method of soil	2	linearization method is introduced.
Nonlinear seismic		Nonlinear modeling of structures and the integration and iterative methods of
analysis method of	2	
structures		the nonlinear equation of motion in time domain are introduced.
Exercise of nonlinear		Small groups of students are exercised in the prediction of ground motion
seismic response	3	generated by a specified seismic fault and the nonlinear response analysis of
analysis		structures and foundation.
Achievement Check	1	All students give presentations and discussions.

[Textbook] Not used; Class hand-outs are distributed when necessary.

【Textbook(supplemental)】

[Prerequisite(s)] Earthquake Engineering/Lifeline Engineering (10F261), Structural Dynamics (10F227) [Independent Study Outside of Class] Students require to review and analyze in preparation for final

presentations.

[Web Sites]

Ecomaterial and Environment-friendly Structures 環境材料設計学

[Code] 10F415 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st

[Location]C1-117 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Hirotaka KAWANO, Atsushi HATTORI, Toshiyuki ISHIKAWA,

[Course Description] Lecture on outline of impact of construction materials to environment and influence on materials and structures from environment. Discuss how to use materials sustainably. Keywords are concrete, steel, composite materials, CO2, durability, recycle and reuse, life-cycle assessment.

[Grading] Attendance(%), Report(%), Presentation(%)

[Course Goals] To understand the limit of resources and effect of material use to environment. and to understand the basic theory to make environmental-friendly infrastructures from the view point of materials use.

[Course Topics]

Theme	Class number of times	Description
Guidance	1	Object of the Course, Grading and Goals
product of materials and impact to environment	1	Product of cement, steel, concrete CO2 product and its influence
recycle and reuse of	3	Recycle and reuse of steel, metals, concrete, asphalt, plastics Technology
materials	3	development of construction materials
deterioration of	1	Mechanism of deterioration of concrete structures: carbonation, salt attack,
concrete structures	1	alkali-aggregate reaction Maintenance and retrofit methods
deterioration of steel	1	Mechanism of deterioration of steel structures: corrosion, fatigue Maintenance
structures	1	and retrofit methods
deterioration of	1	Mechanism of deterioration of composite structures: Maintenance and retrofit
composite structures	1	methods
life-cycle assessment	1	Life-cycle assessment of structures considering initial cost as well as
of structures	1	maintenance cost
topics and discussion	2	Recent topics on construction materials and discussion
presentation by		Presentation by students on the individual tenics Discussion on the tenics
students and	4	Presentation by students on the individual topics Discussion on the topics.
discussion / feedback		Feedback at the last class

[Textbook] No set text

【Textbook(supplemental)】 Instructed in class

[Prerequisite(s)] Basic knowledge of construction materials, concrete engineering

[Independent Study Outside of Class] Check the handouts. Additional studies will also be instructed.

[Web Sites]

[Additional Information] Questions and discusions are welcome

Infrastructure Safety Engineering

社会基盤安全工学

[Code] 10F089 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 3rd [Location]C1-172 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor] Tomoyasu Sugiyama, Tsutomu Iyobe

10F089

[Course Description] The issues concerning the safety and reliability of infrastructures such as tunnels and bridges and also the issues on natural disaster are reviewed in the lecture.

[Grading] This lecture involves reports (70%) and attendance(30%)

[Course Goals] To understand the basic technologies to enhance the safety of structures and also the fundamentals on disaster prevention.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Introduction on the safety of infrastructures
Maintenance of	1	Planning, investigation, evaluation and repair in maintenance for mainly
railway structures	1	railway structures is generally explained
Weather information		Overview of weather information for disaster prevention and its monitoring
for disaster	2	system, the evaluation method for climatological statistics and extreme value
prevention		statistics.
Disastan antisa		To sustain the users' safety in railway system, it is necessary to maintain the
Disaster prevention	1	structures properly but also to consider the prevention against disaster. Thus
in railway structures		herein disasters in railway structures and its counteractions are explained
Regulation and		
counteraction against	1	The need for regulation in railway operation at rainfall is explained
rainfall		
Risk assessment for	1	Risk assessment for rainfall disaster is described and also some practical cases
rainfall disaster	1	are introduced
Technical tour	3	Prevention technologies against natural disaster
Forthquaka and ita		Warning system for earthquake and the algorithm of earthquake early
Earthquake and its	1	detection, which is one of the regulations for Super expressway in earthquake,
early detection		is explained
Basics of snow	2	Physical phenomenon of snow hydrology and its relationship with natural and
hydrology	2	social environment
Countermeasures of		
snow disasters for	1	Disorder caused by snow and ice and the countermeasures in railways
railway		
Report	1	Report

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge on statistics is required. Students should have taken the course of geo-mechanics, structural mechanics and concrete engineering.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] confirm the attendance at every lecture

Hydraulics & Turbulence Mechanics 水理乱流力学

[Code] 10F075 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd

[Location]C1-171 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Toda, Sanjou, Okamoto,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Guidance	1	Guidance and entrance level lecture about fluid dynamics and turbulence
Theories of	2	Lectures about momentum equation, boundary layer, energy transport, vortex
turbulence	3	dynamics and spectrum analysis
Turbulence in natural	4	
rivers	4	Lectures about diffusion and dispersion phenomena observed in natural rivers.
Vegetation and	3	Lecture about turbulence transport in vegetation canopy together with
turbulence		introduction of recent researches
Practical topics in	2	
natural rivers	2	Lectures about compound channel and sediment transport
Practical topics in		
hydraulic	2	Lectures about drifting object in flood and fish way
engineering		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Hydraulics

【Independent Study Outside of Class】

[Web Sites]

Hydrology

水文学

[Code] 10A216 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd [Location]C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Yasuto TACHIKAWA, Yutaka ICHIKAWA and Kazuaki YOROZU

(Course Description **)** Physical mechanisms of the hydrologic cycle are described from the engineering viewpoint. The rainfall-runoff modeling and its prediction method are emphasized. Physical hydrological processes explored are surface flow, saturated-unsaturated subsurface flow, streamflow routing, and evapotranspiration. Physical mechanism of each hydrological process and its numerical modeling method are explained. The basic equations and numerical simulation methods are provided. Then, detail of distributed hydrological modeling is explained through exercise.

[Grading] Examination and report

[Course Goals] The goals of the class are to understand the physical mechanism of hydrological processes, their basic equations, and numerical simulation methods.

Theme	Class number of times	Description
Introduction	1	The hydrologic cycle and the hydrological processes are explained.
Surfaceflow	2	The physical process of the surface flow and its numerical modeling method are described. The basic equations of the surface flow and the numerical
	-	simulation methods are explained.
		The physical process of the streamflow routing and its numerical modeling
Streamflow routing	2	method are described. The basic equations of the streamflow routing and the
		numerical simulation methods are explained.
Channel network and		Numerical comparatotions of shore all naturality and externants are surplined
watershed modeling	1	Numerical representations of channel networks and catchments are explained.
Distributed	5	A physically-based distributed hydrological model is described, which is
		constructed with numerical representations of channel networks and
hydrological model		catchments.
Climate change and	1	Data analysis of the latest GCM simulation is presented and the impact of
hydrologic cycle	1	climate change on the hydrologic cycle is discussed.
		The physical process of the evapotranspiration and its numerical modeling
Evapotranspiration	2	method are described. The basic equations of the evapotranspiration and the
		numerical simulation methods are explained.
Feedback of study	1	Feedback of study achievement is conducted.
achievement	1	recuback of study achievement is conducted.

[Course Topics]

[Textbook] Handouts are distributed at each class.

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge of hydraulics and hydrology

[Independent Study Outside of Class] Read the textbook and/or related documents in advance and work on assignments to improve understanding of the lecture contents.

[Web Sites] http://hywr.kuciv.kyoto-u.ac.jp/lecture/lecture.html

[Additional Information] This course is open in English every other year. In 2016, the course will be open.

River Engineering and River Basin Management

河川マネジメント工学

[Code] 10F019 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hosoda, Kishida, Onda [Course Description] It is important to consider about rivers comprehensively from the various points of view based on natural & social sciences and engineering & technology. The fundamental knowledge to consider rivers and to make the plans for river basins is explained with the following contents: various view points to consider rivers, long term environmental changes of rivers and its main factors, river flows and river channel processes, the ecological system of rivers and lakes, flood & slope failure disasters, the integrated river basin planning(flood defense, environmental improvement planning, sediment transport system), functions of dam reservoir and management.

[Grading] Reports & Attendance

[Course Goals] Students are requested to understand the fundamental knowledge to consider rivers and river basins comprehensively from the various points of view based on natural & social sciences and engineering & technology.

[Course Topics]

Theme	Class number of times	Description
Various view points to		Various viewpoints to consider rivers and river basins, Various rivers on the earth,
consider rivers and river	2	Formation processes of river basins, long term environmental changes of rivers and its main
basins		factors
Ecological system in	1	
rivers	1	The fundamental knowledge on river ecologycal system
Applications of		The following items are lectured. Computational method to predict river flows and river
computational methods	2	The following items are lectured: Computational method to predict river flows and river
to environmental	2	channel processes with sediment transport and river bed deformation, Hydrodynamics in
problems		Lake Biwa.
Recent flood disasters &		Characteristics of recent flood and slope failure disasters, the Fundamental river
Integrated river basin	3	management plan and the River improvement plan based on the River Law, Procedures to
planning		make the flood control planning, Flood invasion analysis and hazard map.
Groundwater and its	1	Simulation technology of groundwater, Geo-environmental issues, Reservoir Engineering,
related field	1	Contaminant Transport Processes.
Sustainable development	1	Needs of dam development and history of dam construction, Maintenace of Dam reservoir.
of dam	1	
Economic evaluation of		Evaluation of people's awareness & WTP to river improvement projects by means of CVM,
environmental	2	Conjoint Analysis, etc.
improvement projects		Conjoint Anarysis, etc.
Riverbank and Dam		Pivor bank and dom structure foundation grouting Desight of Pivor bank. Arch Dom and
structure and its	2	River bank and dam structure, foundation, grouting. Desighn of River bank, Arch Dam and
maintenance		Graviety Dam.
Achievement		
Confirmation and	1	Comprehension check of course contents (Reports & Quiz)
Feedback		

[Textbook] Printed materials regarding the contents of this class are distributed in the class.

【Textbook(supplemental)】

[Prerequisite(s)] Fundamental knowledge of Hydraulics, Hydrology and Ecology

【Independent Study Outside of Class】

[Web Sites] http://www.geocities.jp/kyotourivereng/

[Additional Information] Students can contact with professors by visiting their rooms and sending e-mails.

Prof. Hosoda: hosoda.takashi.4w@kyoto-u.ac.jp

Prof. Kishida: kishida.kiyoshi.3r@kyoto-u.ac.jp

Assistant. Prof. Onda: onda.shinichiro.2e@kyoto-u.ac.jp

Sediment Hydraulics

流砂水理学

[Code] 10A040 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd [Location]C1-191 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor] Hitoshi Gotoh and Eiji Harada,

[Course Description] Natural flows in river and coast are movable bed phenomena with the interaction of flow and sediment. At a river and a coast, a current and a wave activate a sediment transport and bring the topographical change of a bed such as sedimentation or erosion. This lecture provides an outline about the basics of sediment (or movable bed) hydraulics, and detail of the computational mechanics of sediment transport, which has been developed on the basis of dynamics of flow and sediment by introducing a multiphase flow model and a granular material model. Furthermore, about sediment and water-environment relationship, some of frontier technologies, such as an artificial flood, removal works of dam sedimentation, coastal protection works, and sand upwelling work for covering contaminated sludge on flow bottom etc., are mentioned.

[Grading] Grading is based on student 's activities in lectures and written examination.

[Course Goals] Students understand the basics of sediment hydraulics and outline of advanced models for computational sediment hydraulics, such as multiphase flow model and granular material model. Students understand the present conditions of sediment control works.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The purpose and constitution of the lecture, the method of the scholastic evaluation are explained.
Basics of sediment hydraulics	5	Physical characteristic of a movable bed and a non-equilibrium sediment transport process and its description are explained. Furthermore, the prediction technique of topographical change due to current and waves is outlined.
Computational mechanics of sediment transport: The state of the art	8	Essential parts of numerical models of the movable bed phenomena, which has been developed by introducing dynamic models such as a granular material model to describe a collision of sediment particles and a multiphase flow model to describe a fluid-sediment interaction, are described. In comparison with the conventional movable bed computation, the points on which has been improved to enhance the applicability of the models are concretely mentioned. Some frontier studies of sediment transport mechanics are also introduced.
Achievement cofirmation	1	Comprehension check of course contents.

【Textbook】Hitoshi Gotoh: Computational Mechanics of Sediment Transport, Morikita Shuppan Co., Ltd., p.223, 2004 (in Japanese).

【Textbook(supplemental)】 Non

[Prerequisite(s)] Undergraduate-level Hydraulics or Hydrodynamics is required. Because a commentary easy as possible is kept in mind by lectures, students without these prerequisite are welcomed.

[Independent Study Outside of Class] Review fundamental items of hydraulics or hydrodynamics.

[Web Sites] Non

Hydrologic Design and Management 水工計画学

[Code] 10F464 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd
[Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese
[Instructor] Yasuto TACHIKAWA and Yutaka ICHIKAWA

[Course Description] Hydrologic design and real-time rainfall-runoff prediction methods are described. The frequency analysis of hydrologic extreme values and the time series analysis of hydrologic variables are described, and then a procedure to determone an external force for the hydrologic design are explained. Next, a physically based hydrologic model which includes various processes of human activities for the hydrologic cycle is described. A flood control planning and water resources management with the use of innovative hydrologic simulation tools is described. Then, A real-time rainfall runoff prediction method with the use of Kalman filter theory is described. [Grading] Final report (100)

[Course Goals] The class aims to understand the probabilistic and statistical analysis of hydrologic variables to determine the external force of hydrologic designs, applications of hydrologic simulations for hydrologic designs, and real-time rainfall and runoff prediction methods for water resources management.

Theme	Class number of times	Description
Introduction	1	A flood control planning and water resources planning are introduced.
Frequency analysis	3	The frequency analysis of hydrologic extreme values is described. The methods to
and hydrologic design	3	set the external force for the hydrologic design are explained.
		The time series analysis of hydrologic variables is described. The methods to
Time series analysis	2	develop time series models, time serried data generation methods, spatiotemporal
and hydrologic design	2	variation of hydrologic variables and a random field model, disaggregation
		methods are explained.
		Hydrologic models which include the process of human activities for the
Herduele eie merdeline	2	hydrologic cycle is described. Then, hydrologic predictive uncertainty is explained,
Hydrologic modeling		which is inevitable coming from model structure uncertainty, parameter
and predictive		identification uncertainty and model input uncertainty. Especially, the relation
uncertainty		between spatiotemporal scales of hydrologic modeling and model parameter values
		is described.
Hydrologic modeling	2	A hydrologic modeling system which helps to develop complicated hydrologic
system	2	simulation models and its importance for a flood control planning is also described.
Watershed		Watershed management to mitigate flood disasters is described. A cost-benefit
management for flood	2	
disaster		analysis of flood control measures is discussed.
Real-time rainfall	2	A real-time rainfall runoff prediction method with the use of Kalman filter theory
runoff prediction		and a new filter theory is described.
Feedback of study	1	Feedback of study achievement is conducted.
achievement	1	recuback of study achievement is conducted.

【Textbook】

[Course Topics]

[Textbook(supplemental)]

[Prerequisite(s)] Basic knowledge of hydrology, probability and statistics are required.

[Independent Study Outside of Class] Read the textbook and/or related documents in advance and work on assignments to improve understanding of the lecture contents.

[Web Sites] http://hywr.kuciv.kyoto-u.ac.jp/lecture/lecture.html

Open Channel Hydraulics

開水路の水理学

[Code] 10F245 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 1st [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] HOSODA, Takashi and ONDA, Shinichiro

[Course Description] Hydraulic engineers and river engineers are requested to understand Open Channel Hydraulics to handle practical problems properly. In this class, the basic theory on open channel hydraulics is lectured showing various applications in Hydraulic Engineering Field. The contents include the following items: Application of a singular point theory to water surface profile analysis, Derivation of 2-D depth averaged flow model, 1-D analysis of unsteady open channel flows based on the method of characteristics, Plane 2-D analysis of steady high velocity flows, Plane 2-D analysis of unsteady flows, Higher order theories such as Boussinesq equation, etc.

[Grading] This class is not opened for 2017. the regular examination

[Course Goals] Students are requested to understand the basic theory of Open Channel Hydraulics and to learn how to apply the basic theory to practical problems in hydraulic engineering field.

Theme	Class number of times	Description
Guidance	1	The contents of this subject are introduced showing the whole framework of Open
Guidance	1	Channel Hydraulics with several theoretical and computational results.
Derivation of 2-D	1	Derivation procesures of plane 2-D depth averaged flow model are expalined in details.
depth averaged model	1	Derivation processires of plane 2-D depin averaged now model are expanned in defans.
Application of singular		The application of a singular point theory to water surface profile analysis for steady
point theory to water	1	open channel flows is explained.
surface profile analysis		open channel nows is explained.
1-D analysis of		The following items are lectured: Fundamental characteristics of 1-D unsteady open
unsteady open channel	3	channel flows, Method of Characteristics, Dam break flows, Computational methods
flows		for shallow water equations.
Fundamentals of	1	basic theory of numerical simulation is explained by means of finite difference method,
numerical simulation		finite element method, etc. Applications of these method to unsteady open channel flow
numerical siniulation		equations are also shown with some practical applications in river engineering.
Plane 2-D analysis of		Characteristics of steady plane 2-D flows are explained based on the method of
steady high velocity	1	characteristics.
flows		
		The following items are lectured: The propagation of a characteristic surface, the shear
Plance 2-D analysis of	3	layer instability in 2-D flow fields, the application of a generalized curvilinear
unsteady flows	5	coordinate system to river flow computation, the application of a moving coordinate
		system, etc.
		Boussinesq equation with the effect of vertical acceleration, full/partially full
Higher order theory	3	pressurized flows observed in a sewer network, traffic flow theory based on a dynamic
		wave model and its application
Achievement		Understanding of the contents on Open Channel Hydraulics is confirmed through the
Confirmation &	1	regular examination.
Feedback		regular examination.

[Textbook] Printed materials on the contents of this class are distributed in class.

[Textbook(supplemental)]

[Prerequisite(s)] The Basic knowledge on fluid dyanamics and hydraulics

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students can contact with Hosoda by sending e-mail to hosoda.takashi.4w@kyoto-u.ac.jp.

Coastal Wave Dynamics 海岸波動論

[Code] 10F462 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 3rd

[Location]C1-173 [Credits]2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】Hitoshi Gotoh, Khayyer Abbas, Eiji Harada and Hiroyuki Ikari

[Course Description] Wave motion, which is the main driving force in coastal zone, is explained focusing on wave transformation theory and computational fluid dynamics, and design for coastal structures of their engineering applications is illustrated. As for the computational fluid dynamics for waves, methodology of free-surface wave based on the Navier-Stokes equation, which has been significantly developed in recent years, is explained in detail.

[Grading] Grading is based on student 's activities in lectures and written examination.

[Course Goals] Goal of this course is a detailed understanding of fundamental of wave transformation theory and computational fluid dynamics related to wave motion, and is also acquiring a design concept for coastal structures as their engineering applications.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The purpose and constitution of the lecture the method of the scholastic evaluation are explained.
Conservation laws of	4	Fundamentals of fluid mechanics, liner / non-liner wave theories and
fluid Modeling of surf zone dynamics	6	numerical mathematics are explained. Several methodologies against free-surface wave including breaking waves (i.e. VOF, MPS, SPH) are illustrated. Especially advanced approaches of MPS and SPH are explained in detail.
Introduction of turbulence models	1	Reynolds averaging models and large eddy simulation are outlined.
Modeling of rock mound dynamics	2	Method for tracking of armor blocks under high waves using Distinct Element Method is described.
Achievement Confirmation	1	Comprehension check of course contents.

[Textbook] Computational Wave Dynamics by Hitoshi Gotoh, Akio Okayasu and Yasunori Watanabe 234pp, ISBN: 978-981-4449-70-0

【Textbook(supplemental)】Non

[Prerequisite(s)] Non. It is desiarable to have knowledge about hydraulics, fluid mechanics.

[Independent Study Outside of Class] Review fundamental items of hydraulics or hydrodynamics.

[Web Sites]

[Additional Information] If there are any questions, please send e-mail to the staff. This course will be offered in 2015.

Hydro-Meteorologically Based Disaster Prevention

水文気象防災学

[Code] 10F267 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd

[Location]C1-191 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

【Instructor】 Kaoru Takara, Eiichi Nakakita, Takahiro Sayama

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

2 2 1	
2 1	
1	
2	
2	
2	
1	
1	
1	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10A222

Water Resources Systems 水姿画シューム 論

水資源システム論

[Code] 10A222 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st

[Location]C1-192 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Hori, T.(DPRI) and Tanaka, K.(DPRI)

[Course Description] Systems approach to natural and social phenomena associated to water resources is introduced in terms of planning and design of sustainable water resources systems.

[Grading] Grading is done based on examination and commitment to classes.

[Course Goals] Deep understanding of fundamentals for systems modeling of water-related natural and social processes and ability to perform data collection, analyses and design of sustainable water management systems.

[Course Topics]

Theme	Class number of times	Description
Optimum design of		
water resources	3	
systems		
desicion support for		
water resources	2	
management		
Recent topics on	2	
water management	2	
Water management	3	
practices in the world	3	
Land surface model		
and its application to	4	
water management		
achievement check	1	

【Textbook】Not specified.

[Textbook(supplemental)] Supplemental documents will be introduced in classes.

[Prerequisite(s)] Fundamentals of hydrology and water resources engineering.

[Independent Study Outside of Class] Review work based on handouts and report work for issues given in the classes are required.

[Web Sites]

[Additional Information] Open every two years. Available in 2017.

River basin management of flood and sediment

流域治水砂防学

[Code] 10F077 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 1st [Location]C1-173 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] (DPRI) Nakagawa, H., (DPRI) Sumi, T., (DPRI) Takebayashi, H. and (DPRI) Kawaike, K.

(Course Description **)** In a river basin, various kinds of disasters such as debris flow, land slide, flood inundation, storm surge, and etc. sometimes happen from the origin to the mouth. This lecture presents occurrence examples, mechanisms, theory and methods of prediction and prevention/mitigation methods against those disasters. Also this lecture mentions comprehensive management in a sediment routing system focusing on sediment management strategy in dam reservoirs.

[Grading] Grading is based on 2 reports out of 4 topics and attendance.

[Course Goals] The goals of the class are to understand phenomena within a river basin and to have wide knowledge of problems of flood and sediment disasters and countermeasures against them.

[Course Topics]

Theme	Class number of times	Description
About Sabo Works	4	About Sabo works, sediment disasters, countermeasures against sediment
	•	disasters, Sabo projects.
About Reservoir		Reservoir sediment management focusing on reservoir sustainability and
Sediment	3	comprehensive management in a sediment routing system is overviewed
Management		including worldwide perspective and Japanese advanced case studies.
About basin-wide		About the one dimensional bed deformation analysis and the sediment runoff
sediment routing	4	model are introduced. Furthermore, some examples of the application of those
seament routing		models are introduced.
About basin-wide	1	Flood disasters and countermeasures against them are overviewed along the
flood management	4	history of flood management in Japan.

[Textbook] No designation. Printed materials regarding the contents of this class are distributed in class.

【Textbook(supplemental)】Instructed in class

[Prerequisite(s)] Fundamental knowledge of Hydraulics and river engineering

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This class is held biennially and is held in 2017. Attendance is taken every time.

Coastal and Urban Water Disasters Engineering

沿岸・都市防災工学

[Code] 10F269 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] C1-192 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] H. Mase, A. Igarashi, N. Yoneyama, Nobuhito Mori,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Out line of coastal	1	Introduction of coastal and urban disasters will be lectured. The type and cause
and urbarn disasters	1	of coastal and urban disasters will be explained for sequential lectures.
Modeling of tsunami,		The fundamental physics and governing equations of tsunami, storm surge and
storm surge and	3	ocean waves will be described and applications and historical events will be
waves		explained in detail.
Reduction of coastal		Characteristics of historical tsunamis, storms surges and coastal erosion will be
	3	presented with countermeasures by engineering approaches. Reliability design
disasters		for coastal structures will be explained following Japanese standard.
Earthquake Disaster	1	Review of recent earthquake disasters in urban areas in Japan and other
in Urban Areas	1	counries
Principle of Strucural		
Design against	3	Fundamental Principles of safety and performance of structures against
Disasters		extreme events, including earthquakes and tsunami
	1	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Basin Environmental Disaster Mitigation

流域環境防災学

[Code] 10F466 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	3	
	3	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Computational Fluid Dynamics

数值流体力学

[Code] 10F011 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 4th [Location]C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】 Satoru Ushijima, Hitoshi Gotoh, Abbas Khayyer

[Course Description] Computational Fluid Dynamics (CFD) is largely developed according to the progress of computer technology in recent years. It is the powerful and effective technique to predict the various fluid phenomena, which show the complicated behaviors due to the non-linearity and other conditions. This course provides the dynamics of fluids and eddies as well as the discretization and numerical techniques, such as finite difference, finite volume and particle methods.

[Grading] The grading will be based on homework assignments.

[Course Goals] Course goal is to understand the basic theory and numerical techniques for CFD.

[Course Topics]

Theme	Class number of times	Description
computational method for incompressible fluids	7	The course introduces the MAC algorithm, which is generally used for incompressible Newtonian fluids on the basis of finite difference and finite volume methods (FDM and FVM). The outline of numerical methods is also discussed for parabolic, hyperbolic or elliptic partial differential equations, in terms of the numerical stability and accuracy. Homework will be assigned
		each week.
Particle method - basic theory and improvements	7	To simulate violent flow with gas-liquid interface which is characterized by fragmentation and coalescence of fluid, particle method shows excellent performance. Firstly, basics of the particle method, namely discretization and algorithm, which is common to SPH(Smoothed Particle Hydrodynamics) and MPS(Moving Particle Semi-implicit) methods, are explained. Particle method is superior in robustness for tracking complicated interface behavior, while it suffers from existence of unphysical fluctuation of pressure. By revisiting the calculation principle of particle method, various improvements have been proposed in recent years. In this lecture, the state-of-the-art of accurate particle method is also described.
Feedback	1	Discuss the contents of all classes and assignments. The details will be introduced in the course.

[Textbook] No textbook assigned to the course

[Textbook(supplemental)] Recommended books and papers will be introduced in the course.

[Prerequisite(s)] Basic knowledge of fluid dynamics, continuum mechanics and computational technique

【Independent Study Outside of Class】

[Web Sites]

10F065

Hydraulic Engineering for Infrastructure Development and Management 水域社会基盤学

[Code] 10F065 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Hosoda Takashi, Toda Keiichi, Gotoh Hitoshi, Tachikawa Yasuto, Kisihida Kiyoshi, Ichikawa Yutaka, Harada Eiji, Sanjou Michio, Khayyer Abbas and Kim Sunmin,

【Course Description】 This lecture picks up various water-related problems and provides their explanation and solution methodology related to hydrodynamic and hydrological infrastructure improvements, maintenance, disaster prevention against flood and damage of water environment, interweaving several leading-edge cases in the real world. Turbulent flow and CFD, sediment transport system and design/planning of hydraulic structure are described on the basis of the integrated management of river-and-coast systems with sediment control and these relationship with infrastructure improvement. Perspective from the viewpoint of public environmental infrastructure on water environment is presented.

[Grading] Grading is based on students activities in lectures and reports.

[Course Goals] Students learn about case-based practical solutions against various problems related to hydraulic engineering, and students acquire academic preparation of how to approach to public environmental infrastructure on water area.

[Course Topics]

Theme	Class number of times	Description
T (1 (1	The purpose and constitution of the lecture, the method of the scholastic
Introduction	1	evaluation are explained.
Hydraulics in	2	Several problems and exciting topics related to hydraulics in open-channel
open-channel flows	3	flows are discussed with advanced practical examples.
Diverbasin		Introduction of flood disasters during a few decades in the world, flood control
River basin	3	planning in Japan, Economic evaluation and analysis of people 's awareness
management		to river improvement projects with dam construction.
	3	Several problems and their solution methodology against sediment transport
Beach erosion		process in coastal zone are explained. Advanced approaches for sediment
		control are overviewed.
Rainfall-runoff		Water recourses issues related to reinfall must ff and disting and hydrologic
prediction and	3	Water resources issues related to rainfall-runoff prediction and hydrologic
hydrologic design		design are discussed with advanced practical examples.
Numerical		
simulation for	1	Recent numerical simulation development and related state-of-the-art
Hydraulic	1	technologies are overviewed.
engineering		
Achievement	1	Comprehension check of course contents. The exercises to the given subjects
Confirmation	1	are performed.

【Textbook】Non

【Textbook(supplemental)】 Non

[Prerequisite(s)] hydraulics, fluid mechanics, river engineering, coastal engineering, hydrology, etc.

【Independent Study Outside of Class】

[Web Sites] Non

Applied Hydrology

応用水文学

[Code] 10F100 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th [Location]C1-173 [Credits]2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Hori(DPRI), Sumi(DPRI), S.Tanaka(DPRI), Takemon(DPRI), K.Tanaka(DPRI), Kantoush(DPRI)

[Course Description] Applied and integrated approach to the problems closely related to the water circulation system, such as floods, droughts, water contamination, ecological change, and social change is introduced mainly from the hydrological viewpoint with reference to water quantity, quality, ecological and socio-economic aspects. In the course, several actual water problems are taken up and solving process of each problem which comprises of problem-identification and formulation, impact assessment, countermeasures design and performance evaluation is learned through the lectures ' description and also investigation and discussion among the students.

[Grading] Grading is based on student activities in lectures, presentation and reports.

[Course Goals] To obtain fundamental Knowledge and skills to perform problem definition, survey amd countermeasure design on problems about water use, water hazard mitigation and water environment.

Theme	Class number of times	Description
Water disasters and	2	Risk assessment of water disasters, countermeasures and adaptation design,
risk management	2	wataer disasters and human security
Reservoir Systems	2	Reservoir system and its environmental impacts, Sustainable management of
and Sustainability	2	reservoir system
Hydrological	2	Basic theory and application of Hydrological Frequency Analysis, which is the
Frequency Analysis	3	basis for hydrologic design.
Land Surface	2	
Proceses	2	Modelling of land surface processes, Application of land surface model
Hydrological		
Measurements of	2	Design and management of hydrological measurement system in large river
Large River Basins		basins
Under and Contained	2	Ecohydrological management of habitats in river ecosystems, Ecohydrological
Hydro-eco Systems	2	management of biodiversity in wetland ecosystems
Presentation and	2	study and avancing for siver torios
Discussion	2	study and exersize for given topics

[Course Topics]

[Textbook] Printed materials on the contents of this class are distributed in class.

[Textbook(supplemental)] None

[Prerequisite(s)] Elementary knowledge of hydrology and water resources engineering.

[Independent Study Outside of Class] Review work based on handouts and report work for issues given in the classes are required.

[Web Sites]

Case Studies Harmonizing Disaster Management and Environment

Conservation

環境防災生存科学

[Code] 10F103[Course Year] Master and Doctor Course[Term] 1st term[Class day & Period] Mon 4th[Location] C1-191[Credits] 2[Restriction] No Restriction[Lecture Form(s)] Relay Lecture[Language] English

[Instructor] K. TAKARA(DPRI), H. NAKAGAWA(DPRI), E. NAKAKITA(DPRI), H. MASE(DPRI), N. MORI(DPRI), T. SAYAMA(DPRI)

[Course Description] Environmental impacts by infrastructure for disaster prevention and mitigation are discussed. Introducing various examples of natural disasters, degradation of the environment, and harmonizing disaster management and environmental conservation in the world, this classroom carries on a dialogue about effective measures for reducing negative environmental impacts and serious disasters.

[Grading] Considering both the number of attendances and the score of final test at the end of the semester.

[Course Goals] Conservation of the environment and prevention/mitigation of natural disasters, which are very important for human's survivability, often conflict with each other. This course introduces various examples. Students will learn many examples harmonizing these two issues, and shall consider technical and social countermeasures fitting to the regional characteristics. [Course Topics]

Theme	Class number of times	Description
Introduction	1	Introduction
Disaster due to heavy		
rainfall utilization of	3	Disaster due to beauty minfall utilization of weather rader and clobal elimete abange
weather radar and global	3	Disaster due to heavy rainfall utilization of weather radar and global climate change
climate change		
Flood disaster prevention	2	Flood disaster prevention and the environment
and the environment	2	Flood disaster prevention and the environment
River environment and	3	River environment and disaster management
disaster management	5	Kiver environment and disaster management
Hydrological processes		
and water disaster	2	Hydrological processes and water disaster predictions
predictions		
Coastal disasters due to		
tsunamis and storm	2	Coastal disasters due to tsunamis and storm surges
surges		
Projection of climate and		
coastal environmental	2	Projection of climate and coastal environmental change
change		

[Textbook] No particular textbook for this course. Necessary documents and literature introduction are provided in the class room from time to time.

Lecture material for Coastal disasters due to tsunamis and storm surges

http://urx3.nu/t4sq

http://urx3.nu/t4sA

http://urx3.nu/t4sC

[Textbook(supplemental)] Some literature would be introduced by professors.

[Prerequisite(s)] No special knowledge and techniques are necessary, but requires reading, writing and discussing in English in the class.

[Independent Study Outside of Class] No specific requirement for independent study. Collect information broadly regarding

environment and disaster related topics.

[Web Sites]

[Additional Information] Contact Prof. Takara at <takara.kaoru.7v@kyoto-u.ac.jp> if you have any query.

Integrated Disasters and Resources Management in Watersheds 流域管理工学

[Code] 10F106 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 1st

[Location] Katsura Campus, Ujigawa Open Laboratory, Shirahama Oceanographic Observatory and Hodaka Sedimentation Observatory

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture and Exercise [Language] English

[Instructor] Masaharu FUJITA(DPRI), Tetsuya HIRAISHI(DPRI), Nozomu YONEYAMA(DPRI), Kenji KAWAIKE(DPRI), Hiroshi TAKEBAYASHI(DPRI), Daizo TSUTSUMI(DPRI), Yasuyuki BABA(DPRI),

[Course Description] Mechanism and countermeasures of sediment disasters, flood disasters, urban flood disasters and coastal disasters are explained. An integrated watershed management of these disasters and water/sediment resources is also introduced. This lecture will be open at Katsura Campus, Ujigawa Open Laboratory, Shirahama Oceanographic Observatory and Hodaka Sedimentation Observatory. Students attending this lecture must take one of the intensive experiment/field study courses offered in Ujigawa Open Laboratory and these observatories.

[Grading] Presentation, Discussion and Report

[Course Goals] Learn an integrated basin management system for natural disasters (sediment disasters, food disasters, coastal disasters, urban flood disasters) mitigation and water/sediment resources utilization considering environmental conservation.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Contents of this lecture are explaned.
		We review urban floods from the viewpoint of river basins, flood causes, and features,
Urban flood disaster	2	together with the results of recent studies. Based on these studies, we propose comprehensive
managemnet	2	measures against urban floods, including underground inundations. In addition, we discuss
		on prediction methods of the tsunami disaster in urban area.
Flood disaster	2	Prevention / mitigation measures against flood disasters and flood prediction methods are
management	2	explained as well as examples of recent flood disasters in Japan.
Sediment disaster	2	Showing the problems on sediment disasters and sediment resources, I explain an integrated
management	2	sedimnet management system both for sediment disasters and sediment resources.
Coastal disaster	2	Coastal erosion and tsunami hazard become remarkable in these days in Japanese coast. In a
management	2	lecture, we discuss on characteristics of such coastal disasters.
Exercise on flood	6(集中2	Experiment and analysis on debris flows, riverbed variation and flooding at Ujigawa Open
disaster at Ujigawa Open	日間)	Laboratory, Fushimi-ku, Kyoto city.
Laboratory (Selective)		
Exercise on sediment		The Hodaka Sedimentation Observatory is located at Okuhida region, Gifu Prefecture. In the
related disaster at	6(集中2	field exercise, observation methods of rainfall-runoff and sediment movement processes will
Hodaka Sedimentation	日間)	be explained. Field investigations into several types of erosion control facilities, sediment
Observatory (Selective)		producing sites, debris flow sites and sediment related disaster sites will be carried out.
Exercise on coastal		The Shirahama Oceanographic Observatory is located in Shirahama, Wakayama Prefecture.
disaster at Shirahama	6(集中2	In the lecture, the observatory, waves, currents and tide levels monitoring system is
Oceanographic	日間)	demonstrated as well as the observation tower and the observation boat.
Observatory (Selective)		

【Textbook】None

【Textbook(supplemental)】None

[Prerequisite(s)] Hydraulics, River Engineering, Coastal Engineering, Sediment Transport Hydraulics

【Independent Study Outside of Class】

[Web Sites]

Geomechanics

地盤力学

[Code] 10F025 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location]C1-172 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Mamoru Mimura, Sayuri Kimoto,

[Course Description] Mechanical behavior of soils and problems of its deformation and failure will be covered based on the multiphase mixture theory and the mechanics of granular materials.

[Grading] Final examination (70) and hormeworks, class performance (30)

[Course Goals] The objectives of this course are to understand the basics of geomechanics, and the advanced theories.

[Course Topics]

Theme	Class number of times	Description
Deformation of geomaterils	1	Mechanical property of geomaterials, critical state soil mechanics, Failure criteria, modelling of geomaterials (by Prof.Mimura)
Field equations and constitutive model	2	Framework and field equations for continum, stress-strain ralations for soils, elastic model, elasto-plastic model, plasticity theory (by Prof.Mimura)
elasto-plastic constitutive model	3	Constitutive model for geomaterials, elasto-plastic model, Cam clay model (by Prof. Mimura)
Theory of viscosity and viscoplasticity	3	Viscoelasticity, viscoplasticity, Elasto-viscoplastic mode, Adachi-Oka model, Microstructure of soils, Temperature dependent behavior, Applications of constitutive models (by Prof. Mimura)
Consolidation analysis	3	Biot's consolidation theory and its application, Consolidation of embankment (by Assoc.Prof. Kimoto)
Liquefaction of soils	2	Liquefaction of sandy soil, Damage and failure due to liquefaction, Remedial measures for liquefaction (by Assoc.Prof. Kimoto)
Confirmation of achievement	1	

【Textbook】 Handout will be given.

Soil mechanics, Fusao Oka, Asakura Publishing (in Japaneses)

[Textbook(supplemental)] An elasto-viscoplastic constitutive model, Fusao Oka, Morikita Publishing (in Japanese)

[Prerequisite(s)] Soil mechanics, Fundamentals of continuum mechanics

【Independent Study Outside of Class】

[Web Sites]

10K016

Computational Geotechnics 計算地盤工学

[Code] 10K016 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] English [Instructor],

[Course Description] The course provides students with the numerical modeling of soils to predict the behavior such as consolidation and chemical transport in porous media. The course will cover reviews of the constitutive models of geomaterials, and the development of fully coupled finite element formulation for solid-fluid two phase materials. Students are required to develop a finite element code for solving boundary valueproblems. At the end of the term, students are required to give a presentation of the results.

[Grading] Presentation and home works

[Course Goals] Understanding the numerical modeling of soils to predict the mechanical behavior of prous media, such as, deformation of two-phase mixture and chemical transportation.

Course	Topics]
---------------	----------

Theme	Class number of times	Description	
Guidance and	1	Fundamental concept in continuum mechanics such as deformation, stresses,	
Introduction	1	and motion.	
Governing equations		Motion, conservation of mass, balance of linear momeutum for fluid-solid	
for fluid-soid	2	two-phase materials. Constitutive models for soils, including elasticity,	
two-phase materials		plasticity, and visco-plasticity.	
Ground water flow			
and chemical	5	Chemical transport in porous media, advective-dispersive chemical transport.	
transport			
Doundary value		The virtual work theorem and finite element method for two phase material are	
Boundary value	F	described for quasi-static and dynamic problems within the framework of	
problem, FEM	5	infinitesimal strain theory. Programing code for consolidation analysis is	
programming		presented.	
Presentation	2	Students are required to give a presentation of the results.	

[Textbook] Handout will be given.

【Textbook(supplemental)】

[Prerequisite(s)] Fundamental geomechanics and numericalmethods

【Independent Study Outside of Class】

[Web Sites]

Geo-Risk Management

ジオリスクマネジメント

[Code] 10F238 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location]C1-172 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]English

[Instructor] Ohtsu

[Course Description] This lecture aims to provide interdisciplinary knowledge associated with geo-risk engineering, the topics of risk analysis focusing on geotechnical structures. In detail, the contents of lectures consist of following topics: Introduction to risk analysis, Mathematical background of geo-risk evaluation, Examples of risk evaluation mainly focusing on slopes and Risk management on road slopes.

[Grading] Attendance(10%), Report(30%), Examination(60%)

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Cuidanas	1	Guidance
Guidance	1	Introduction of Geo-Asset Management
Basic	4	Basics of Risk Analysis (3)
Probability theory	7	Evaluation of Slope Risk
Case Studies in	2	Natural Disasters in Asian Countries
Asian Countries		Natural Disasters in Asian Countries
Feed back	1	Feed back

[Textbook] Hiroyasu Ohtsu, Project Management, Corona Publishing, 2010. (in Japanese)

[Textbook(supplemental)] C. Chapman and S. Ward, Project Risk Management, John Wiley & Sons, 1997.

R. Flanagan and G. Norman, Risk Management and Construction, Blackwell Science

V.M. Malhotra & N.J. Carino, CRC Handbook on Nondestructive Testing of Concrete, CRC Press, 1989.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Additional information is available by visiting the following professors. Appointment shall be made in advance by e-mail.

ohtsu.hiroyasu.6n@kyoto-u.ac.jp

Construction of Geotechnical Infrastructures

ジオコンストラクション

[Code] 10F241 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 1st [Location]C1-171 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor] Kimura, Kishida

[Course Description] Advanced construction technology of geo infrastructures, such as tunnel, large underground cavern, foundation, culvert, retaining wall, is introduced and explained. And, the practical projects applied by the advanced construction technology are also introduced.

[Grading] Attendance and Report (20%), Examination (80%)

[Course Goals] To learn to the advanced construction technology and to propose the project and design through the advanced construction technology.

[Course Topics]

Theme	Class number of times	Description
Guidance,		
Introduction of		
construction of	1	Guidance, Introduction of construction of geotechnical infrastructures
geotechnical		
infrastructures		
Geo-investigation		Introduction of the advanced and infectation and survey techniques
and survey	2	Introduction of the advanced geo-infestation and survey techniques.
techniques		Explanation of inversion theory and technique.
		Introduction of NATM for construction of tunnel and underground cavern. In
Auxiliary mthods of	2	addition, the role of auxiliary methods, auxiliary method for safety in tunnel
mountain tunnel		constrcution, axiliary methods for preservation of the surrounding environment
		are explained
Rock physics and its	2	Introduction of the constitutive law of rock material and rock physics (pressure
applications		solution) and its application fields, such as special projects of underground
applications		space, namely, nuclear waste disposal, and Carbon Capture and Storage.
Field visit or special	1	Visit the construction field or invite special lecture who is the expert engieer
lecture	1	on the construction of geotechnical infrastructures.
Foundation	2	Design and construction of piles foundation and steel pipe sheet piles
Culvert	2	Design and construction of box type and arch type culverts
Retaining wall	2	Design and construction of retaining wall
Examination of	1	
understanding	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Soil mechanics, Rock mechanics

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Office hour will be explained at the guidance. Students can contact with professors as an e-mail.

kimura.makoto.8r@kyoto-u.ac.jp

kishida.kiyoshi.3r@kyoto-u.ac.jp

Fundamental Geofront Engineering

ジオフロント工学原論

[Code] 10F405 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st [Location] C1 Jin-Yu Hall [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Prof. Mamoru MIMURA, Prof. Makoto KIMURA, Assoc. Prof. Yosuke HIGO

[Course Description] This course deals with near-surface quaternary soft soil deposits that are the most important in the engineering sense.

Physical properties and the mechanical characteristics of partially saturated and fully saturated soils are explained, and then various problems in terms of disaster prevention and infrastructure construction are discussed.

[Grading] Performance grading will be provided based on quality of assigned reports and presentations, etc.

[Course Goals] The aim of this course is to understand engineering problems and their mechanical background in the following points:

- Physical properties and mechanical characteristics of quaternary soft soil deposits and relevant engineering problems in terms of disaster prevention

- Fundamentals of unsaturated soil mechanics and engineering problems of earth structures in terms of disaster prevention

- Concepts of innovative underground foundations and structures and engineering problems during construction

[Course Topics]

Theme	Class number of times	Description		
Outline of the course, introduction to quaternary deposits	1	Introduction to quaternary deposits. Types and mechanisms of geotechnical disasters relevant to quaternary deposits.		
Geo-informatic database	1	Geo-informatic database and its application to modelling soft alluvial soils, liquefaction hazard map, etc.		
Evaluation of subsurface structure based on GID	1	Scheme to evaluate subsurface structures using Geo-informatic database including boring logs, geophysical exploration, geological structures. Application to Kyoto basin is given.		
Evaluation of liquefaction for near-surface sand depoits	1	Evaluation of liquefaction for near-surface sand deposits using Geo-informatic database is explained. Applications to the 1995 Hyogo-ken Nanbu Earthquake and the 2011 Off the Pacific Coast of Tohoku Earthquake are given, through which open questions are discussed.		
Problems of soft clay deposits	1	Deformation characteristics and stability of soft clay deposits and their evaluation methods are explained, e.g., effectiveness and limitation of ground improvement, long term settlement problem, and case histories of large scale reclamation.		
Concept of innovative underground structures	1	Citizen-participate-type renovation technique for unpaved roads using sandbags.		
Concept of innovative underground structures	1	New construction method of embankments using consecutive precast arch culvert.		
Concept of innovative underground structures	2	Technical problems of steel pipe sheet pile. Development of consecutive steel pipe sheet pile and its application.		
Outline of earth structures, Unsaturated soil mechanics	2	Roles of earth structures as an infrastructure. Unsaturated soil mechanics.		
Damage of earth structures caused by rainfall and earthquake	1	Case examples and their mechanisms of the damages of earth structures caused by rainfall a earthquake.		
Methods to evaluate and improve stability of earth structures subjected to rainfall and earthquake	1	Design methods of earth structures and their problems are outlined.		
Site visit	1	Visit construction site relevant to the issues of this course.		
Evaluation and feedback	1	Evaluation of achievement by assigned reports and its feedback are given.		

[Textbook] Handout will be distributed.

[Textbook(supplemental)] References are indicated in the handout.

[Prerequisite(s)] Undergraduate courses in geology, geotechnical engineering, and soil mechanics.

【Independent Study Outside of Class】

[Web Sites]

10A055

Environmental Geotechnics 環境地盤工学

[Code] 10A055 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 1st
[Location] C1-192 / Engineering Bldg.No.8 Kyodo No.1 (Yoshida Campus) [Credits] 2 [Restriction] No Restriction
[Lecture Form(s)] Lecture [Language] Japanese/English [Instructor] Takeshi Katsumi, Toru Inui,

[Course Description] Several issues on environmental geotechnics including geoenvironmental contamination and countermeasure, waste containment and reuse are introduced to understand the contribution of geotechnical engineering to global and local environmental issues. Geoenvironmental issues due to the 2011 East Japan Earthquake and Tsunami are also introduced.

[Grading] Continuous assessment including attendance, some assignments, and final report

[Course Goals] Students should understand the geotechnics to solve the following geoenvironmental issues; soil & groundwater contamination, waste disposal and waste utilization, and extend this knowledge to the development of concepts and technologies for creating and preserving the geo-environment.

[Course Topics]

Theme	Class number of times	Description	
Introduction	1	Introduction to Environmental Geotechnics, including goals, outline and grading policy of the course	
Waste geotechnics	3-4	Functions and structures of waste containment facilities Geotechnics on the liner system (Geosynthetics, clay liner, Leachate collection layer) Post-closure utilization of waste landfill	
Remediation geotechnics	3-4	Behaviors of contaminants in subsurface Mechanisms of soil and groundwater contamination Remediation of soil and groundwater contamination Case histories	
Geo-environmental issues related to construction works, global environmental issues, and natural disasters	2-3	Mechanisms and remediation of geoenvironmental problems and geo-disasters caused by construction works Geoenvironmental issues caused by the 2011 East Japan Earthquake and Tsunami	
Reuse of wastes in geotechnical applications	3-4	Engineering properties of recycled materials in geotechnical applications (Incinera ashes, coal ash, surplus soils, dredged soils) Geoenvironmental impact assessment and control of waste utilization Case histories	
Presentation and discussion	2-3	Student presentation, discussion, and summary on above topics	

【Textbook】Not specified.

Several technical papers related to the course will be distributed.

[Textbook(supplemental)] Geoenvironmental Engineering (Kyoritsu Shuppan Publishing, ISBN: 9784320074293)

Handbook of Geoenvironmental Engineering (Asakura Publishing, ISBN: 9784254261523)

Introduction to Environmental Geotechnics (Japanese Geotechnical Society, ISBN: 9784886444196)

[Prerequisite(s)] Having knowledge on soil mechanics and geotechnical engineering at bachelor level is preferable, but not requirement.

【Independent Study Outside of Class】

[Web Sites]

Disaster Prevention through Geotechnics

地盤防災工学

[Code] 10F109 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd [Location]C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Ryosuke Uzuoka and Kyohei Ueda

[Course Description] The lecture covers nonlinear continuum mechanics and dynamic three-phase analysis of ground and geotechnical structures. In particular, the lecture covers the geo-hazards mechanism and prediction of failure modes, and mitigation measure against geo-hazards. The lecture ranges from fundamental mechanics of granular materials to numerical simulation.

[Grading] Based on reports to exercises and attendance.

[Course Goals] Successful students will have the ability to initiate their own research work on geo-hazards based on the solid understanding of the mechanics of granular materials and numerical analysis.

Theme	Class number of Description	
		Introduction to the course (objectives, contents, and grading procedure)
Introduction	1	- Geo-hazards induced by heavy rain and earthquake
		- Application of numerical analysis to predict the geo-hazards
		Nonlinear continuum mechanics 1
Nonlinear continuum	3	- Vector and tensor algebra
mechanics 1	3	- Kinematics (motion and strain tensors)
		- Concept of stress tensors
		Nonlinear continuum mechanics 2
Nonlinear continuum	3	- Balance Principles
mechanics 2	3	- Objectivity and stress/strain rates
		- Constitutive laws
Fundamentals of		Fundamentals of numerical analysis for geo-hazards
	4	- Balance equations
numerical analysis	4	- Constitutive equations
for geo-hazards		- Numerical method
Applications of		Applications of Numerical analysis for geo-hazards
Numerical analysis	4	- Liquefaction
for geo-hazards		- Landslide

[Textbook] Handouts

[Textbook(supplemental)] Gerhard A. Holzapfel: Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley.

Javier Bonet, Antonio J. Gil, Richard D. Wood: Nonlinear Solid Mechanics for Finite Element Analysis: Statics, Cambridge University Press.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Public Finance 公共財政論

[Code] 10F203 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location]C1-173 [Credits]2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】Kobayashi, Matsushima,

[Course Description] The concept of public finance will be taught based upon the framework of Macro economics.

[Grading] Final Exam: 60-70% Mid-term Exam and Attendance: 30-40%

[Course Goals] Understand the concept of public finance

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Explain the outline of this course
GDP and 2. Circular flow model of macro economics	2	Explain about the circular flow model of macro economics and the definition of GDP
Input Output Table and General Equilibrium Model	2	Explain about the input-output table and its role on general equilibrium model
IS-LM Model	2	Explain about IS-LM model to analyze both goods market and money market
International Economics	2	Explain about the international account balance and IS-LM model with trade
AD-AS Model	2	Explain about AD-AS model which analyze the mid term
Economic Growth Model	2	Explain about economic growth model in which long term economic growth is analyzed
Summary	1	Summarize classes and check whether students could achieved its goal.
feedback	1	Accept feedback from students

[Textbook]

[Textbook(supplemental)] Dornbusch et al., Macroeconomics 10th edition, Mcgrow-hill, 2008

[Prerequisite(s)] Basic Microeconomics

【Independent Study Outside of Class】

[Web Sites] will be notified in the first class.

Urban Environmental Policy 都市社会環境論

[Code] 10F207 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location]C1-173 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

【Instructor】Ryoji Matsunaka

[Course Description] This lecture aims to learn urban environmental policy and its fundamental theory and methodology to solve social and environmental problems that occur in urban area as well as to understand the structure of these problems.

[Grading] evaluation by commitment, tests, reports and examination

[Course Goals] to understand the structure of social and environmental problems in urban area and urban environmental policy, its fundamental theory and methodology to solve the problems

[Course Topics]

Theme	Class number of times	Description
Outline	1	
Structure of urban	2	Expansion of urban areas, Increase of Environmental impact, Making compact
problems	3	cities
Basic theory of		
transportation and	2	Downtown activation, Road space re-allocation, Pedestrianisation
environment		
Road traffic and	2	Characteristics of traffic modes, Light Rail Transit, Bus Rapid Transit,
Public transportation	2	Mobility Management
Fundamental theory		
for measurements of	3	Utility, Equivalent Surplus, Compensating Surplus
environmental values		
Methodology to		Travel Cost Mathed Hadania Annasah, Contingent Valuation Mathed
measure	3	Travel Cost Method, Hedonic Approach, Contingent Valuation Method,
environmental values		Conjoint Analysis
Summary	1	

[Textbook] No textbook

[Textbook(supplemental)]

[Prerequisite(s)] basic knowledge of public economics is required

【Independent Study Outside of Class】

[Web Sites]

Quantitative Methods for Behavioral Analysis 人間行動学

[Code] 10F219 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 5th

[Location]C1-192 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

【Instructor】Satoshi Fujii,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	3	
	3	
	3	
	3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Intelligent Transportation Systems 交通情報工学

[Code] 10F215 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] N. Uno, T. Yamada and T. Nakamura,

[Course Description] This class provides you with the outlines of engineering methodology with information and communication technology as its core element for improving the safety, efficiency and reliability of traffic and transportation systems and reducing the environmental burden. Concretely, we discuss the applicability of countermeasures, such as Travel Demand Management, modal-mix in transportation systems, traffic safety improvement schemes for relieving contemporary problems in traffic and transportation systems, in addition to brief introduction of innovative approaches to collect high-quality of real-time traffic data. Moreover, the methodology for policy evaluation and the related basic theory are explained.

[Grading] Final report: 45%, Mid-term report: 45% and Mark given for class participation: 10%

[Course Goals] Goal of this class is to cultivate basic and critical abilities of students for implementing effective traffic and transportation management using ITS (Intelligent Transportation System).

Theme	Class number of times	Description	
Basics for Transportation	1		
Network Analysis	1		
Estimation of OD Traffic			
Volume using Observed	1		
Link Traffic Counts			
Analytical Approaches			
Based on Transportation	4		
Network Equilibrium			
Outlines of ITS	1		
Traffic Management for	2		
Enhancing Efficiency	2		
Innovative Approaches			
for Data Collection	1		
Using ICT			
Application of ITS for	1		
Enhancing Traffic safety	1		
Travel Demand			
Management and	2		
Congestion Charging			
Application of Traffic	2		
Simulation	2		
Feedback of evaluation			
of report examination to	1		
students			
	1		

【Textbook】

[Course Topics]

【Textbook(supplemental)】
【Prerequisite(s)】

【Independent Study Outside of Class】

[Web Sites]

10A805

Remote Sensing and Geographic Information Systems

リモートセンシングと地理情報システム

[Code] 10A805 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture & Exercise [Language] Japanese [Instructor] Nobuhiro Uno and Junichi Susaki [Course Description] Geoinformatics is the science and technologies dealing with spatially distributed data acquired with remote sensing, digital photogrammetry, global positioning system, etc, to address the problems in natural phenomena or human activities. This lecture particularly focuses on satellite remote sensing and explains the theory and the technologies for analyzing environmental changes or disaster effects. A free software MultiSpec is used in exercises to learn the basic techniques of image processing.

[Grading] Grading is based on the achievements in assignments.

[Course Goals] To understand the basic theory and to acquire the basic techniques of satellite remote sensing for observation and analysis of environmental changes, disaster effects and human activities in urban areas.

[Course Topics]

Theme	Class number of times	Description	
Introduction	0.5	Introduction to remote sensing and GIS is given, and the software supposed to use is introduced.	
Coordinate system and map projection	0.5	Principal coordinate systems and map projection methods used for satellite image and GIS data are explained.	
Radiation and reflection of electromagnetic waves, and optical sensor	1	Basic terms on electromagnetic radiation including radiation and reflection are introduced, and calculation of suface reflectance and temperature is explained. In addition, principles and applications of visible and infrared sensors are introduced.	
Land cover classification	1	Theory and procedure of land use/cover classification using satellite images are explained.	
Property of SAR	1	Concept of synthetic aperture radar (SAR) is first introduced, and the image processing, statistical property, speckle filtering and polarimetric SAR are explained.	
Measurement of topography using SAR data	1	Theory of Interferometric SAR (InSAR) and differential InSAR (DInSAR) is introduced. Then, long-term monitoring of land deformation by using multi-temporal SAR imagges is explained.	
(Analysis 1) Land cover classification using reflectance, temperature and elevation data	1	Land cover maps produced from optical satellite images and elevation data are presented, and the classifiers and data used are discussed.	
Least square method	1	Least square method (LSM) for generating estimates from observations is explained.	
Spatial statistics	1	Spatial auto-correlation observed among spatial data and removal of the effect are explained.	
Generation of DEM from airborne LiDAR data and application to landscape analysis	1	Generation of digital surface model (DSM) from airborne light detection and ranging (LiDAR) data is explained. As an application, landscape assessment using airborne LiDAR data is introduced.	
Generation of DEM using photogrammetry	1	Generation of DSM by using photogrammetry, and the difference of DSMs between photogrammetry, SAR and airborne LiDAR is explained.	
(Analysis 2) Spatially statistical analysis of land price data	1	Spatially statistical analysis of land price data with other variables is presented, and the validity and applicability to other areas are discussed.	
Change in observations and management in traffic and transportation syst	1	 Methodological change in traffic and transportation observations Progress in location estimation technology and sophistication of management 	
Utilization of geographical information system in urban management	1	 Issues in urban management and importance of information Utilization of geographic information system and its difficulties 	
Materialization of Smart City and role of Big Data	1	- What is Smart City? - How to utilize and analyze Big Data	
Assessment of understanding	1	Assess students' understanding levels	

[Textbook]

[Textbook(supplemental)] - Junichi Susaki and Michinori Hatayama, Geoinformatics, Corona Publisher, 2013

- W. G. Rees, Physical Principles of Remote Sensing 3rd ed., Cambridge University Press, 2013.

- J. A. Richards and X. Jia , Remote Sensing Digital Image Analysis: An Introduction, 5th ed., Springer-Verlag, 2013.

-M. Netler and H. Mitasova, Open Source GIS: A GRASS GIS Approach 3rd ed., The International Series in Engineering and Computer Science, 2008.

[Prerequisite(s)] Basic knowledge in computer information processing

【Independent Study Outside of Class】

 $\label{eq:websites} \label{eq:websites} \lab$

Civic and Landscape Design

景観デザイン論

[Code] 10A808 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture and practice

[Language] Japanese [Instructor] Masashi Kawasaki, Keita Yamaguchi, Keiichiro Okabe

[Course Description] Lecture for Landscape Design, Design of Urban infrastructure, and Landscape Architecture Practice

[Grading] Reports (Kawasaki: 50%) and design practice (Okabe: 50%)

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Guidance. Landscape	1	Guidance, Lecture on landscape and image.
and image Architectural Design	3	Lecture on planning and designing about landscape design of urban facilities such as roads and plazas, parks, waterfront and waterfront and public space.
of city and urban		
facilities		
Landscape Design and Management	4	The history of landscape policy, the method of evaluating landscape, the case and method of landscape planning, examples and methods of urban design both in Japan and abroad
Landscape Architecture Practice	6	Designed for streets, parks
Feedback	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Risk Management Theory

リスクマネジメント論

[Code] 10F223 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 3rd

[Location] C1-173 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture and exercise [Language] English

【Instructor】 Muneta Yokomatsu,

[Course Description] The aim of the class is to provide the basic knowledge of risk management methods for various types of risks such as natural disaster, environment and natural resources in urban and rural areas. Students will learn the decision making principle under risks in Economics and asset pricing methods in Financial Engineering as well as have exercises of application on public project problems.

[Grading] 20% of score is valuated on attendance and discussion in classes, and 80% on reports.

[Course Goals] It is targeted to understand 1) representative concepts of risk and risk management process, 2) expected utility theory and 3) foundation of Financial Engineering, and examine 4) public project problems by applying the above knowledge.

Theme	Class number of times	Description
Basic framework of		1-1 Representative concept of risk
risk management	2	1-2 Risk management technologies
Decision making	3	2-1 The Bayes' theorem
theory under risks		2-2 The Expected utility theory
		3-1 The Capital Asset Pricing Model
Financial	6	3-2 Option pricing theory
engineering		3-3 The arbitrage theorem
		3-4 The Black-Scholes formula
Decision making	3	4-1 The decision tree analysis
methods for projects		4-2 The real option approach
Comprehension	1	5 Communication shock
check		5 Comprehension check

[Course Topics]

[Textbook]

【Textbook(supplemental)】 1.Ross, S.M.: An Elementary Introduction To Mathematical Finance, Cambridge University Press, 1999

2.Sullivan W.G.: Engineering Economy, Pearson, 2012

[Prerequisite(s)] Fundamental understanding of probability

【Independent Study Outside of Class】

[Web Sites]

Disaster Risk Management 災害リスク管理論

[Code] 10X333 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th [Location] C1-171 [Credits]2 [Restriction] [Lecture Form(s)]Lecture [Language]English [Instructor]TATANO Hirokazu,YOKOMATSU Muneta, [Course Description] Natural disasters have low frequencies but high impacts. It is very important to make an integrated risk

management plan that consists of various countermeasures such as prevention, mitigation, transfer, and preparedness. This class will present economic approaches to natural disaster risk management and designing appropriate countermeasures.

[Grading] Evaluate mainly by the presentations in the class as well as end-of-term report, taking active and constructive participation in the class into account.

[Course Goals] Students are expected to understand fundamental ways of economic analyses of disaster prevention such as economic valuation of disaster losses, decision making principle under risks, derivation of benefits of risk management.
[Course Topics]

Theme	Class number of times	Description
Introduction to disaster	1	Introduction and Explanation of Course Outline. The Clobal Trands of Natural Disasters
risk management	1	Introduction and Explanation of Course Outline, The Global Trends of Natural Disasters
1. Decision making	1	
theory under uncertainty	1	Bayes' theorem, Expected utility function
Methods of disaster risk	1	Disk sentest and side former
management	1	Risk control and risk finance
Economic valuation of		Cast Departitional valuation method actactmentic risks and accommis
catastrophic risk	1	Cost-Benefit analysis, conventional valuation method, catastrophic risks and economic valuation of disaster mitigation
mitigation		valuation of disaster initigation
Risk perception bias,		
land-use and risk	2	Risk perception bias, land-use model, risk communication
communication		
Disaster risk finance	2	Recent issues of risk finance market, reinsurance, CAT bond, roles of government,
Disaster fisk fillance	2	derivatives
Risk curve and risk	1	Fragility curve and risk assessment
assessment	1	Fragmity curve and fisk assessment
General equilibrium		
analysis under disaster	1	General equilibrium model under disaster risk
risk		
Macrodynamics under	1	GDP, economic growth
disaster risk	1	ODI, ceonomie growin
Disaster accounting	1	Accounting systems
Exercise and	2	Students' exercise and presentation
presentation	2	Students excretise and presentation
Confirmation of the		
learning achievement	1	Confirmation of the learning achievement degree
degree		

[Textbook] Tatano, H., Takagi, A.(ed.): Economic Analysis of disaster prevention, Keiso pub., 2005 (in Japanese).

[Textbook(supplemental)] Froot, K.A.(ed) "The Financing of Catastrophic Risk", the University of Chicago Press Kunreuther H. and Rose, A., "The Economics of Natural Hazards", Vol.1 & 2, The International Library of Critical Writings in Economics 178, Edward Elgar publishers, 2004

Okuyama, Y., and Chang, S.T., (eds.) "Modeling Spatial and Economic Impacts of Disasters" (Advances in Spatial Science), Springer, 2004.

[Prerequisite(s)] Nothing

【Independent Study Outside of Class】

[Web Sites] No web site

693287

Disaster Information 防災情報特論

[Code] 693287 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Hirokazu Tatano(DPRI), Katsuya Yamori(DPRI), Michinori Hatayama(DPRI), Shingo Suzuki(DPRI),

[Course Description] This lecture gives an outline of disaster prevention and reduction countermeasures both inside and outside Japan with special reference to disaster information related topics. Concrete examples of disaster information systems are introduced to show that psychological aspect of information users under critical social conditions is carefully taken into account in such current disaster information systems.

[Grading] Submit every class reports and end-of-term report Every class reports:

" Point out 3 discoveries for you and 1 request which you want to know more with reasons in this class.

Submit report via Email by the following rules

1. Address: disasterinfo@imdr.dpri.kyoto-u.ac.jp

2. subject: "Disaster Information Report [Date] Student ID, Name "

3. Don 't use attached file.

4. Dead line: Next Tuesday

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
What is disaster	unies	
prevention?	1	
Information system in		
emergency	2	
Information system in		
emergency	1	
Case examples on		
introduction of disaster	1	
information system		
Information system for	1	
evacuation planning,	1	
Information system for	1	
rescue activity	1	
Social psychological		
study of disaster	2	
information		
Disaster information and	2	
evacuation behavior	Ζ	
Gaming approach to		
disaster risk	3	
communication		
Test	1	

[Textbook] Nothing

【Textbook(supplemental)】 Only Japanese Books

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Office Hours: After Class, Make an appointment immediately after.

Questions via Email: disaster, nfo@imdr.dpri.kyoto-u.ac.jp

Theory & Practice of Environmental Design Research 環境デザイン論

[Code] 10A845 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	7	
	8	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10A402

Resources Development Systems 資源開発システム工学

[Code] 10A402 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 1st

[Location]C1-172 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Sumihiko Murata, Assoc. Prof., Dept. of Urban Management

[Course Description] Development of mineral resources and energy resources is essential to the sustainable development of our society. In this class, the exploration and development process of natural resources are reviewed including the environmental conservation and harmony. In addition, fundamentals of reservoir engineering for the evaluation of production behavior and reserves of oil and natural gas are lectured.

[Grading] Evaluation is made by the average score of report problems. They are presented 2 or 3 times in the semester.

[Course Goals] The goal of this class is to understand the natural resources development concerning environment and master the reservoir engineering needed for the exploration and development of oil and natural gas resources.

[Course	Topics]
---------	----------

Theme	Class number of times	Description
From exploration to		The exploration and development processes of mineral and energy resources,
development of	1	which are essential to the sustainable development of our society, are reviewed
natural resources		including the environmental conservation and harmony.
Fundamentals of	3	The properties of reservoir fluids and the material balance method to evaluate
reservoir engineering	3	the reserve of oil and natural gas are explained.
		Basic equations of multi-phase fluid flow in the reservoir and analytical
Fluid flow in the	7	solution for the flow of oil and natural gas around a well are explained.
reservoir		Furthermore, the concept and the method of well test analysis are also
		explained.
Enhanced all on 4		The displacement processes of oil and gas in a reservoir are explained.
Enhanced oil and	4	Furthermore, methods of enhanced oil and gas recovery (EOGR) are
natural gas recovery		overviewed, and the essentials of each EOGR method are explained.

【Textbook】 Handouts are delivered.

[Textbook(supplemental)] L.P.Dake, Fundamentals of Reservoir Engineering, Developments in petroleum science Vol.8, Elsevir, ISBN 0-444-41830-X

[Prerequisite(s)] It is desirable to have knowledge of calculus of undergraduate level.

[Independent Study Outside of Class] Self study is required using supplemental book.

[Web Sites] Web page of this class is not provided. Information is shown in the class when it is needed.

[Additional Information] Office hours are set 10:30-12:00 and 14:30-16:00 on the same day of the class.

Applied Mathematics in Civil & Earth Resources Engineering 応用数理解析

[Code] 10F053 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 3rd

[Location]C1-192 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number of times	Description
5	
2	
4	
5	
1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10A405

Environmental Geosphere Engineering 地殻環境工学

[Code] 10A405 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd [Location] C1-171
[Credits]2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Katsuaki KOIKE,
[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction of		
structure and content of	1	
this course		
Physics of Earth system	2	
Chemistry of Earth	3	
system	5	
Fundamentals of		
Geoinformatics (1):	2	
Spatical modeling	2	
techniques		
Fundamentals of		
Geoinformatics (2):	1	
Scaling of geological	1	
structure		
Fundamentals of		
Geoinformatics (3):	2	
Remote sensing		
Fundamentals of		
Geoinformatics (4):		
Earth survey and	1	
geochemical		
exploration		
Geosphere		
environments (1):	2	
Weathering process and	2	
geohazards		
Geosphere		
environments (2): CCS	1	
and HLW		
	1	
Mineral and energy	1.5	
resources	1.5	

[Textbook] Handouts will be distributed at each class.

[Textbook(supplemental)] References will be introduced in the handouts.

[Prerequisite(s)] Fundamental knowledges on geology, physics, and chemistry are required.

【Independent Study Outside of Class】

[Web Sites]

[Code] 10F071[Course Year] Master and Doctor Course[Term] 2nd term[Class day & Period] Fri 3rd[Location]C1-172[Credits] 2[Restriction] No Restriction[Lecture Form(s)] Lecture[Language] Japanese

[Instructor] Sumihiko Murata, Assoc. Prof., Dept. of Urban Management

(Course Description **)** Theory of elasticity relating to the deformation and failure of rock and rock mass and design of rock structures is explained. Specifically, two-dimensional analysis of elasticity using the basic equations, constitutive equations, and the complex stress function are explained. In addition, poroelasticity is explained. Several applications of this analysis to rock mechanics, rock engineering, and fracture mechanics are also explained.

[Grading] Evaluation is made by the score of two report problems or homeworks (25% each) and semester final examination (50%).

[Course Goals] The goal of this class is to master the theory of elasticity so as to solve the elastic problem in rock mechanics, rock engineering, and fracture mechanics.

Course	Topics]
---------------	----------

Theme	Class number of times	Description
Airy 's stress		Airy 's stress function used to solve a two-dimensional elastic problem is first
function and	2	explained, and then the complex stress functions that are the representation of
complex stress	2	
function		Airy 's stress function by the complex variables are explained.
Two-dimensional		Analytical solutions of two-dimensional elastic problems in fracture mechanics
elastic analysis using	8	and rock engineering are derived by using the complex stress functions. The
the complex stress		mechanical behavior of rock material is also explained based on the derived
function		solutions.
Application of		The theory of rock support, ground characteristic curve, theoretical equations
two-dimensional	2	used for the evaluation of rock stress, which are derived from the solution of
elastic analysis		two-dimensional elastic problem, are explained.
Poroelasticity	2	Basic equations and parameters of poroelasticity are explained. Futhrermore,
		the applications of poroelasticity are explained.
Summary and	1	The contents of this class are summarized. In addition, the achievement of
Achievement check		course goals is checked.

[Textbook] Handouts are delivered.

[Textbook(supplemental)] J.C. Jaeger, N.G.W. Cook, and R.W. Zimmerman: Fundamentals of Rock Mechanics -4th ed., Blackwell Publishing, 2007, ISBN-13: 978-0-632-05759-7

[Prerequisite(s)] The knowledge and calculation skill of calculus, vector analysis and complex analysis are required.

[Independent Study Outside of Class] Review of the each class is required.

[Web Sites] Web page of this lecture is not provided. When preparing it by need, the information is shown in the class.

[Additional Information] Office hour is set 10:30-12:00 and 14:30-1600 on the same day of the class.

10F073

Fundamental Theories in Geophysical Exploration 物理探査の基礎数理

[Code] 10F073 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 5th [Location]C1-173 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor] Hitosih Mikada, Tada-nori Goto,

[Course Description] We are outlining various basic mathematical principles used for the analysis of the dynamic and kinematic earth-scientific problems in conjunction with wave propagation, mass transfer, etc. in the crust, and presenting examples of such analysis techniques in the area of earth sciences and earth resources engineering.

[Grading] Rating is performed by the combination of exams (40%) and the attendance to the class (60%).

[Course Goals] The aims of the class is to understand various signal-processing theories, the applied seismology, and the applied geo-electromagnetics with respect to exploration geophysics as application tools in seismology and in geo-electromagnetics.

[Course Topics]

Theme	Class number of times	Description
Introduction to exploration geophysics	1	General introduction to the lecture.
Seismic wave propagation and signal processing	8	Acquire knowledge on the propagation phenomena of elastic waves to learn the equivalency of 1D propagation with the theory of system function. The topics included would be, z-transform, Levinson recursion, Hilbert transform, etc.
Fundamentals of geo-electromagnetics and their application to exploration geophysics	5	Learn fundamental theories of magnetotellurics, instantaneous potential, spontaneous potential, and apparent resistivity methods, etc. that deal with geo-electromagnetic phenomena. Case studies are introduced to understand the advantages of geo-electromagnetic exploration schemes.
Wave propagation problem in seismic exploration	1	Discussing fundamental theories of elastic wave propagation, used in subsurface structural surveys, in terms of the actual utilization and the theories of wave phenomena.

[Textbook]

[Textbook(supplemental)] Claerbout, J.F. (1976): Fundamentals of Geophysical Data Processing (Available online URL: http://sep.stanford.edu/oldreports/fgdp2/)

[Prerequisite(s)] Students should understand exploration geophysics of undergraduate level.

【Independent Study Outside of Class】

[Web Sites] Could be specified by the lecturers if any.

Underground space and petrophysics

地下空間と地殻物性

[Code] 10F076 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location]C1-172 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Professor Weiren Lin, Professor Tsuyoshi Ishida, Assistant Professor Naotoshi Yasuda, Part-time Lecture Tatsuya Yokoyama

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Guidance	1	
Physical properties	4	
and strength of rocks	4	
Rock stress and its	2	
measurements	2	
Underground		
stability and rock	2	
stress problems		
Redioactive waste	2	
repository	3	
Tunnel	2	
Feedback	1	

[Textbook] No set text

【Textbook(supplemental)】 Instructed in class

[Prerequisite(s)] Taking Underground Development Engineering and Rock Engineering (when undergraduate) are desirable.

【Independent Study Outside of Class】

[Web Sites]

10A420

Lecture on Exploration Geophysics 探查工学特論

[Code] 10A420 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 4th

[Location] C1-117 [Credits] 2

[Restriction] The class of Fundamental theories of geophysical exploration is recommended to acuire.

[Lecture Form(s)] Lecture [Language] English [Instructor] Hitosih Mikada, Tada-nori Goto

[Course Description] Applied geophysical exploration technologies in disaster mitigation, civil engineering, and earth resources engineering is discussed in terms of seismological and of electromagnetic theories. Students may be asked to process data or design digital filters in the course.

[Grading] Brief explanations on the grading will be given at the time of the lecture.

[Course Goals] Understanding seismiclogical and electromagnetic theories used in geophysical exploration and subsurface-imaging technologies.

[Course Topics]

Theme	Class number of times	Description
Electromagnetic	2	Principles of magnetotelluric methods, electromagnetic sources and noise
signal processing	3	reduction.
Modeling		Subsurface structure modeling in EM methods. The offects of surface
technologies in	2	Subsurface structure modeling in EM methods. The effects of surface
electromagnetic	3	weathered layers, the identification of spatial dimensions, and modeling
methods		methodologies are discussed.
Signal processing in	4	Digital filtaning in agismia data processing
seismics		Digital filtering in seismic data processing.
Reflection	3	Fundamental theories of reflection seismic data processing. Seismic migration
seismology		is the one to be briefly discussed.
Petrophysics	2	Fundamental petrophysics, and fundamental measurement theories in
	2	geophysical logging are discussed.

[Textbook] Specified in the course.

[Textbook(supplemental)] J.F.Claerbout, 1976, Fundamentals of Geophysical Data Processing,

(OOP:photocopies to be specified)

[Prerequisite(s)] The credits of Exploration Geophysics in undergraduate course and Fundamental Theories of Geophysical Exploration in graduate course are requested to obtain before the classes.

【Independent Study Outside of Class】

[Web Sites] Would be specified by the lecturers.

Measurement in the earth's crust environment 地設環境計測

[Code] 10F085 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Tsuyoshi ISHIDA, Yoshitaka NARA, Koji YAMAMOTO, Kiyoshi AMEMIYA

[Course Description] Information necessary to understand environment in the upper layer of the earth's crust will be explained for various engineering projects. Among them, measurements of rock stress and mechanical properties of rock will be focused in the relation to the projects of oil and gas exploitation, underground disposal of radio active waste, geological sequestration of CO2, construction of underground power houses and hot dry rock geothermal power extraction.

[Grading] Grading will be made from scores of the followings; report for subjects, achievement tests and number of attendance to the classes.

[Course Goals] Goals of this course are the followings. 1) To understand effects of initial rock stress on stability of underground chambers for verious purposes. 2) To understand a stress relief method as one of typical rock stress measurement . 3) To understand the principle of a least square method though learning a procedure to determine initial rock stress condition from released strains measured on a borehole wall. 4) To understand effects of rock stress for oil and gas exploitation through borehole breakout problems and others. 5)To understand purposes and latest technologies for long term monitoring up to 100,000 years. 6) To understand mechanical properties of rock (strength, permeability, fracturing, etc.) under different environmental condition with methodology of their measurements.

[Course Topics]

Theme	Class number of times	Description
Importance of rock stress		Necessity of rock stress measurements and their applications for various engineering projects
condition in underground	3	will be explained. Among the projects, underground disposal of radio active waste,
development (by	5	geological sequestration of CO2, construction of underground power houses and hot dry rock
ISHIDA)		geothermal power extraction will be focused.
Stress relief methods to measure rock stress and applicaiton of least square method (by ISHIDA)	3	Actual field works of stress relief methods to measure initial rock stress condition will be explained. Though learning a procedure to determine an initial rock stress condition from released strains measured on a borehole wall, the principle of a least square method will be explained. The report subject will be shown in the last week.
Effect of rock stress on oil and gas exploitation	4	Estimation of rock stress condition by hydraulic fracturing and logging, which is conducted at various steps for oil and gas exploitation, will be explained. Importance of rock stress affecting on borehole stability will be explained as well.
Monitoring in Deep Underground Facility - to ensure the long term stability-	2	The purposes and latest technologies of monitoring are shown in this lecture, focusing on the methods of ensuring the long term (up to 100,000 years) safety assessment of radioactive waste disposal.
Measurement of mechanical properties of rock under various environment	2	Mechanical properties of rock (strength, permeability, fracturing, etc.) under different environmental condition are shown, as well as the methodology of measurements. In addition, the relationship between the rock properties and radioactive waste disposal is described.
Confirmation of understanding	1	Feedback through tests and others.

[Textbook] None. Handouts will be given in classes when needed.

[Textbook(supplemental)] 1) Amadei, B. & Stephansson, O.: Rock Stress and Its Measurements, Capman & Hall, 1977.

2) Vutukuri, V. S. & Katsuyama, K.: Introduction to Rock Mechanics, Industrial Publishing & Consulting, Inc., Tokyo, 1994.

[Prerequisite(s)] Elasticity, Linear Algebra (Calculation of Matrices) and Computer Literacy (for example, Excel, Word and so on.) [Independent Study Outside of Class] When you make a report, it is necessary to calculate matrixes by using a Microsoft Excel and others.

[Web Sites]

【Additional Information】 This class is made by English.

10F088

Earth Resources Engineering 地球資源学

[Code] 10F088 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd [Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Katsuaki Koike

[Course Description] Securance and development harmonious with natural environments of the mineral and fossil energy resources, and utilization of storage function of geologic strata have become important issues for constructing sustainable society. This subject introduces comprehensively the present situation of uses of mineral and energy resources, crust structure and dynamics, economic geology for the genesis and geologic environments of deposits, physical and chemical exploration methods of marine deposits, mathematical geology for reserve assessment, engineering geology for resource development and geological repository, and problems and promise of natural energy such as geothermal, solar, wind, and tide.

[Grading] Integrated evaluation by attendance to the classes and report grades.

[Course Goals] To find out directionality about the technologies required for constructing sustainable society by yourself with full understandings of genetic mechanism, biased distribution, and the present situation of demand and supply of the mineral and energy resources. [Course Topics]

Theme	Class number of times	Description	
Introduction of this course	1	Definition of renewable and non-renewable resources. Interaction among Earth environment,	
and resources	1	human society, and natural resources. Existence pattern of natural resources in the crust.	
1. Internal structure of	2	Inner structure of the Earth, geodynamics, geologic composition, temperature structure, rock	
Earth and geodynamics	2	physics, and chemical composition of crust.	
2. Present and future of	1	Classification of energy sources, recent trend on social demand of energy, physical characteristics	
energy resources	1	of each energy resources, and sustainability.	
3. Present and future of	1	Classification of minerals used for resources, recent trend on social demand of mineral resources,	
mineral resources	1	industrial uses of each mineral, and sustainability.	
4. Economic geology (1)	1	Classification of ore deposits, distribution of each type of ore deposit, generation mechanism of deposit.	
4. Economic geology (2)	1	General structure and distribution of fuel deposits (coal, petroleum, and natural gas), generation mechanism of deposits, and geological process of formation.	
	1	Physical and chemical exploration technologies for natural resources in terrestrial area.	
5. Resource exploration (1		Representative methods are remote sensing, electric sounding, electromagnetic survey, and seismic	
): Terrestrial area		prospecting.	
6. Resource exploration (2	1	Introduction of marine natural resources such as methane hydrate, cobalt-rich crust, and	
): Sea area	1	manganese nodule, and exploration technologies for the deposits in sea area.	
7. Assessment of ore		Eurodemontale of acceptations, variagements, for anoticl correlation structure, anoticl modeling by	
reserves and deposit	2	Fundamentals of geostatistics, variography for spatial correlation structure, spatial modeling by kriging, geostatistical simulation, integration of hard and soft data, and feasibility study.	
characterization		kinging, geostatistical simulation, integration of hard and soft data, and feasibility study.	
8. Resource development	1	Development and management technologies of energy resources related to coal, petroleum, and	
8. Resource development	1	natural gas.	
0 Engineering goolegy	1	Fundamentals of deep geological repository for high-level nuclear waste, CCS (carbon dioxide	
9. Engineering geology	1	capture and storage), and underground storage of petroleum and gas.	
10. Sustainability		Characteristics of natural energy related to geothermal, solar, wind, and tide, aand ssessment of	
	1	natural energy resources. Co-existence of natural resource development with environment,	
		low-carbon society, and problems for human sustainability.	
Feedback	1	Based on evaluation of the reports, contents that are not well understood will be explained	
reeuback		additionally using KLUSIS or by personal interview.	

[Textbook] Printed materials on the class contents are distributed at each class.

[Textbook(supplemental)] References on each topic will be instructed in the classes.

[Prerequisite(s)] Elementary knowledge of engineering, mathematics, physics, and geology are required.

[Independent Study Outside of Class] Deepen the understanding by solving assignments.

[Web Sites]

[Additional Information] This course is opened every two years, and opened in 2017.

Urban Infrastructure Management

都市基盤マネジメント論

[Code] 10X311 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] C1-173 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] English

[Instructor] OHTSU Hiroyasu,

【Course Description】 This lecture aims to provide interdisciplinary knowledge associated with how urban infrastructure is comprehensively management, from viewpoints of not only economy but also "human security engineering". In detail, the contents of lectures consist of following topics: Urban Infrastructure Asset Management, Urban Disaster Risk Mitigation Management, Urban Transport/Logistics Management and Urban Food/Water Supply Management.

[Grading] Attendance(20), Report(80)

[Course Goals] Aquisition of interdisciplinary knowledge associated with how urban infrastructure is comprehensively management, from viewpoint of not only economy but also human security engineering.

[Course Topics]

Theme	Class number of Description	
Guidance,		
Introduction of	1	Guidance & Introduction to Urban Infrastructure Asset Management
Urban Infrastructure	1	
Asset Management		
Urban Infrastructure	5	Urban Infrastructure Asset Management on Geotechnical structures, Bridge
Asset Management	3	and Pavement
Urban Disaster Risk		
Mitigation	2	Urban Disaster Risk Mitigation Management
Management		
Urban Food/Water	3	Urban Ecod/Water Supply Management
Supply Management	5	Urban Food/Water Supply Management
Urban		
Transport/Logistics	2	Urban Transport/Logistics Management
Management		
Report	1	Report
Feed back	1	Feed back

[Textbook]

【Textbook(supplemental)】Hand-out

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10F113

Global Survivability Studies

グローバル生存学

[Code] 10F113 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 5th

[Location] Yoshida, Higashi Ichijokan, Shishukan Hall [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] English [Instructor] Kaoru Takara, Junji Kiyono, Satoshi Fujii, Takahiro Sayama, Mika Shimizu

[Course Description] Modern global society is facing risks or social unrests that are caused by huge natural hazards and disasters, man-made disasters and accidents, regional environmental change/degradation including infectious diseases, and food security. Introducing such examples at global and regional scales, this subject lectures how to cope with them at national, local and community levels for making the society sustainable/survivable. Future countermeasures are also discussed under the uncertain circumstances such as climate change, population growth, energy and socio-economic issues.

[Grading] Attendance to lectures (40%) and Presentation and discussion (60%).

[Course Goals] The objectives of this class are to have basic knowledge about global issues threatening safety and security of the earth society such as catastrophic natural disasters, man-made disasters and accidents, regional environmental change (including infectious diseases) and food security, and to enhance student 's ability to express his/her own ideas and discuss with professors and students from other study areas. [Course Topics]

Theme	Class number of times	Description	
Introduction of Global	1		
Survivability Studies	1	Introduction of Global Survivability Studies.	
Earthquake disaster	1		
mitigation	1	Discuss on earthquake disaster mitigation focusing on lessons learnt from Tohoku EQ.	
Mitigation of earthquake			
damage to historic	1	Discuss on the mitigation of earthquake damage to historic structures.	
structures			
Why we need GSS?	1	Discuss on why we need Global Survivability Studies (GSS).	
Global agendas for			
sustainable development	1	Discuss on global agendas for sustainable development and resilient societies.	
and resilient societies			
Building national	1	Discuss on building national resilience based on Japanese experiences.	
resilience in Japan	1	Discuss on bunding national resinence based on Japanese experiences.	
Globalism as	1	nne er elskelier er teteliteriorier	
totalitarianism	1	Discuss on globalism as totalitarianism.	
Public policy and systems		Lecture and group work on public policy and systems approach for global changes in disa	
approach for global	1	risks.	
changes in disaster risks		11585.	
Disaster risk management			
and governance for global	1	Lecture and group work on disaster risk management and governance for global changes.	
changes			
Water-related disaster risk	1	Discuss on water-related disaster risk management: concept and recent experiences.	
management	1	Discuss on water-related disaster risk management. concept and recent experiences.	
Water cycle and climate	1	Discuss on water cycle and climate change.	
change	1	Discuss on water cycle and enniale enange.	
Presentation by students &	4	Presentation by students related to this lectures and discussions on the presented topics.	
discussions	+	resentation by statemes related to this rectures and discussions on the presented topics.	

【Textbook】 Nothing special.

【Textbook(supplemental)】 Nothing special.

[Prerequisite(s)] Nothing special.

[Independent Study Outside of Class] If handouts (teaching materials) are distributed (or downloaded from the website), students should read them prior to the class. They may be distributed at the classroom (or put on the website). Students can make use of them after the class for reviewing lectures and preparing presentation materials and discussion sessions which will be organized in the latter half of the semester. [Web Sites]

[Additional Information] This subject is compulsory for students enrolled in the Inter-Graduate School Program for Sustainable Development and Survivable Societies. Students other than ones in Graduate School of Engineering should submit a registration card for taking this class.

[Code] 693291 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st

[Location] Faculty of Engineering Integrated Research Bldg. 213 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Haruo HAYASHI, Norio MAKI, Shingo SUZUKI,

[Course Description] Damage from disasters is defined by two factors: scale of hazard and social vulnerability. Two strategies exist to reduce damage from disasters?namely, crisis management as a post-event countermeasure and risk management as a pre-event measure. This course introduces students to a system for effective emergency management, consisting of response, recovery, mitigation, and preparedness.

[Grading] Every after lecture, please submit short report writing following things 1) Three points you could learn in this lecture, and reason 2) What you would like to explain more? Please send your short report to following address by following formats 1.address: disaster.reporti2@drs.dpri.kyoto-u.ac.jp 2.subject: ^r Emergency Management Report " date "" ID " " Name " 3.No attach file

[Course Goals] Learning about Techniques for Business Continuity Management consisted of Risk Assessment, Strategic Planning, Emergency Response, and Training.

[Course Topics]

Theme	Class number of times	Description
Business Continuity	2	What is amorgonous response, and business continuity management
Management	3	What is emergency response, and business continuity management.
Risk Assessment	3	Techniques for Risk Identification, and Risk Assessment
Strategic Planning	3	Techniques for Strategic Planning and Evaluation
Emergency Response	3	Incident Command System, and Design of Emergency Operation Center
Training	3	Learning, drill, Exercises for Emergency Response

【Textbook】Haruo Hayashi et.al., Soshiki no Kikikannri Nyuumon, Maruzen, 2008// Kyodai, NTT Resilience Kennkyuu Group, Shinayakana Syakai no Souzou, Nikkei BP, 2009

[Textbook(supplemental)] Tom Demarco et.al, Waltzing With Bears: Managing Risk on Software Projects, Dorset House, 2003// Project Management Institute : A Guide to the Project Management Body of Knowledge 2000 Edition, Project Management Institute, Inc, 2000// R. Max Wideman : Risk Management - A guide to Managing Project Risk & Opportunities - , Project Management Institute, Inc, 2000// Memorial Conference in Kobe, 12 sai karano hisaisya gaku, NHK Press, 2005//

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10F201

Information Technology for Urban Society 都市社会情報論

[Code] 10F201 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 1st

[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese (English in case of foreign teachers) [Instructor] Related teachers,

[Course Description] The advancement of urban society by the use of information has been realized through the remarkable development of informational communication technology. This seminar has the discussions about the worth and affect in the urban society using engineering and economic estimation method, and lectures about the way of maintenance, operation and management of urban systems in the advanced informational and knowledge-intensive society.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be provided in the first lecture.

10Z001

Urban Transport Policy

都市交通政策フロントランナー講座

[Code] 10Z001 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] see the handbook for course registration

[Location] conference room, TPU karasuma office (see the handbook for course registration) [Credits] 1

[Restriction] see the handbook for course registration [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor] Ryoji Matsunaka, Tetsuharu Oba

[Course Description] This class will provide lectures on the new transport policy carried out in domestic and foreign cities and to understand the difference between the conventional transport policy and the new urban transport policy. Also, it will cover a process to realize the new urban transport policy.

[Grading] evaluation by attendance and class participation

[Course Goals] to understand the difference between the conventional transport policy and the new urban transport policy

[Course Topics]

Theme	Class number of times	Description
Outline	1	
Front runner of urban		
transport policy in	2	Reallocation of road space, Pedestrianisation
the world		
Front runner of urban		Downtown activation Strataging of sustainable transport for our siting Climate
transport policy in	1	Downtown activation, Strategies of sustainable transport for our cities, Climate
Japan		change
Front runner of urban		
transport policy in	2	Eco model city, Transport demand management, Public transport network
Kyoto		
Discussion	2	
【Textbook】 No textbo	ook	
Textbook(supplement	tal)	
[Prerequisite(s)]		
[Independent Study O	utside of Cl	ass

[Web Sites] http://www.upl.kyoto-u.ac.jp/index.html

10Z002

Policy for Low-Carbon Society 低炭素都市圏政策論

[Code] 10Z002 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] see the handbook for course registration

[Location] conference room, TPU karasuma office (see the handbook for course registration) [Credits] 1

[Restriction] see the handbook for course registration [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor] Ryoji Matsunaka, Masashi Kawasaki

[Course Description] This class will provide lectures on the contents of policies and the methods to realize a low carbon society. Also, it will cover the knowledge and the technical skill to relate to urban activation, reduction of the environmental load, compact city planning, and so on.

[Grading] evaluation by attendance and class participation

[Course Goals] to understand the knowledge and the technical skill to relate to urban activation, reduction of the environmental load, compact city planning, and so on.

[Course Topics]

Theme	Class number of times	Description
Measures against	1	Plan for measures against global warming, Eco model city
global warming		
Urban policy		
management for	1	Eco model city, Guideline for low-carbon city construction
low-carbon society		
Landscape &		
environmental	1	Landscape design in public space, View structure
planning		
Urban policy for		
low-carbon society	1	Public transport, Pedestrianisation
and change of urban	1	r ubic transport, r edestrialisation
structure		
Roles and issues of		Transport and urban policy. Transport policy in EU. Doilyaya Light Dial
urban transport	1	Transport and urban policy, Transport policy in EU, Railways, Light Rial
policy		Transit
Discussion	3	

[Textbook] No textbook

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] http://www.upl.kyoto-u.ac.jp/index.html

Urban Transport Management

都市交通政策マネジメント

[Code] 10Z003 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] see the handbook for course registration

[Location] conference room, TPU karasuma office (see the handbook for course registration) [Credits] 1

[Restriction] see the handbook for course registration [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor] Ryoji Matsunaka, Satoshi Fujii, Nobuhiro Uno

[Course Description] This class will provide lectures on characteristics and problems of transport modes such as car, public transport, and foot. Also, it will cover the technical skill to analyze present urban traffic problems quantitatively.

[Grading] evaluation by attendance and class participation

[Course Goals] to understand characteristics and problems of transport modes such as car, public transport, and foot.

[Course Topics]

Theme	Class number of times	Description
Plan and practice of	2	City activation and attractiveness, Public transport, Light rail transit, Bus
public transport	2	
Basic concept of		Mobility management, Activation of the public transport, Downtown
mobility	1	
management		activation
Investigation,		
interpretation, and		Person trip survey, Transportation demand management, Cost-benefit analysis
evaluation on urban	2	
traffic phenomenon		
Exercise and	3	
discussion	3	
【Textbook】No textbo	ook	
Textbook(supplemen	tal)	

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] http://www.upl.kyoto-u.ac.jp/index.html

10F380

Engineering Seminar for Disaster Resilience in ASEAN countries

強靱な国づくりのためのエンジニアリングセミナー

[Code] 10F380 [Course Year] Master 1st [Term] Late August [Class day & Period] Late August

[Location] School of Engineering, Kasetsart University, Bangkok, Thailand [Credits] 2

[Restriction] Due to the capacity, students attending "Study Area of Approaches for Disaster Resilience" have priority.

[Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] Prof. Hiroyasu Ohtsu, Related lecturers in ASEAN collaborative universities,

[Course Description] The purpose of this course is to provide practical lessons in ASEAN countries associated with disaster risk mitigation such as early warning and evacuation program, and disaster recovery/restoration from viewpoints of problems-finding/problem-solving through short term intensive lecture and field work. By taking the applied practical programs of shared major classes under the instructions of teachers in charge, the students can improve the ability of resolving issues on practical projects. Topics taught in this seminar are earthquake, flood, landslide, land subsidence, and geo-risk engineering.

[Grading] 40% for course work assignments and reports, 60% for final exam.

[Course Goals] Course aims to foster international leaders who are able to solve and manage problems concerned about natural disaster, disaster mitigation, health and environmental issues, especially about case studies in ASEAN countries.

[Course Topics]

Theme	Class number of times	Description
Introduction:		
Engineering for	1	
Disaster Resilience		
Earthquake Disaster	2	
Landslide Disaster	2	
Geo-Risk	2	
Engineering	2	
Flood Disaster	2	
Land Subsidence	2	
Site Visit	5	
Evaluation of	1	
understanding	1	

[Textbook] Lecture notes provided by the instructors.

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] Consortium for International Human Resource Development for Disaster-Resilient Countries, Kyoto University http://www.drc.t.kyoto-u.ac.jp/rsdc/eng/

[Additional Information] Those who want to take this course have to apply for Study area of Approaches for Disaster Resilience. Refer the website above.

Disaster and Health Risk Management for Liveable City

安寧の都市のための災害及び健康リスクマネジメント

[Code] 10F382 [Course Year] Master Course [Term] 1st term [Class day & Period] Intensive course (2 weeks)
[Location] Meeting room at Research Bldg. No.5 [Credits] 2 [Restriction] 30 students, priority for DRC course students
[Lecture Form(s)] Relay Lecture [Language] English [Instructor] Kiyono, Koyama, Kikuchi, Mitani, Fujii, Kawasaki, Ando, Teo,
[Course Description] Various types of disasters constantly attack to Asian countries, and those countries sometimes are very
vulnerable to the natural disasters and health risk. The interdisciplinary approach of engineering and medical science is indispensable
to construct disaster-resilient countries. The 2011 Tohoku earthquake was one of the worst disasters in recent Japanese history.
However many lessons to mitigate and manage the disaster are learnt from the event. In order to solve the related issues, the course
provides selected topics about natural disaster, disaster-induced human casualty, emergency response, urban search and rescue,
emergency medical service, principle of behavior based on neuroscience, urban search and rescue, reconstruction and rehabilitation
policy, social impact of disaster, transportation management, logistics during earthquake disaster and so on.
[Grading] Course work assignments and reports

[Course Goals] Course aims to foster international leaders who are able to solve and manage problems concerned about natural disaster, disaster mitigation, health and environmental issues, logistics and amenity for constructing liveable city.

Theme	Class number of times	Description	
Guidance and Group	2		
Work	2		
ORT	3		
Earthquake disaster and	1		
human casualty	1		
Earthquake protection			
and emergency	1		
responses			
Human brain function	1		
and behavior	1		
Disaster medicine and	1		
epidemiology	1		
Resilient society	1		
Transition of the design			
for amenity in the	1		
river-front			
Concern that elderly			
people in rural area have	1		
over health and mobility			
Differences in logistics			
and humanitarian	1		
logistics			
Unique challenges of	1		
humanitarian logistics	1		
Advancement on	1		
humanitarian logistics	1		
Achievement evaluation	1		

[Textbook] Textbook for the course is provided by the instructor on the first day.

[Textbook(supplemental) **]** Some literatures would be introduced by professors.

[Prerequisite(s)] No special knowledge and techniques are necessary.

【Independent Study Outside of Class】

[Web Sites] Consortium for International Human Resource Development for Disaster-Resilient Countrie, Kyoto University http://www.drc.t.kyoto-u.ac.jp/

[Additional Information] Contact person: Prof.Kiyono <kiyono@quake.kuciv.kyoto-u.ac.jp

Project Management in Engineering

エンジニアリングプロジェクトマネジメント

[Code] 10i049 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 4th [Location] A2-308 [Credits] 2

 $\label{eq:construction} \label{eq:construction} \lab$

[Instructor] GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto, Ashida

Assoc.Prof. Lintuluoto

[Course Description] This course provides a basic knowledge required for the project management in various engineering fields such as process design, plant design, construction, and R&D projects. Also, visiting lecturers from industry and public works provide management insights of actual engineering projects. [Grading] Evaluated by assignments (project report exercise) and class contribution

[Course Goals] This course will help students gain a fundamental knowledge of what project management in engineering is. Throughout the course, students will learn various tools applied in project management. Students will also understand the importance of costs and money, risks, leadership, and environmental assessment in managing engineering projects. This course is followed with the course "Seminar on Project Management in Engineering." in the second semester. [Course Topics]

Theme	Class number of	Description
	times	4/14 / 4 1*1 N
Guidance	1	4/14 (Ashida)
Guidance	1	Course guidance
T (1 (4/21 (Takatori)
Introduction to project	1	Introduction to project management
management & Project phases		Project phases
		4/28 (Lintuluoto)
Tools for project management,	1	Tools
cost, and cash flows I	1	Work breakdown structure
		Gantt charts
Project scheduling I	1	5/12 (Ashida)
	1	Project scheduling I
Project scheduling II	1	5/19 (Ashida)
	1	Project scheduling II
Tools for project management,	1	5/26 (Lintuluoto)
cost, and cash flows II	1	Cost
Tools for project management,	1	6/2 (Lintuluoto)
cost, and cash flows III	1	Cash flow
TBA	1	6/9
		To be announced
Leadership I	1	6/16 (Tanaka)
	•	Leadership I
Leadership II	1	6/23 (Tanaka)
	1	Leadership II
Risk I	1	6/30 (Matsumoto)
	•	Risk I
Risk II	1	7/7 (Matsumoto)
	1	Risk II
Environmental Impact	1	7/14 (Mizuno)
Assessment I	-	Environmental Impact Assessment I
Environmental Impact	1	7/21 (Mizuno)
Assessment II	-	Environmental Impact Assessment II
Special lecture		
Project management ~Tender	1	7/28 @ A2-306 (Cluster A, Katsura Campus)
process of Panama Canal	-	Lecturer: Taizo SHIMOMURA, Dr. (TAISEI CORPORATION)
expansion project~		

【Textbook】 Course materials will be provided.

[Textbook(supplemental)] 1. Lock, Dennis. Project Management. 10th edition. Gower Publishing Ltd.

2 . Cleland, David L., and Lewis R. Ireland. Project Management. 5th edition. McGraw-Hill Professional

3. Roger Miller and Donald R. Lessard. The strategic management of large engineering projects, Shaping Institutions, Risks, and Governance, The MIT Press

[Prerequisite(s)] No pre-requisite

【Independent Study Outside of Class】

 $\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\right]}\xspace{\,\operatorname{The}}\xspace{\,\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{$

Exercise on Project Management in Engineering

エンジニアリングプロジェクトマネジメント演習

[Code] 10i050 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] B-Cluster 2F Seminar Room [Credits] 1 [Restriction] Student number will be limited.

[Lecture Form(s)] Seminar [Language] English

[Instructor] GL center: J.Assoc.Prof. Mizuno, Tanaka, Matumoto, Ashida, Maeda Assoc.Prof. Lintuluoto

(Course Description **)** In this course, students will apply the engineering know-how and the skills of management, and group leadership which they learned in the course of Project Management in Engineering to build and carry out a virtual inter-engineering project. This course provides a forum where students ' team-plan based on ideas and theories, decision making, and leadership should produce realistic engineering project outcomes. The course consists of intensive group work, presentations, and a few intermediate discussions. A written report will be required.

[Grading] Report, class activity, presentation

[Course Goals] This course prepares engineering students to work with other engineers within a large international engineering project. In particular this course will focus on leadership and management of projects along with applied engineering skills where the students learn various compromises, co-operation, responsibility, and ethics.

Theme	Class number of times	Description
	1	10/6
0.11		Introduction to Exercise on Project Management in Engineering
Guidance		Lecture on tools for the Project management in engineering
		Practice
Teamwork	7	Each project team may freely schedule the group works within given time
		frame. The course instructors are available if any need is required.
Lecture & Teamwork	2	Some lectures will be provided, such as Leadership structuring, Risk
		Management, and Environmental Impact Assessment, depending on projects
		you propose.
Presentation	1	Each project team will have a presentation based on its proposed project.

[Course Topics]

[Textbook] Course materials will be provided.

[Textbook(supplemental)] Will be informed if necessary.

[Prerequisite(s)] Fundamental skills about group leading and communication, scientific presentation.

【Independent Study Outside of Class】

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] The number of students may be restricted. Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department.

10F201

Information Technology for Urban Society 都市社会情報論

[Code] 10F201 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 1st

[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese (English in case of foreign teachers) [Instructor] Related teachers,

[Course Description] The advancement of urban society by the use of information has been realized through the remarkable development of informational communication technology. This seminar has the discussions about the worth and affect in the urban society using engineering and economic estimation method, and lectures about the way of maintenance, operation and management of urban systems in the advanced informational and knowledge-intensive society.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be provided in the first lecture.

Exercise on Project Planning

自主企画プロジェクト

[Code] 10F251 [Course Year] Master 1st [Term] 1st+2nd term

[Class day & Period] 1st term: Thu 3rd, 2nd term: Wed 5th [Location] C1-173 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese and English

[Instructor] Related instructors,

(Course Description **)** The purpose of this seminar is to bring out the self-initiative, the planning ability, the creativity of students. From project and to practice, the students set up the goals of projects, go ahead with the projects by themselves, and finally make the presentations of project results. Specifically, about the internship activities in enterprises, the training activities in enterprises or universities at home and abroad, the planning and operation of collaborative projects with citizen, the student makes the perfect plannings including the purposes, the ways, the results and so on. For a final, the students do practice, they write the reports and make the presentations about the project results.

[Grading] Planning, implementation of project and reports are comprehensively evaluated.

[Course Goals] Goals are cultivating ability for self-initiative, planning and creativity.

[Course Topics]

Theme	Class number of times	Description
Course introduction	1	
Proposal of project	6	
Management of	12	
project	12	
Progress report	1	
Final report	8	
Presentation	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details are provided in the first lecture.

Capstone Project

キャップストーンプロジェクト

[Code] 10F253 [Course Year] Master 1st [Term] 1st+2nd term

[Class day & Period] 1st term: Thu 2nd, 2nd term: Thu 4th [Location] 1st term: C1-173, 2nd termC1-171

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese/English

[Instructor] Related instructors,

[Course Description] The students plan and implement projects on various problems in the urban society by widely making use of the basic knowledge which you have gotten in Undergraduate or Master Course. Actually, the students simulate the actual problems for which you collect and analyze the data, and then evaluate the practice and effect of projects. At the end, the students write the reports about a series of project results and make the presentations about them.

[Grading] Evaluation for each student is made comprehensively based on both report and presentation about the project, and usual contribution of student to the project.

[Course Goals] Goals are to cultivate student 's ability for planning, creativity and communication.

[Course Topics]

Theme	Class number of times	Description
Guidance	1	
Exercises	4	
	6	
	12	
	6	
Presentation	1	

Textbook N/A

【Textbook(supplemental)】 N/A

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be provided in the first lecture.

Integrated Seminar on Urban Management A

都市社会工学総合セミナーA

[Code] 10U201 [Course Year] Doctor 1st year [Term] 1st term [Class day & Period] Fri 5th

[Location]C1-173 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Seminar [Language]English

[Instructor] Related instructors,

(Course Description **)** The students pick up the various types of influential elements on the development of urban society, and the students make the collection and analysis of datas in detail about these elements by themselves. In addition, on the basis of results of investigation and analysis, the students develop the argument about the ideal style or the future vision of urban society, and the students make the presentation and discussion in English about these results each other.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	10	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be provided in the guidance and first lecture.

Integrated Seminar on Urban Management B

都市社会工学総合セミナー B

[Code] 10U203 [Course Year] Doctor 1st year [Term] 2nd term [Class day & Period] Tue 5th

[Location]C1-173 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Seminar [Language]English

[Instructor] Related instructors,

[Course Description] On the investigation of themes by the students, they make the presentation and discussion in English. The themes are about the urban policy on the world-wide viewpoint, the ideal style of urban management, the standardization of project technology for internationalization, the project management such as the contract, the tender, the management technology to country risk and so on, and about the problems on the structure of urban society for internationalization such as the technology movement or the role of Japan in the world on improving urban infrastructure.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	10	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be provided in the guidance and first lecture.

Seminar on Urban Management A

都市社会工学セミナー A

[Code] 10F257 [Course Year] Master Course [Term] 1st+2nd term

[Class day & Period] 1st term: Fri 4&5th, 2nd term: Mon&Tue 5th [Location] [Credits] 4

[Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor] Related instructors,

[Course Description] This seminar has the lectures about the movement and content of the most advanced research at home and abroad on Urban Management Engineering. Also, the teachers in this seminar instruct the students individually about the planning of study schedule, the way of collecting datas, doing the research and summarizing the results of research on the concrete and specific themes.

[Grading] Points are allocated for research activities such as a presentation at laboratory seminars, domestic conferences, international conferences, research paper presentation etc. Students are required to obtain the points in total which are more than predefined points.

Students are required to get no less than 10 points in total for two years from M1 to M2, no less than 3 points in each year.

1 point: Presentation at laboratory seminar (only if supervisor agrees), oral presentation in the annual meeting in the Society of Civil Engineers.

 $1 \sim 5$ point: Attending the lecture held by Academic Society (Certification is required), number of points is determined by your supervisor in accordance to the level of difficulty for approval.

3 point : Presentation in English in international conference. If the papers are peer-reviewed, the points are determined as journal papers (see below).

 $5 \sim 10$ point: Fist author or coauthor of published and/or accepted journal papers (e.g., for Journal of Society of Civil Engineers, ASCE Journal, etc.) (Number of points is determined by your supervisor depending on level of journal and/or your contribution.)

Others: Exercise on project or training course (Number of points is determined by your supervisor). However, the activities related to the other courses are not admitted, which are Exercise on Project Planning, Capstone Project, Internship on Infrastructure Engineering, Long-Term Internship, Practice in Infrastructure Engineering or Practice in Urban Management.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	6	
	8	
	6	
	8	

【Textbook】
【Textbook(supplemental)】
【Prerequisite(s)】
【Independent Study Outside of Class】
[Web Sites】
[Additional Information]

10F259

Seminar on Urban Managemen B

都市社会工学セミナー B

[Code] 10F259 [Course Year] Master Course [Term] 1st+2nd term

[Class day & Period] 1st term: Wed&Thu 5th, 2nd term: Thu&Fri 5th [Location] [Credits] 4

[Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor] Related instructors, [Course Description] The students make the collection of datas, research and summarize the research results about the concrete and specific themes on Urban Management Engineering.. In addition, the teachers in this seminar instruct the students individually about the way of presentations of research results through the presentations and questions at the conferences at home and abroad, the ones at laboratory and participation in lecture classes.

[Grading] Points are allocated for research activities such as a presentation at laboratory seminars, domestic conferences, international conferences, research paper presentation etc. Students are required to obtain the points in total which are more than predefined points.

Students are required to get no less than 10 points in total for two years from M1 to M2, no less than 3 points in each year.

1 point: Presentation at laboratory seminar (only if supervisor agrees), oral presentation in the annual meeting in the Society of Civil Engineers.

 $1 \sim 5$ point: Attending the lecture held by Academic Society (Certification is required), number of points is determined by your supervisor in accordance to the level of difficulty for approval.

3 point : Presentation in English in international conference. If the papers are peer-reviewed, the points are determined as journal papers (see below).

 $5 \sim 10$ point: Fist author or coauthor of published and/or accepted journal papers (e.g., for Journal of Society of Civil Engineers, ASCE Journal, etc.) (Number of points is determined by your supervisor depending on level of journal and/or your contribution.)

Others: Exercise on project or training course (Number of points is determined by your supervisor). However, the activities related to the other courses are not admitted, which are Exercise on Project Planning, Capstone Project, Internship on Infrastructure Engineering, Long-Term Internship, Practice in Infrastructure Engineering or Practice in Urban Management.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	6	
	8	
	6	
	8	

[Textbook]

[Textbook(supplemental)]
[Prerequisite(s)]

[Independent Study Outside of Class]

[Web Sites]

Long-Term Internship

長期インターンシップ

[Code] 10F150 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location] [Credits] 4 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor] Related instructors,

(Course Description **)** Through the long-term internship outside the university, the students can get the practical techniques, the way of finding and solving the problems, the way of integrating the techniques, the way of summarizing the results and making the presentation in each field of Urban Management.

[Grading] Writing plans, completing internship, final report and presentation are comprehensively evaluated.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Urban Management

10U210

Practice in Urban Management 都市社会工学実習

[Code] 10U210 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 1st

[Location] C1-173 [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese

[Instructor] Related instructors,

(Course Description **)** To develop integrated and holistic understandings on Urban Management and cultivate problem-solving abilities, students are encouraged to attend a practical education and engineering program offered by educational institutes such as universities, international and domestic associations. Students attend a program under the instructions of academic supervisors. Programs are limited to the ones certified by the department.

[Grading] Attendance and reports are comprehensively evaluated.

[Course Goals] To develop integrated and holistic understandings on Urban Management and cultivate problem-solving abilities by attending a practical education and engineering program offered by educational institutes such as universities, international and domestic associations.

[Course Topics]

Theme	Class number of times	Description	
【Textbook】			
【Textbook(supplen	nental)		
[Prerequisite(s)]			
[Independent Study	V Outside of Class		
[Web Sites]			
Additional Inform	ation		

ORT on Urban Management

都市社会工学ORT

[Code] 10U216 [Course Year] Doctor Course [Term] 1st+2nd term

[Class day & Period] 1st term: Thu 3rd&4th, 2nd term: Thu 4&5th [Location]C1-173 [Credits] 4 [Restriction]

[Lecture Form(s)] [Language] [Instructor] Related instructors,

(Course Description **)** By practicing the research themes on Urban Management and making the presentations of research results at the conferences, the students can develop the advanced specialities, the ability of finding out the new fields of research. Also, the students can get the practical ability which is necessary for researchers and engineers . The students can participate in the conferences at home and abroad, the presentations of research at laboratory, some kinds of seminars and symposiums, lecture classes and internship to the enterprises or research organizations at home and abroad. The director of the department and the supervisor totally evaluate the reports made about these activities by the students.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	6	
	8	
	6	
	8	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Details will be given in the guidance.

10U224

Practice in Advanced Urban Management A

都市社会工学総合実習 A

[Code] 10U224 [Course Year] Doctor 1st [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	5	
	2	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

都市社会工学総合実習 B

[Code] 10U225 [Course Year] Doctor 1st [Term] 2nd term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	5	
	2	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Continuum Mechanics

連続体力学

[Code] 10F003 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Kunitomo Sugiura, Tomomi Yagi,

[Course Description] Continuum mechanics is a unified basis for solid mechanics and fluid mechanics. The aims of this course are to introduce the continuum mechanics from their basics to the some forms of constitutive law and also to provide students with

mathematical way of understanding the continuum mechanics. This course contains the fundamentals of vector and tensor calculus, the basic equations of continuum mechanics, the tensor expressions of elastic problems and further applications.

[Grading] Assessment will be based on exam, report and participation.

[Course Goals] Fundamental theorems on structural mechanics and design will be learned, and ability to judge the proprieties of each computational structural analysis will be acquired.

[Course Topics]

Theme	Class number of times	Description
Introductions	1	- Outline of Structural Analysis
		- Mathematical Preliminaries(Vectors and Tensors)
Matrices and tensors	1	- Summation Convention
		- Eigenvalues and Eigenvectors
differential and integral	1	- Quotient Laws
calculus of tensors		- Divergence Theorem
Kinematics	1	- Material Description
		- Spatial Description
		- Material derivative
Deformation and strain	2	- Strain tensors
		- Compatibility conditions
Stress and equilibrium	1	- Stress Tensors
equation	1	- Equilbrium Equations
Conservation law and governing equation	1	- Conservation of Mass
		- Conservation of Linear Momentum
		- Conservation of Energy
Constitutive equation of	1	- Perfect Fluid
idealized material	1	- Linear Elastic Material(Isotropic)
Elastic-plastic behavior		- Yield Criteria
and constitutive equation	1	- Flow Rule
of construction materials		- Hardening Rule
	1	- Governing Equations and Unknowns
Boundary value problem		- Navier-Stokes Equation
		- Navier Equation
Variational principle	1	- Principle of Virtual Work
		- Principle of Complementary Virtual Work
Various kinds of	2	- Weighted Residual Method
numerical analyses		- Finite Element Method
Confirmation of the		
attainment level of	1	Feedback based on the Final Examination
learning		

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge for structural mechanics, soil mechanics and fluid mechanics are required.

[Independent Study Outside of Class] As appropriate, the assignments are given based on the content of Lecture.

[Web Sites]

Structural Stability 構造安定論

[Code] 10F067 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd

[Location]C1-171 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]English

[Instructor] Hiromichi SHIRATO, Kunitomo SUGIURA,

[Course Description] Fundamental concept of static and dynamic stability of large-scale structures such as bridges is to be introduced in addition to the way to keep/improve their safety and to evaluate their performance. Basic concept of structural stability and its application and technical subjects to improve safety will be lectured systematically. Furthermore, the practical solutions to the subjects are to be introduced to assure the safety of structures.

[Grading] Grading will be evaluated by written examination, reports and attendance.

[Course Goals] The class aims to cultivate the understanding of static and dynamic stability problems for structural system and make understand the methodology to clarify the limit state. To get knowledge on countermeasures to assure the stability which is applicable to practical design and manufacturing will be also required.

[Course Topics]

Theme	Class number of times	Description
	7	Stability of Structures and Failures
		Basis of Structural Stability
Elastic Stability		Elastic Buckling of Columns
2		Elastic Buckling of Beams & Frames
under Static Loading		Elastic Buckling of Plates
		Elasto-plastic Buckling
		Buckling Analysis
	7	The stability around the equilibrium points based on the state equation of
Pasia theory of		motion in which the nonlinearity of external, damping and restring forces are
Basic theory of		taken into account. Wind-induced vibration of a square prism (Galloping) and
dynamic stability and		1dof system with nonlinear spring will be introduced as practical examples.
its application		Chaotic motion of a pendulum subjected to periodic external force is also
		explained as an introduction of chaos theory.
Achievement Check	1	Summary and Achievement Check.

【Textbook】 Not specified.

[Textbook(supplemental)] Introduced in class if necessary.

[Prerequisite(s)] It is desired for participants to master structural mechanics, continuum mechanics, mathematical analysis as well as vibration theory.

【Independent Study Outside of Class】

【Web Sites】 none

10F068

Material and Structural System & Management

材料・構造マネジメント論

[Code] 10F068 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English [Instructor] Hirotaka Kawano, Atsushi Hattori, Takashi Yamamoto, [Course Description] With regard to the maintenance of concrete structures, the deterioration prediction procedures in material and structural properties are discussed based on durability and deterioration processes of concrete structures. Repair materials and methods are also introduced. Note: strengthening materials and methods are discussed in Concrete Structural Engineering, provided in the second semester. In the later half of this lecture, structures are focused as groups rather than an individual structure to understand the difference between asset management and maintenance. By taking into consideration the economic aspect and human resources aspect as well as the physical aspect, the flow of the asset management for structures' groups with view points of the life cycle cost and the budget is provided.

[Grading] Reports , presentations and other activities are inclusively considered.

[Course Goals] To understand the maintenance for a single structure and the asset management for structures' group.

[Course Topics] Theme	Class number of	Description
1. Outline of	times	*
maintenance for	1	
concrete structures		
2. Deterioration		
mechanisms of		
concrete structures	4	
and deterioration		
prediction		
3. Repair materials		
and methods for	1	
concrete structures		
4. Maintenance and	2	
asset management	Z	
5. Maintenance for	2	
structures' group	2	
6. Management for	2	
structures' group	2	
7. Presentations and	3	
discussions	5	

[Textbook] Not specified. Some materials may be provided.

【Textbook(supplemental)】 Not specified.

[Prerequisite(s)] Basic knowledge on Construction Materials and Concrete Engineering.

[Independent Study Outside of Class] Check the handouts. Additional studies will also be instructed.

[Web Sites]

[Additional Information] Positive presence in the lecture is expected by joining discussions for example.

Earthquake Engineering/Lifeline Engineering

地震・ライフライン工学

[Code] 10F261 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 4th

[Location]C1-191 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]English

【Instructor】Kiyono,Igarashi,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	1	
	1	
	1	
Principles of seismic	-	Fundamental thories on dynamic response of nonlinear elastoplastic structural
design of structures	2	systems and representative seismic design principles
Seismic performance		
of concrete and steel	1	Essentials and current issues related to seismic performance and design of RC
structures		and steel structures
Seismic response		Idea and current issues on seismic isolation, seismic response control
control and seismic	1	techniques for enhancement of seismic performance of structures, and seismic
retrofit of structures		retrofit and rehabilitation of existing structures
	1	
	2	
	1	
	1	
Achievement	1	
evaluation	1	Students' achievements in understanding of the course material are evaluated.

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10W001

Infrastructural Structure Engineering 社会基盤構造工学

[Code] 10W001 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] English [Instructor] Related Faculty members,

[Course Description] Structural engineering problems related to planning, design, construction and maintenance of the infrastructures are discussed. Topics concerning structural engineering and management are widelly taken up including latest advanced knowledge and technology, future view and/or international topics. Special lectures by extramural lecturers are carried out if necessary.

[Grading] Coursework will be graded based on the reports.

[Course Goals] To grasp problems related to structural engineering and their specific solutions.

To understand applicability of advanced technologies and development prospects.

[Course Topics]

Theme	Class number of times	Description
Structural Materials,	4	Steel materials, Concrete materials, mechanical behavior of structures,
Structural Mechanics	4	Problems related to design, construction and maintenance
Applied Mechanics	1	Numerical analysis for structure performance evaluation
Earthquake and		Infrastructure and natural disaster,
Wind Resistance of	7	Trends of disaster prevention technology,
Structures		Problems related to Earthquake and wind resistant design
Maintenance of		International technology,
	3	Scenario design,
structure		International technological education and collaboration

[Textbook] The textbook is not required. Materials will be supplied by instructors.

[Textbook(supplemental)] Supplemental text books will be introduced by instructors.

[Prerequisite(s)] Structural Mechanics, Wind Resistant Design, Construction Materials, Dynamics of Structures, etc.

【Independent Study Outside of Class】

[Web Sites]

Structural Design

構造デザイン

[Code] 10F009 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Yoshiaki Kubota, Yoshikazu Takahashi, Masahide Matsumura

[Course Description] This course provides the knowledge of the structural planning and design for civil infrastructures. Fundamentals of the reliability of structures based on the probability and statistics are given. Emphasis is placed on the reliability index and the calibration of partial safety factors in the LRFD design format. Furthermore, the relationship between structure and form is discussed with various examples.

[Grading] Assessed by term-end examination, reports and quizes

[Course Goals] To understand the structural planning and design for civil infrastructures.

To understand the reliability-based design of structures.

To deepen the understanding of the relationship between structure and form.

[Course Topics]

Theme	Class number of times	Description
Structural Planning	2	Structural Planning of civil infrastructures is introduced. The concept, significance
		of planning, characteristics of civil infrastructures are discussed. Practical planning
		process of a bridge is explained.
		The bridge types such as girder, truss, arch and suspension bridge that have been
		regarded individually are explained as an integrated concept from the viewpoint of
Structure and Form	3	acting forces to understand the structural systems which have continuous or
		symmetrical relationships. Furthermore, various examples are discussed based on
		the understanding of the structural systems.
Structural Design and		Design theory of civil infrastructures is introduced. The allowable stress design
Structural Design and Performance-based	3	method and the limit state design method are explained. The basic of earthquake
		resistant design is discussed based on the dynamic response of structures.
Design		Performance-based design is also introduced.
Random Variables		Eurodementels of wordem variables, functions of rendem variables, probability of
and Functions of	1	Fundamentals of random variables, functions of random variables, probability of
Random Variables		failure and reliability index in their simplest forms are lectured.
Structural Safety	3	Limit states, probability of failure, FOSM reliability index, Hasofer-Lind reliability
Analysis	3	index, Monte Carlo method are lectured.
During Caller	2	Code format as Load and Resistance Factors Design (LRFD) method, calibration
Design Codes		of partial safety factors based on the reliability method are given.
Assessment of the	1	Assess the level of attainment
Level of Attainment	1	Assess the level of attainment.

[Textbook] Reliability of Structures, A. S. Nowak & K. R. Collins, McGraw-Hill, 2000

【Textbook(supplemental)】U.Baus, M.Schleich, Footbridges, Birkhauser, 2008 (Japanese ver.: Footbridges(translated by Kubota, et al.), 鹿島出版会, 2011)

久保田善明、『橋のディテール図鑑』、鹿島出版会、2010

Other books will be given in the lectures as necessary.

[Prerequisite(s)] Fundamental knowledge on Probability and Statistics, and Structural Mechanics

【Independent Study Outside of Class】N/A

[Web Sites]

[Additional Information] Structural planning and design will be given by Y. Takahashi, Structure and form by Y. Kubota, and Structural reliability analysis by M. Matsumura.

Bridge Engineering 橋梁工学

[Code] 10F010 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 3rd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】Hiromichi Shirato, Kunitomo Sugiura, Tomomi Yagi, Masahide Matsumura

[Course Description] The subject matter of bridge engineering can be divided into two main parts, which are steel structure and wind loading/wind resistant structure. The aim of this course is to provide details of mechanical behaviors, maintenance and design of bridge structures. The former part of this course contains the static instability of steel structures and the problems of corrosion, fatigue, brittleness, weldability on steel bridges. In the latter part, the basics of wind engineering, bridge aerodynamics and wind-resistant design including current problems to be solved are provided are provided. [Grading] Assessment will be based on exam, reports and participation.

[Course Goals]

Also, the basic knowledge for wind engineering and aerodynamic instabilities, which are necessary for the wind resistant design of bridges, will be acquired.

[Course Topics]

Course Topics] Theme	Class number of times	Description
		- Fundamental knowledge on steel structures
Introduction	1	- Types of steel structures
		- Future trend of steel structures
Material habitation Initial		- Construction of steel structures
Material behavior, Initial	1	- Residual stresses and initial deformations
imperfections and Damages		- Damages
		- Yield surfaces
Ctures sturin miletismshin		- Bauschinger effect
Stress-strain relationship,	1	- Hardening effect
Joints		- Welded joint
		- Bolted joint
		- S-N design curve
Fatigue fracture, fatigue life	1	- Fatigue crack growth, stress intensity factor
and fatigue design	1	- Miner's rule on damage accumulation
		- Repair of fatigue damage
0 1.111. 1	1	- Structural instability and accident
Structural stability and		- Theory of Stability
design for buckling		- Compressive members, etc.
	1	- Mechanism of corrosion
Corrosion and anti-corrosion		- Micro- and Macro- cells
of steel structures		- Anti-corrsion
		- Life-cycle costs
		- Natural winds due to Typhoon, Tornado and so on
Wind resistant design of	2	- Evaluation and estimation of strong winds
structures	3	- Wind resistant design methods
		- Various kinds of design codes
		- Introduction of aerodynamic instabilities (ex. vortex-induced vibration, galloping, flutter, buffeting,
Aerodynamic instabilities of	2	cable vibrations)
structures	3	- Mechanisms of aerodynamic instabilities
		- Evaluation methods and Countermeasures
XX7' 1 ' 1 1 1 '		- Accidents on structures due to strong winds
Wind-induced disaster	1	- Disaster prevention
Topics	1	Introduction of current topics on bridge engineering by a visiting lecturer
Confirmation of the	1	
attainment level of learning	1	Confirm the attainment level of learning

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge for construction materials, structural mechanics and fluid mechanics are required.

【Independent Study Outside of Class】

[Web Sites]

Concrete Structural Engineering コンクリート構造工学

[Code] 10A019 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd [Location]C1-172 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor] Yoshikazu Takahashi, Takashi Yamamoto, Satoshi Takaya, Katsuhiko Mizuno (Sumitomo Mitsui Construction Co., LTD.)

[Course Description] Concrete is one of the most useful construction materials employed for an infrastructure. The structural properties of a reinforced concrete including a prestressed concrete are introduced among the various structural components of concrete. The engineering techniques in design, execution, diagnosis, repair, strengthening and management of reinforced and/or prestressed concrete structures are discussed from the point of view of the performance based system.

[Grading]

[Course Goals]

[Course Topics]

Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Structural Dynamics

構造ダイナミクス

[Code] 10F227 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st [Location]C1-172 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor] Igarashi,Furukawa

[Course Description] This course deals with dynamics of structural systems and related topics, to provide the theoretical basis to deal with the problems of vibration, safety under dynamic loads and health monitoring associated with infrastructures. The students will study the dynamic response, properties of natural modes and methods of eigenvalue analysis for multi-DOF systems. The topics on the numerical time integration schemes, probabilistic evaluation of structural response to random excitation, and dynamic response control techniques for structures are also studied.

[Grading] Based on the results of a final examination, plus homework assignments

[Course Goals] (1) To aquire the knowledge on theories and principles of analysis of MDOF systems (2) Systematic understanding of frequency-domain structural response analysis (3) Concept of analysis of numerical time integration schemes (4) Understanding of fundamentals of the random vibration theory

Theme	Class number of times	Description
Introduction	1	Fudamental concepts, harmonic motion
Dynamics of Multi-Degree-Of-Free	edom 2	Formulation of Eq. of Motion / Lagrange's method / Normal Modes / Modal
Systems		Analysis / Modeling of System Damping
Frequency-Domain		
Analysis of System	1	Frequency Response Funcs. / Fourier Transform
Response		
Numerical Time	2	Formulation / Stability and Accuracy Analysis of Integration
Integration	2	
		Overview / Probability Theory / Sequence of i.i.d. Random Variables /
		Concept of Random Processes / Correlation Funcs. / White Noise /
Dandam Wilnutis	E	Stochastic Differential Eq. / Lyapunov Eq. / Response to White Noise
Random Vibration	6	Excitation / Covariance Matrix Approach / Correlation Funcs. of Random
		Response / Spectral Representation of Random Processes / Spectral
		Representation of Structural Response / Application
Structural Response	2	Active Control / Semi-Active Control
Control	2	
Achievement	1	Students' ashievements in understanding of the source material and source in the source of the sourc
Evaluation	1	Students' achievements in understanding of the course material are evaluated.

【Textbook】 Not used; Class hand-outs are distributed when necessary.

Textbook(supplemental)]

[Prerequisite(s)] Mechanical vibration (undergraduate level), Complex calculus (integration of analytic functions,

Fourier transform, etc.), Probability theory, Linear algebra

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] There will be homework assignments at the end of most of the lectures.

[Course Topics]

Seismic Engineering Exercise

サイスミックシミュレーション

[Code] 10F263 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 4th
[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture and Exercise
[Language] Japanese [Instructor] Sawada, Takahashi, Goto

[Course Description] This course provides the knowledge of simulation methods for earthquake engineering.

Small groups of students are exercised in the prediction of ground motion generated by a specified seismic fault and the response analysis of structure selected by themselves considering soil-structure interaction.

[Grading] Based on the performance during the course (including homework) and the results of presentation and reports.

[Course Goals] At the end of this course, students will be required to have a good understanding of: - Prediction of ground motion generated by a specified seismic fault - Dynamic response analysis of structures and foundation (linear/nonlinear)

Theme	Class number of times	Description
Frequency domain	1	
analysis	1	Basics of Fourier transformation is introduced.
Modeling of		
structure - soil	1	Equation of motion of SR model is introduced and the integration method of
system and time	1	the equation in time domain is explained.
domain analysis		
Exercise of linear		Small groups of students are exercised in elastic modeling of structures and
seismic response	2	linear response analysis in time domain and frequency domain.
analysis		mear response analysis in time domain and nequency domain.
Prediction of ground		
motion by empirical	3	Empirical Green's function method is introduced to predict large earthquakes
Green's function	5	based on observed small earthquakes.
method		
Seismic analysis	2	Seismic analysis method of layered half-space based on equivalent
method of soil	2	linearization method is introduced.
Nonlinear seismic		Nonlinear modeling of structures and the integration and iterative methods of
analysis method of	2	the nonlinear equation of motion in time domain are introduced.
structures		the nonlinear equation of motion in time domain are introduced.
Exercise of nonlinear		Small groups of students are exercised in the prediction of ground motion
seismic response	3	generated by a specified seismic fault and the nonlinear response analysis of
analysis		structures and foundation.
Achievement Check	1	All students give presentations and discussions.

[Textbook] Not used; Class hand-outs are distributed when necessary.

【Textbook(supplemental)】

[Prerequisite(s)] Earthquake Engineering/Lifeline Engineering (10F261), Structural Dynamics (10F227) [Independent Study Outside of Class] Students require to review and analyze in preparation for final

- presentations.
- [Web Sites]
- 【Additional Information】

Ecomaterial and Environment-friendly Structures 環境材料設計学

[Code] 10F415 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st

[Location]C1-117 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Hirotaka KAWANO, Atsushi HATTORI, Toshiyuki ISHIKAWA,

[Course Description] Lecture on outline of impact of construction materials to environment and influence on materials and structures from environment. Discuss how to use materials sustainably. Keywords are concrete, steel, composite materials, CO2, durability, recycle and reuse, life-cycle assessment.

[Grading] Attendance(%), Report(%), Presentation(%)

[Course Goals] To understand the limit of resources and effect of material use to environment. and to understand the basic theory to make environmental-friendly infrastructures from the view point of materials use.

[Course Topics]

Theme	Class number of times	Description
Guidance	1	Object of the Course, Grading and Goals
product of materials and impact to environment	1	Product of cement, steel, concrete CO2 product and its influence
recycle and reuse of	3	Recycle and reuse of steel, metals, concrete, asphalt, plastics Technology
materials	3	development of construction materials
deterioration of	1	Mechanism of deterioration of concrete structures: carbonation, salt attack,
concrete structures	1	alkali-aggregate reaction Maintenance and retrofit methods
deterioration of steel	1	Mechanism of deterioration of steel structures: corrosion, fatigue Maintenance
structures	1	and retrofit methods
deterioration of	1	Mechanism of deterioration of composite structures: Maintenance and retrofit
composite structures	1	methods
life-cycle assessment	1	Life-cycle assessment of structures considering initial cost as well as
of structures	1	maintenance cost
topics and discussion	2	Recent topics on construction materials and discussion
presentation by		Presentation by students on the individual tonics Discussion on the tonics
students and	4	Presentation by students on the individual topics Discussion on the topics. Feedback at the last class
discussion / feedback		reeuback at the last class

[Textbook] No set text

【Textbook(supplemental)】 Instructed in class

[Prerequisite(s)] Basic knowledge of construction materials, concrete engineering

[Independent Study Outside of Class] Check the handouts. Additional studies will also be instructed.

[Web Sites]

[Additional Information] Questions and discusions are welcome

Infrastructure Safety Engineering

社会基盤安全工学

[Code] 10F089 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 3rd [Location]C1-172 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor] Tomoyasu Sugiyama, Tsutomu Iyobe

[Course Description] The issues concerning the safety and reliability of infrastructures such as tunnels and bridges and also the issues on natural disaster are reviewed in the lecture.

[Grading] This lecture involves reports (70%) and attendance(30%)

[Course Goals] To understand the basic technologies to enhance the safety of structures and also the fundamentals on disaster prevention.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Introduction on the safety of infrastructures
Maintenance of		Planning, investigation, evaluation and repair in maintenance for mainly
railway structures	1	railway structures is generally explained
Weather information		Overview of weather information for disaster prevention and its monitoring
for disaster	2	system, the evaluation method for climatological statistics and extreme value
prevention		statistics.
D:		To sustain the users' safety in railway system, it is necessary to maintain the
Disaster prevention	1	structures properly but also to consider the prevention against disaster. Thus
in railway structures		herein disasters in railway structures and its counteractions are explained
Regulation and		
counteraction against	1	The need for regulation in railway operation at rainfall is explained
rainfall		
Risk assessment for	1	Risk assessment for rainfall disaster is described and also some practical cases
rainfall disaster	1	are introduced
Technical tour	3	Prevention technologies against natural disaster
F (1 1 1)		Warning system for earthquake and the algorithm of earthquake early
Earthquake and its	1	detection, which is one of the regulations for Super expressway in earthquake,
early detection		is explained
Basics of snow	2	Physical phenomenon of snow hydrology and its relationship with natural and
hydrology	2	social environment
Countermeasures of		
snow disasters for	1	Disorder caused by snow and ice and the countermeasures in railways
railway		
Report	1	Report

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)] Basic knowledge on statistics is required. Students should have taken the course of geo-mechanics, structural mechanics and concrete engineering.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] confirm the attendance at every lecture

10F089

Hydraulics & Turbulence Mechanics

水理乱流力学

[Code] 10F075 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd

[Location]C1-171 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Toda, Sanjou, Okamoto,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Guidance	1	Guidance and entrance level lecture about fluid dynamics and turbulence
Theories of	2	Lectures about momentum equation, boundary layer, energy transport, vortex
turbulence	3	dynamics and spectrum analysis
Turbulence in natural	4	I actual difference of dimension alternation alternation of the second in actual size
rivers	4	Lectures about diffusion and dispersion phenomena observed in natural rivers.
Vegetation and	2	Lecture about turbulence transport in vegetation canopy together with
turbulence	3	introduction of recent researches
Practical topics in	2	Testeres desides and shared and a dimension of
natural rivers	2	Lectures about compound channel and sediment transport
Practical topics in		
hydraulic	2	Lectures about drifting object in flood and fish way
engineering		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Hydraulics

【Independent Study Outside of Class】

[Web Sites]

水文学

[Code] 10A216 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Yasuto TACHIKAWA, Yutaka ICHIKAWA and Kazuaki YOROZU

10A216

[Course Description] Physical mechanisms of the hydrologic cycle are described from the engineering viewpoint. The rainfall-runoff modeling and its prediction method are emphasized. Physical hydrological processes explored are surface flow, saturated-unsaturated subsurface flow, streamflow routing, and evapotranspiration. Physical mechanism of each hydrological process and its numerical modeling method are explained. The basic equations and numerical simulation methods are provided. Then, detail of distributed hydrological modeling is explained through exercise.

[Grading] Examination and report

[Course Goals] The goals of the class are to understand the physical mechanism of hydrological processes, their basic equations, and numerical simulation methods.

Theme	Class number of times	Description	
Introduction	1	The hydrologic cycle and the hydrological processes are explained.	
		The physical process of the surface flow and its numerical modeling method	
Surfaceflow	2	are described. The basic equations of the surface flow and the numerical	
		simulation methods are explained.	
		The physical process of the streamflow routing and its numerical modeling	
Streamflow routing	2	method are described. The basic equations of the streamflow routing and the	
		numerical simulation methods are explained.	
Channel network and	1	Numerical representations of channel networks and catchments are explained.	
watershed modeling	1		
Distributed	5	A physically-based distributed hydrological model is described, which is	
		constructed with numerical representations of channel networks and	
hydrological model		catchments.	
Climate change and	1	Data analysis of the latest GCM simulation is presented and the impact of	
hydrologic cycle	1	climate change on the hydrologic cycle is discussed.	
		The physical process of the evapotranspiration and its numerical modeling	
Evapotranspiration	2	method are described. The basic equations of the evapotranspiration and the	
		numerical simulation methods are explained.	
Feedback of study	1	Feedback of study achievement is conducted.	
achievement	1	recuback of study achievement is conducted.	

[Course Topics]

[Textbook] Handouts are distributed at each class.

[Textbook(supplemental)]

[Prerequisite(s)] Basic knowledge of hydraulics and hydrology

[Independent Study Outside of Class] Read the textbook and/or related documents in advance and work on assignments to improve understanding of the lecture contents.

[Web Sites] http://hywr.kuciv.kyoto-u.ac.jp/lecture/lecture.html

[Additional Information] This course is open in English every other year. In 2016, the course will be open.

River Engineering and River Basin Management

河川マネジメント工学

[Code] 10F019 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hosoda, Kishida, Onda [Course Description] It is important to consider about rivers comprehensively from the various points of view based on natural & social sciences and engineering & technology. The fundamental knowledge to consider rivers and to make the plans for river basins is explained with the following contents: various view points to consider rivers, long term environmental changes of rivers and its main factors, river flows and river channel processes, the ecological system of rivers and lakes, flood & slope failure disasters, the integrated river basin planning(flood defense, environmental improvement planning, sediment transport system), functions of dam reservoir and management.

[Grading] Reports & Attendance

[Course Goals] Students are requested to understand the fundamental knowledge to consider rivers and river basins comprehensively from the various points of view based on natural & social sciences and engineering & technology.

[Course Topics]

Theme	Class number of times	Description	
Various view points to		Various viewpoints to consider rivers and river basins, Various rivers on the earth,	
consider rivers and river	2	Formation processes of river basins, long term environmental changes of rivers and its main	
basins		factors	
Ecological system in	1	The fundamental knowledge on river ecologycal system	
rivers	1	The fundamental knowledge on fiver ecologycal system	
Applications of		The following items are lectured. Commutational method to predict river flows and river	
computational methods	2	The following items are lectured: Computational method to predict river flows and river channel processes with sediment transport and river bed deformation, Hydrodynamics in	
to environmental	2	Lake Biwa.	
problems		Lake Biwa.	
Recent flood disasters &		Characteristics of recent flood and slope failure disasters, the Fundamental river	
Integrated river basin	3	management plan and the River improvement plan based on the River Law, Procedures to	
planning		make the flood control planning, Flood invasion analysis and hazard map.	
Groundwater and its	1	Simulation technology of groundwater, Geo-environmental issues, Reservoir Engineering,	
related field	1	Contaminant Transport Processes.	
Sustainable development	1	No de sé deux developmente en diviséementé deux services Mainteners ef Deux asservices	
of dam	1	Needs of dam development and history of dam construction, Maintenace of Dam reservoir.	
Economic evaluation of		Evaluation of people's awareness & WTP to river improvement projects by means of CVM, Conjoint Analysis, etc.	
environmental	2		
improvement projects		Conjoint Anarysis, etc.	
Riverbank and Dam		Piver bank and dam structure foundation grouting Desight of Piver bank. Arch Dem and	
structure and its	2	River bank and dam structure, foundation, grouting. Desighn of River bank, Arch Dam and	
maintenance		Graviety Dam.	
Achievement			
Confirmation and	1	Comprehension check of course contents (Reports & Quiz)	
Feedback			

[Textbook] Printed materials regarding the contents of this class are distributed in the class.

Textbook(supplemental)

[Prerequisite(s)] Fundamental knowledge of Hydraulics, Hydrology and Ecology

【Independent Study Outside of Class】

[Web Sites] http://www.geocities.jp/kyotourivereng/

[Additional Information] Students can contact with professors by visiting their rooms and sending e-mails.

Prof. Hosoda: hosoda.takashi.4w@kyoto-u.ac.jp

Prof. Kishida: kishida.kiyoshi.3r@kyoto-u.ac.jp

Assistant. Prof. Onda: onda.shinichiro.2e@kyoto-u.ac.jp

Sediment Hydraulics

流砂水理学

[Code] 10A040 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd
[Location]C1-191 [Credits]2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese
[Instructor] Hitoshi Gotoh and Eiji Harada,

[Course Description] Natural flows in river and coast are movable bed phenomena with the interaction of flow and sediment. At a river and a coast, a current and a wave activate a sediment transport and bring the topographical change of a bed such as sedimentation or erosion. This lecture provides an outline about the basics of sediment (or movable bed) hydraulics, and detail of the computational mechanics of sediment transport, which has been developed on the basis of dynamics of flow and sediment by introducing a multiphase flow model and a granular material model. Furthermore, about sediment and water-environment relationship, some of frontier technologies, such as an artificial flood, removal works of dam sedimentation, coastal protection works, and sand upwelling work for covering contaminated sludge on flow bottom etc., are mentioned.

[Grading] Grading is based on student 's activities in lectures and written examination.

[Course Goals] Students understand the basics of sediment hydraulics and outline of advanced models for computational sediment hydraulics, such as multiphase flow model and granular material model. Students understand the present conditions of sediment control works.

[Course Topics]

Theme	Class number of times	Description	
Introduction	1	The purpose and constitution of the lecture, the method of the scholastic evaluation are explained.	
Basics of sediment hydraulics	 Physical characteristic of a movable bed and a non-equilibrium sediment transport process and its description are explained. Furthermore, the predict technique of topographical change due to current and waves is outlined. 		
Computational mechanics of sediment transport: The state of the art	8	Essential parts of numerical models of the movable bed phenomena, which has been developed by introducing dynamic models such as a granular material model to describe a collision of sediment particles and a multiphase flow model to describe a fluid-sediment interaction, are described. In comparison with the conventional movable bed computation, the points on which has been improved to enhance the applicability of the models are concretely mentioned. Some frontier studies of sediment transport mechanics are also introduced.	
Achievement cofirmation	1	Comprehension check of course contents.	

[Textbook] Hitoshi Gotoh: Computational Mechanics of Sediment Transport, Morikita Shuppan Co., Ltd., p.223, 2004 (in Japanese).

【Textbook(supplemental)】 Non

[Prerequisite(s)] Undergraduate-level Hydraulics or Hydrodynamics is required. Because a commentary easy as possible is kept in mind by lectures, students without these prerequisite are welcomed.

[Independent Study Outside of Class] Review fundamental items of hydraulics or hydrodynamics.

[Web Sites] Non

[Additional Information] Non

10A040

Hydrologic Design and Management 水工計画学

[Code] 10F464 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd [Location] C1-191 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Yasuto TACHIKAWA and Yutaka ICHIKAWA

【Course Description】 Hydrologic design and real-time rainfall-runoff prediction methods are described. The frequency analysis of hydrologic extreme values and the time series analysis of hydrologic variables are described, and then a procedure to determone an external force for the hydrologic design are explained. Next, a physically based hydrologic model which includes various processes of human activities for the hydrologic cycle is described. A flood control planning and water resources management with the use of innovative hydrologic simulation tools is described. Then, A real-time rainfall runoff prediction method with the use of Kalman filter theory is described. 【Grading】 Final report (100)

[Course Goals] The class aims to understand the probabilistic and statistical analysis of hydrologic variables to determine the external force of hydrologic designs, applications of hydrologic simulations for hydrologic designs, and real-time rainfall and runoff prediction methods for water resources management.

Theme	Class number of times	Description	
Introduction	1	A flood control planning and water resources planning are introduced.	
Frequency analysis	2	The frequency analysis of hydrologic extreme values is described. The methods to	
and hydrologic design	3	set the external force for the hydrologic design are explained.	
		The time series analysis of hydrologic variables is described. The methods to	
Time series analysis	2	develop time series models, time serried data generation methods, spatiotemporal	
and hydrologic design	2	variation of hydrologic variables and a random field model, disaggregation	
		methods are explained.	
		Hydrologic models which include the process of human activities for the	
** 1 1	2	hydrologic cycle is described. Then, hydrologic predictive uncertainty is explained,	
Hydrologic modeling		which is inevitable coming from model structure uncertainty, parameter	
and predictive		identification uncertainty and model input uncertainty. Especially, the relation	
uncertainty		between spatiotemporal scales of hydrologic modeling and model parameter values	
		is described.	
Hydrologic modeling	2	A hydrologic modeling system which helps to develop complicated hydrologic	
system	2	simulation models and its importance for a flood control planning is also described.	
Watershed			
management for flood	2	Watershed management to mitigate flood disasters is described. A cost-benefit	
disaster		analysis of flood control measures is discussed.	
Real-time rainfall	2	A real-time rainfall runoff prediction method with the use of Kalman filter theory	
runoff prediction	2	and a new filter theory is described.	
Feedback of study	1		
achievement	1	Feedback of study achievement is conducted.	

[Course Topics]

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge of hydrology, probability and statistics are required.

[Independent Study Outside of Class] Read the textbook and/or related documents in advance and work on assignments to improve understanding of the lecture contents.

[Web Sites] http://hywr.kuciv.kyoto-u.ac.jp/lecture/lecture.html

開水路の水理学

[Code] 10F245 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 1st [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] HOSODA, Takashi and ONDA, Shinichiro

[Course Description] Hydraulic engineers and river engineers are requested to understand Open Channel Hydraulics to handle practical problems properly. In this class, the basic theory on open channel hydraulics is lectured showing various applications in Hydraulic Engineering Field. The contents include the following items: Application of a singular point theory to water surface profile analysis, Derivation of 2-D depth averaged flow model, 1-D analysis of unsteady open channel flows based on the method of characteristics, Plane 2-D analysis of steady high velocity flows, Plane 2-D analysis of unsteady flows, Higher order theories such as Boussinesq equation, etc.

[Grading] This class is not opened for 2017. the regular examination

[Course Goals] Students are requested to understand the basic theory of Open Channel Hydraulics and to learn how to apply the basic theory to practical problems in hydraulic engineering field.

Theme	Class number of times	Description
Guidance	1	The contents of this subject are introduced showing the whole framework of Open
Guidance	1	Channel Hydraulics with several theoretical and computational results.
Derivation of 2-D	1	Derivation processures of plane 2-D depth averaged flow model are expalined in details.
depth averaged model	1	Derivation processires of plane 2-D depin averaged now model are expanned in defans.
Application of singular		The application of a singular point theory to water surface profile analysis for steady
point theory to water	1	open channel flows is explained.
surface profile analysis		open channel nows is explained.
1-D analysis of		The following items are lectured: Fundamental characteristics of 1-D unsteady open
unsteady open channel	3	channel flows, Method of Characteristics, Dam break flows, Computational methods
flows		for shallow water equations.
Fundamentals of numerical simulation	1	basic theory of numerical simulation is explained by means of finite difference method,
		finite element method, etc. Applications of these method to unsteady open channel flow
numerical siniulation		equations are also shown with some practical applications in river engineering.
Plane 2-D analysis of		Characteristics of steady plane 2-D flows are explained based on the method of
steady high velocity	1	characteristics.
flows		
		The following items are lectured: The propagation of a characteristic surface, the shear
Plance 2-D analysis of	3	layer instability in 2-D flow fields, the application of a generalized curvilinear
unsteady flows		coordinate system to river flow computation, the application of a moving coordinate
		system, etc.
		Boussinesq equation with the effect of vertical acceleration, full/partially full
Higher order theory	3	pressurized flows observed in a sewer network, traffic flow theory based on a dynamic
		wave model and its application
Achievement		Understanding of the contents on Open Channel Hydraulics is confirmed through the
Confirmation &	1	regular examination.
Feedback		regular examination.

[Textbook] Printed materials on the contents of this class are distributed in class.

[Textbook(supplemental)]

[Prerequisite(s)] The Basic knowledge on fluid dyanamics and hydraulics

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students can contact with Hosoda by sending e-mail to hosoda.takashi.4w@kyoto-u.ac.jp.

10F245

10F462

Coastal Wave Dynamics 海岸波動論

[Code] 10F462 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 3rd

[Location]C1-173 [Credits]2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】Hitoshi Gotoh, Khayyer Abbas, Eiji Harada and Hiroyuki Ikari

(Course Description **)** Wave motion, which is the main driving force in coastal zone, is explained focusing on wave transformation theory and computational fluid dynamics, and design for coastal structures of their engineering applications is illustrated. As for the computational fluid dynamics for waves, methodology of free-surface wave based on the Navier-Stokes equation, which has been significantly developed in recent years, is explained in detail.

[Grading] Grading is based on student 's activities in lectures and written examination.

[Course Goals] Goal of this course is a detailed understanding of fundamental of wave transformation theory and computational fluid dynamics related to wave motion, and is also acquiring a design concept for coastal structures as their engineering applications.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The purpose and constitution of the lecture the method of the scholastic evaluation are explained.
Conservation laws of	4	Fundamentals of fluid mechanics, liner / non-liner wave theories and
fluid Modeling of surf zone dynamics	6	numerical mathematics are explained. Several methodologies against free-surface wave including breaking waves (i.e. VOF, MPS, SPH) are illustrated. Especially advanced approaches of MPS and SPH are explained in detail.
Introduction of turbulence models	1	Reynolds averaging models and large eddy simulation are outlined.
Modeling of rock mound dynamics	2	Method for tracking of armor blocks under high waves using Distinct Element Method is described.
Achievement Confirmation	1	Comprehension check of course contents.

[Textbook] Computational Wave Dynamics by Hitoshi Gotoh, Akio Okayasu and Yasunori Watanabe 234pp, ISBN: 978-981-4449-70-0

【Textbook(supplemental)】Non

[Prerequisite(s)] Non. It is desiarable to have knowledge about hydraulics, fluid mechanics.

[Independent Study Outside of Class] Review fundamental items of hydraulics or hydrodynamics.

[Web Sites]

[Additional Information] If there are any questions, please send e-mail to the staff. This course will be offered in 2015.

Hydro-Meteorologically Based Disaster Prevention

水文気象防災学

[Code] 10F267 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd

[Location]C1-191 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

【Instructor】 Kaoru Takara, Eiichi Nakakita, Takahiro Sayama

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	1	
	2	
	2	
	2	
	1	
	1	
	1	
	1	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10A222

Water Resources Systems

水資源システム論

[Code] 10A222 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st

[Location]C1-192 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Hori, T.(DPRI) and Tanaka, K.(DPRI)

[Course Description] Systems approach to natural and social phenomena associated to water resources is introduced in terms of planning and design of sustainable water resources systems.

[Grading] Grading is done based on examination and commitment to classes.

[Course Goals] Deep understanding of fundamentals for systems modeling of water-related natural and social processes and ability to perform data collection, analyses and design of sustainable water management systems.

[Course Topics]

Theme	Class number of times	Description
Optimum design of		
water resources	3	
systems		
desicion support for		
water resources	2	
management		
Recent topics on	2	
water management	2	
Water management	3	
practices in the world	3	
Land surface model		
and its application to	4	
water management		
achievement check	1	

【Textbook】 Not specified.

[Textbook(supplemental)] Supplemental documents will be introduced in classes.

[Prerequisite(s)] Fundamentals of hydrology and water resources engineering.

[Independent Study Outside of Class] Review work based on handouts and report work for issues given in the classes are required.

[Web Sites]

[Additional Information] Open every two years. Available in 2017.

流域治水砂防学

[Code] 10F077 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 1st

[Location]C1-173 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor] (DPRI) Nakagawa, H., (DPRI) Sumi, T., (DPRI) Takebayashi, H. and (DPRI) Kawaike, K.

【Course Description】 In a river basin, various kinds of disasters such as debris flow, land slide, flood inundation, storm surge, and etc. sometimes happen from the origin to the mouth. This lecture presents occurrence examples, mechanisms, theory and methods of prediction and prevention/mitigation methods against those disasters. Also this lecture mentions comprehensive management in a sediment routing system focusing on sediment management strategy in dam reservoirs.

[Grading] Grading is based on 2 reports out of 4 topics and attendance.

[Course Goals] The goals of the class are to understand phenomena within a river basin and to have wide knowledge of problems of flood and sediment disasters and countermeasures against them.

[Course Topics]

Theme	Class number of times	Description	
About Sabo Works	4	About Sabo works, sediment disasters, countermeasures against sediment	
	•	disasters, Sabo projects.	
About Reservoir		Reservoir sediment management focusing on reservoir sustainability and	
Sediment	3	comprehensive management in a sediment routing system is overviewed	
Management		including worldwide perspective and Japanese advanced case studies.	
About basin-wide		About the one dimensional bed deformation analysis and the sediment runoff	
	4	model are introduced. Furthermore, some examples of the application of those	
sediment routing		models are introduced.	
About basin-wide	4	Flood disasters and countermeasures against them are overviewed along the	
flood management	4	history of flood management in Japan.	

[Textbook] No designation. Printed materials regarding the contents of this class are distributed in class.

【Textbook(supplemental)】Instructed in class

[Prerequisite(s)] Fundamental knowledge of Hydraulics and river engineering

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This class is held biennially and is held in 2017. Attendance is taken every time.

10F269

Coastal and Urban Water Disasters Engineering

沿岸・都市防災工学

[Code] 10F269 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] C1-192 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] H. Mase, A. Igarashi, N. Yoneyama, Nobuhito Mori,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Out line of coastal	1	Introduction of coastal and urban disasters will be lectured. The type and cause
and urbarn disasters	1	of coastal and urban disasters will be explained for sequential lectures.
Modeling of tsunami,		The fundamental physics and governing equations of tsunami, storm surge and
storm surge and	3	ocean waves will be described and applications and historical events will be
waves		explained in detail.
Deduction of accestal		Characteristics of historical tsunamis, storms surges and coastal erosion will be
Reduction of coastal	3	presented with countermeasures by engineering approaches. Reliability design
disasters		for coastal structures will be explained following Japanese standard.
Earthquake Disaster	1	Review of recent earthquake disasters in urban areas in Japan and other
in Urban Areas	1	counries
Principle of Strucural		
Design against	3	Fundamental Principles of safety and performance of structures against
Disasters		extreme events, including earthquakes and tsunami
	1	
	2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Basin Environmental Disaster Mitigation

流域環境防災学

[Code] 10F466 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme c	Class number of times	Description
	3	
	3	
	3	
	3	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10F011

Computational Fluid Dynamics

数值流体力学

[Code] 10F011 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 4th

[Location]C1-172 [Credits]2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English
 [Instructor] Satoru Ushijima, Hitoshi Gotoh, Abbas Khayyer

[Course Description] Computational Fluid Dynamics (CFD) is largely developed according to the progress of computer technology in recent years. It is the powerful and effective technique to predict the various fluid phenomena, which show the complicated behaviors due to the non-linearity and other conditions. This course provides the dynamics of fluids and eddies as well as the discretization and numerical techniques, such as finite difference, finite volume and particle methods.

[Grading] The grading will be based on homework assignments.

[Course Goals] Course goal is to understand the basic theory and numerical techniques for CFD.

[Course Topics]

Theme	Class number of times	Description	
computational method for incompressible fluids	7	The course introduces the MAC algorithm, which is generally used for incompressible Newtonian fluids on the basis of finite difference and finite	
		volume methods (FDM and FVM). The outline of numerical methods is also discussed for parabolic, hyperbolic or elliptic partial differential equations, in terms of the numerical stability and accuracy. Homework will be assigned each week.	
Particle method - basic theory and improvements	7	To simulate violent flow with gas-liquid interface which is characterized by fragmentation and coalescence of fluid, particle method shows excellent performance. Firstly, basics of the particle method, namely discretization and algorithm, which is common to SPH(Smoothed Particle Hydrodynamics) and MPS(Moving Particle Semi-implicit) methods, are explained. Particle method is superior in robustness for tracking complicated interface behavior, while it suffers from existence of unphysical fluctuation of pressure. By revisiting the calculation principle of particle method, various improvements have been proposed in recent years. In this lecture, the state-of-the-art of accurate particle method is also described.	
Feedback	1	Discuss the contents of all classes and assignments. The details will be introduced in the course.	

[Textbook] No textbook assigned to the course

[Textbook(supplemental)] Recommended books and papers will be introduced in the course.

[Prerequisite(s)] Basic knowledge of fluid dynamics, continuum mechanics and computational technique

【Independent Study Outside of Class】

[Web Sites]

Hydraulic Engineering for Infrastructure Development and Management 水域社会基盤学

[Code] 10F065 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Hosoda Takashi, Toda Keiichi, Gotoh Hitoshi, Tachikawa Yasuto, Kisihida Kiyoshi, Ichikawa Yutaka, Harada Eiji, Sanjou Michio, Khayyer Abbas and Kim Sunmin,

【Course Description】 This lecture picks up various water-related problems and provides their explanation and solution methodology related to hydrodynamic and hydrological infrastructure improvements, maintenance, disaster prevention against flood and damage of water environment, interweaving several leading-edge cases in the real world. Turbulent flow and CFD, sediment transport system and design/planning of hydraulic structure are described on the basis of the integrated management of river-and-coast systems with sediment control and these relationship with infrastructure improvement. Perspective from the viewpoint of public environmental infrastructure on water environment is presented.

[Grading] Grading is based on students activities in lectures and reports.

[Course Goals] Students learn about case-based practical solutions against various problems related to hydraulic engineering, and students acquire academic preparation of how to approach to public environmental infrastructure on water area.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The purpose and constitution of the lecture, the method of the scholastic
		evaluation are explained.
Hydraulics in	2	Several problems and exciting topics related to hydraulics in open-channel
open-channel flows	3	flows are discussed with advanced practical examples.
Diverbasin		Introduction of flood disasters during a few decades in the world, flood control
River basin	3	planning in Japan, Economic evaluation and analysis of people 's awareness
management		to river improvement projects with dam construction.
		Several problems and their solution methodology against sediment transport
Beach erosion	3	process in coastal zone are explained. Advanced approaches for sediment
		control are overviewed.
Rainfall-runoff		Water recourses issues related to reinfall must ff and disting and hydrologic
prediction and	3	Water resources issues related to rainfall-runoff prediction and hydrologic
hydrologic design		design are discussed with advanced practical examples.
Numerical		
simulation for	1	Recent numerical simulation development and related state-of-the-art
Hydraulic	1	technologies are overviewed.
engineering		
Achievement	1	Comprehension check of course contents. The exercises to the given subjects
Confirmation		are performed.

【Textbook】Non

【Textbook(supplemental)】 Non

[Prerequisite(s)] hydraulics, fluid mechanics, river engineering, coastal engineering, hydrology, etc.

【Independent Study Outside of Class】

[Web Sites] Non

Applied Hydrology

応用水文学

[Code] 10F100 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th [Location]C1-173 [Credits]2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Hori(DPRI), Sumi(DPRI), S.Tanaka(DPRI), Takemon(DPRI), K.Tanaka(DPRI), Kantoush(DPRI)

[Course Description] Applied and integrated approach to the problems closely related to the water circulation system, such as floods, droughts, water contamination, ecological change, and social change is introduced mainly from the hydrological viewpoint with reference to water quantity, quality, ecological and socio-economic aspects. In the course, several actual water problems are taken up and solving process of each problem which comprises of problem-identification and formulation, impact assessment, countermeasures design and performance evaluation is learned through the lectures ' description and also investigation and discussion among the students.

[Grading] Grading is based on student activities in lectures, presentation and reports.

[Course Goals] To obtain fundamental Knowledge and skills to perform problem definition, survey amd countermeasure design on problems about water use, water hazard mitigation and water environment.

Theme	Class number of times	Description
Water disasters and	2	Risk assessment of water disasters, countermeasures and adaptation design,
risk management	2	wataer disasters and human security
Reservoir Systems	2	Reservoir system and its environmental impacts, Sustainable management of
and Sustainability	Z	reservoir system
Hydrological	2	Basic theory and application of Hydrological Frequency Analysis, which is the
Frequency Analysis	3	basis for hydrologic design.
Land Surface	2	
Proceses	2	Modelling of land surface processes, Application of land surface model
Hydrological		
Measurements of	2	Design and management of hydrological measurement system in large river
Large River Basins		basins
Under and Crystome	2	Ecohydrological management of habitats in river ecosystems, Ecohydrological
Hydro-eco Systems	2	management of biodiversity in wetland ecosystems
Presentation and	2	study and avancing for siver terring
Discussion	2	study and exersize for given topics

[Course Topics]

[Textbook] Printed materials on the contents of this class are distributed in class.

[Textbook(supplemental)] None

[Prerequisite(s)] Elementary knowledge of hydrology and water resources engineering.

[Independent Study Outside of Class] Review work based on handouts and report work for issues given in the classes are required.

[Web Sites]

Case Studies Harmonizing Disaster Management and Environment

Conservation

環境防災生存科学

[Code] 10F103[Course Year] Master and Doctor Course[Term] 1st term[Class day & Period] Mon 4th[Location] C1-191[Credits] 2[Restriction] No Restriction[Lecture Form(s)] Relay Lecture[Language] English

[Instructor] K. TAKARA(DPRI), H. NAKAGAWA(DPRI), E. NAKAKITA(DPRI), H. MASE(DPRI), N. MORI(DPRI), T. SAYAMA(DPRI)

[Course Description] Environmental impacts by infrastructure for disaster prevention and mitigation are discussed. Introducing various examples of natural disasters, degradation of the environment, and harmonizing disaster management and environmental conservation in the world, this classroom carries on a dialogue about effective measures for reducing negative environmental impacts and serious disasters.

[Grading] Considering both the number of attendances and the score of final test at the end of the semester.

[Course Goals] Conservation of the environment and prevention/mitigation of natural disasters, which are very important for human's survivability, often conflict with each other. This course introduces various examples. Students will learn many examples harmonizing these two issues, and shall consider technical and social countermeasures fitting to the regional characteristics. [Course Topics]

Theme	Class number of times	Description
Introduction	1	Introduction
Disaster due to heavy		
rainfall utilization of	3	Disaster due to begun minfall utilization of weather radar and global climate shange
weather radar and global	3	Disaster due to heavy rainfall utilization of weather radar and global climate change
climate change		
Flood disaster prevention	2	Flood disaster prevention and the environment
and the environment	2	
River environment and	3	River environment and disaster management
disaster management		
Hydrological processes		
and water disaster	2	Hydrological processes and water disaster predictions
predictions		
Coastal disasters due to		
tsunamis and storm	2	Coastal disasters due to tsunamis and storm surges
surges		
Projection of climate and		
coastal environmental	2	Projection of climate and coastal environmental change
change		

[Textbook] No particular textbook for this course. Necessary documents and literature introduction are provided in the class room from time to time.

Lecture material for Coastal disasters due to tsunamis and storm surges

http://urx3.nu/t4sq

http://urx3.nu/t4sA

http://urx3.nu/t4sC

[Textbook(supplemental)] Some literature would be introduced by professors.

[Prerequisite(s)] No special knowledge and techniques are necessary, but requires reading, writing and discussing in English in the class.

[Independent Study Outside of Class] No specific requirement for independent study. Collect information broadly regarding

environment and disaster related topics.

[Web Sites]

[Additional Information] Contact Prof. Takara at <takara.kaoru.7v@kyoto-u.ac.jp> if you have any query.

10F106

Integrated Disasters and Resources Management in Watersheds 流域管理工学

[Code] 10F106 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 1st

[Location] Katsura Campus, Ujigawa Open Laboratory, Shirahama Oceanographic Observatory and Hodaka Sedimentation Observatory

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture and Exercise [Language] English

[Instructor] Masaharu FUJITA(DPRI), Tetsuya HIRAISHI(DPRI), Nozomu YONEYAMA(DPRI), Kenji KAWAIKE(DPRI), Hiroshi TAKEBAYASHI(DPRI), Daizo TSUTSUMI(DPRI), Yasuyuki BABA(DPRI),

[Course Description] Mechanism and countermeasures of sediment disasters, flood disasters, urban flood disasters and coastal disasters are explained. An integrated watershed management of these disasters and water/sediment resources is also introduced. This lecture will be open at Katsura Campus, Ujigawa Open Laboratory, Shirahama Oceanographic Observatory and Hodaka Sedimentation Observatory. Students attending this lecture must take one of the intensive experiment/field study courses offered in Ujigawa Open Laboratory and these observatories.

[Grading] Presentation, Discussion and Report

[Course Goals] Learn an integrated basin management system for natural disasters (sediment disasters, food disasters, coastal disasters, urban flood disasters) mitigation and water/sediment resources utilization considering environmental conservation.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Contents of this lecture are explaned.
		We review urban floods from the viewpoint of river basins, flood causes, and features,
Urban flood disaster	2	together with the results of recent studies. Based on these studies, we propose comprehensive
managemnet	2	measures against urban floods, including underground inundations. In addition, we discuss
		on prediction methods of the tsunami disaster in urban area.
Flood disaster	2	Prevention / mitigation measures against flood disasters and flood prediction methods are
management	2	explained as well as examples of recent flood disasters in Japan.
Sediment disaster	2	Showing the problems on sediment disasters and sediment resources, I explain an integrated
management	2	sedimnet management system both for sediment disasters and sediment resources.
Coastal disaster	2	Coastal erosion and tsunami hazard become remarkable in these days in Japanese coast. In a
management	2	lecture, we discuss on characteristics of such coastal disasters.
Exercise on flood	6(集中2	Experiment and analysis on debris flows, riverbed variation and flooding at Ujigawa Open
disaster at Ujigawa Open	日間)	Laboratory, Fushimi-ku, Kyoto city.
Laboratory (Selective)		Laboratory, Pushinir-Ku, Kyötö Erty.
Exercise on sediment		The Hodaka Sedimentation Observatory is located at Okuhida region, Gifu Prefecture. In the
related disaster at	6(集中2	field exercise, observation methods of rainfall-runoff and sediment movement processes will
Hodaka Sedimentation	日間)	be explained. Field investigations into several types of erosion control facilities, sediment
Observatory (Selective)		producing sites, debris flow sites and sediment related disaster sites will be carried out.
Exercise on coastal		The Shirahama Oceanographic Observatory is located in Shirahama, Wakayama Prefecture.
disaster at Shirahama	6(集中2	In the lecture, the observatory, waves, currents and tide levels monitoring system is
Oceanographic	日間)	demonstrated as well as the observation tower and the observation boat.
Observatory (Selective)		

【Textbook】None

【Textbook(supplemental)】None

[Prerequisite(s)] Hydraulics, River Engineering, Coastal Engineering, Sediment Transport Hydraulics

【Independent Study Outside of Class】

[Web Sites]

Geomechanics

地盤力学

[Code] 10F025 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location]C1-172 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

【Instructor】 Mamoru Mimura, Sayuri Kimoto,

[Course Description] Mechanical behavior of soils and problems of its deformation and failure will be covered based on the multiphase mixture theory and the mechanics of granular materials.

[Grading] Final examination (70) and hormeworks, class performance (30)

[Course Goals] The objectives of this course are to understand the basics of geomechanics, and the advanced theories.

[Course Topics]

Theme	Class number of times	Description
Deformation of geomaterils	1	Mechanical property of geomaterials, critical state soil mechanics, Failure criteria, modelling of geomaterials (by Prof.Mimura)
Field equations and constitutive model	2	Framework and field equations for continum, stress-strain ralations for soils, elastic model, elasto-plastic model, plasticity theory (by Prof.Mimura)
elasto-plastic constitutive model	3	Constitutive model for geomaterials, elasto-plastic model, Cam clay model (by Prof. Mimura)
Theory of viscosity and viscoplasticity	3	Viscoelasticity, viscoplasticity, Elasto-viscoplastic mode, Adachi-Oka model, Microstructure of soils, Temperature dependent behavior, Applications of constitutive models (by Prof. Mimura)
Consolidation analysis	3	Biot's consolidation theory and its application, Consolidation of embankment (by Assoc.Prof. Kimoto)
Liquefaction of soils	2	Liquefaction of sandy soil, Damage and failure due to liquefaction, Remedial measures for liquefaction (by Assoc.Prof. Kimoto)
Confirmation of achievement	1	

【Textbook】 Handout will be given.

Soil mechanics, Fusao Oka, Asakura Publishing (in Japaneses)

[Textbook(supplemental)] An elasto-viscoplastic constitutive model, Fusao Oka, Morikita Publishing (in Japanese)

[Prerequisite(s)] Soil mechanics, Fundamentals of continuum mechanics

【Independent Study Outside of Class】

[Web Sites]

10K016

Computational Geotechnics 計算地盤工学

[Code] 10K016 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] English [Instructor],

[Course Description] The course provides students with the numerical modeling of soils to predict the behavior such as consolidation and chemical transport in porous media. The course will cover reviews of the constitutive models of geomaterials, and the development of fully coupled finite element formulation for solid-fluid two phase materials. Students are required to develop a finite element code for solving boundary valueproblems. At the end of the term, students are required to give a presentation of the results.

[Grading] Presentation and home works

[Course Goals] Understanding the numerical modeling of soils to predict the mechanical behavior of prous media, such as, deformation of two-phase mixture and chemical transportation.

Theme	Class number of times	Description
Guidance and	1	Fundamental concept in continuum mechanics such as deformation, stresses,
Introduction	1	and motion.
Governing equations		Motion, conservation of mass, balance of linear momeutum for fluid-solid
for fluid-soid	2	two-phase materials. Constitutive models for soils, including elasticity,
two-phase materials		plasticity, and visco-plasticity.
Ground water flow		
and chemical	5	Chemical transport in porous media, advective-dispersive chemical transport.
transport		
Doundary value		The virtual work theorem and finite element method for two phase material are
Boundary value	-	described for quasi-static and dynamic problems within the framework of
problem, FEM	5	infinitesimal strain theory. Programing code for consolidation analysis is
programming		presented.
Presentation	2	Students are required to give a presentation of the results.

【Textbook】 Handout will be given.

【Textbook(supplemental)】

[Prerequisite(s)] Fundamental geomechanics and numericalmethods

【Independent Study Outside of Class】

[Web Sites]

Geo-Risk Management

ジオリスクマネジメント

[Code] 10F238 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location]C1-172 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]English

[Instructor] Ohtsu

【Course Description】 This lecture aims to provide interdisciplinary knowledge associated with geo-risk engineering, the topics of risk analysis focusing on geotechnical structures. In detail, the contents of lectures consist of following topics: Introduction to risk analysis, Mathematical background of geo-risk evaluation, Examples of risk evaluation mainly focusing on slopes and Risk management on road slopes.

[Grading] Attendance(10%), Report(30%), Examination(60%)

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
G : 1	1	Guidance
Guidance	1	Introduction of Geo-Asset Management
Basic	4	Basics of Risk Analysis (3)
Probability theory	7	Evaluation of Slope Risk
Case Studies in	2	Natural Disasters in Asian Countries
Asian Countries		
Feed back	1	Feed back

[Textbook] Hiroyasu Ohtsu, Project Management, Corona Publishing, 2010. (in Japanese)

[Textbook(supplemental)] C. Chapman and S. Ward, Project Risk Management, John Wiley & Sons, 1997.

R. Flanagan and G. Norman, Risk Management and Construction, Blackwell Science

V.M. Malhotra & N.J. Carino, CRC Handbook on Nondestructive Testing of Concrete, CRC Press, 1989.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Additional information is available by visiting the following professors. Appointment shall be made in advance by e-mail.

ohtsu.hiroyasu.6n@kyoto-u.ac.jp

Construction of Geotechnical Infrastructures

ジオコンストラクション

[Code] 10F241 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 1st [Location]C1-171 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor] Kimura, Kishida

[Course Description] Advanced construction technology of geo infrastructures, such as tunnel, large underground cavern, foundation, culvert, retaining wall, is introduced and explained. And, the practical projects applied by the advanced construction technology are also introduced.

[Grading] Attendance and Report (20%), Examination (80%)

[Course Goals] To learn to the advanced construction technology and to propose the project and design through the advanced construction technology.

[Course Topics]

Theme	Class number of times	Description
Guidance,		
Introduction of		
construction of	1	Guidance, Introduction of construction of geotechnical infrastructures
geotechnical		
infrastructures		
Geo-investigation		Introduction of the advanced geo-infestation and survey techniques.
and survey	2	Explanation of inversion theory and technique.
techniques		Explanation of inversion theory and technique.
		Introduction of NATM for construction of tunnel and underground cavern. In
Auxiliary mthods of	2	addition, the role of auxiliary methods, auxiliary method for safety in tunnel
mountain tunnel	2	constrcution, axiliary methods for preservation of the surrounding environment
		are explained
Rock physics and its		Introduction of the constitutive law of rock material and rock physics (pressure
applications	2	solution) and its application fields, such as special projects of underground
applications		space, namely, nuclear waste disposal, and Carbon Capture and Storage.
Field visit or special	1	Visit the construction field or invite special lecture who is the expert engieer
lecture	1	on the construction of geotechnical infrastructures.
Foundation	2	Design and construction of piles foundation and steel pipe sheet piles
Culvert	2	Design and construction of box type and arch type culverts
Retaining wall	2	Design and construction of retaining wall
Examination of	1	
understanding	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Soil mechanics, Rock mechanics

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Office hour will be explained at the guidance. Students can contact with professors as an e-mail.

kimura.makoto.8r@kyoto-u.ac.jp

kishida.kiyoshi.3r@kyoto-u.ac.jp

Fundamental Geofront Engineering

ジオフロント工学原論

[Code] 10F405 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st [Location] C1 Jin-Yu Hall [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Prof. Mamoru MIMURA, Prof. Makoto KIMURA, Assoc. Prof. Yosuke HIGO

[Course Description] This course deals with near-surface quaternary soft soil deposits that are the most important in the engineering sense.

Physical properties and the mechanical characteristics of partially saturated and fully saturated soils are explained, and then various problems in terms of disaster prevention and infrastructure construction are discussed.

[Grading] Performance grading will be provided based on quality of assigned reports and presentations, etc.

[Course Goals] The aim of this course is to understand engineering problems and their mechanical background in the following points:

- Physical properties and mechanical characteristics of quaternary soft soil deposits and relevant engineering problems in terms of disaster prevention

- Fundamentals of unsaturated soil mechanics and engineering problems of earth structures in terms of disaster prevention

- Concepts of innovative underground foundations and structures and engineering problems during construction

[Course Topics]

Theme	Class number of times	Description
Outline of the course, introduction to quaternary deposits	1	Introduction to quaternary deposits. Types and mechanisms of geotechnical disasters relevant to quaternary deposits.
Geo-informatic database	1	Geo-informatic database and its application to modelling soft alluvial soils, liquefaction hazard map, etc.
Evaluation of subsurface structure based on GID	1	Scheme to evaluate subsurface structures using Geo-informatic database including boring logs, geophysical exploration, geological structures. Application to Kyoto basin is given.
Evaluation of liquefaction for near-surface sand depoits	1	Evaluation of liquefaction for near-surface sand deposits using Geo-informatic database is explained. Applications to the 1995 Hyogo-ken Nanbu Earthquake and the 2011 Off the Pacific Coast of Tohoku Earthquake are given, through which open questions are discussed.
Problems of soft clay deposits	1	Deformation characteristics and stability of soft clay deposits and their evaluation methods are explained, e.g., effectiveness and limitation of ground improvement, long term settlement problem, and case histories of large scale reclamation.
Concept of innovative underground structures	1	Citizen-participate-type renovation technique for unpaved roads using sandbags.
Concept of innovative underground structures	1	New construction method of embankments using consecutive precast arch culvert.
Concept of innovative underground structures	2	Technical problems of steel pipe sheet pile. Development of consecutive steel pipe sheet pile and its application.
Outline of earth structures, Unsaturated soil mechanics	2	Roles of earth structures as an infrastructure. Unsaturated soil mechanics.
Damage of earth structures caused by rainfall and earthquake	1	Case examples and their mechanisms of the damages of earth structures caused by rainfall and earthquake.
Methods to evaluate and improve stability of earth structures subjected to rainfall and earthquake	1	Design methods of earth structures and their problems are outlined.
Site visit	1	Visit construction site relevant to the issues of this course.
Evaluation and feedback	1	Evaluation of achievement by assigned reports and its feedback are given.

[Textbook] Handout will be distributed.

[Textbook(supplemental)] References are indicated in the handout.

[Prerequisite(s)] Undergraduate courses in geology, geotechnical engineering, and soil mechanics.

【Independent Study Outside of Class】

[Web Sites]

Environmental Geotechnics 環境地盤工学

[Code] 10A055 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 1st
[Location] C1-192 / Engineering Bldg.No.8 Kyodo No.1 (Yoshida Campus) [Credits] 2 [Restriction] No Restriction
[Lecture Form(s)] Lecture [Language] Japanese/English [Instructor] Takeshi Katsumi, Toru Inui,

[Course Description] Several issues on environmental geotechnics including geoenvironmental contamination and countermeasure, waste containment and reuse are introduced to understand the contribution of geotechnical engineering to global and local environmental issues. Geoenvironmental issues due to the 2011 East Japan Earthquake and Tsunami are also introduced.

[Grading] Continuous assessment including attendance, some assignments, and final report

[Course Goals] Students should understand the geotechnics to solve the following geoenvironmental issues; soil & groundwater contamination, waste disposal and waste utilization, and extend this knowledge to the development of concepts and technologies for creating and preserving the geo-environment.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Introduction to Environmental Geotechnics, including goals, outline and grading policy of the course
Waste geotechnics	3-4	Functions and structures of waste containment facilitiesGeotechnics on the liner system (Geosynthetics, clay liner, Leachate collection layer)Post-closure utilization of waste landfill
Remediation geotechnics	3-4	Behaviors of contaminants in subsurface Mechanisms of soil and groundwater contamination Remediation of soil and groundwater contamination Case histories
Geo-environmental issues related to construction works, global environmental issues, and natural disasters	2-3	Mechanisms and remediation of geoenvironmental problems and geo-disasters caused by construction works Geoenvironmental issues caused by the 2011 East Japan Earthquake and Tsunami
Reuse of wastes in geotechnical applications	3-4	Engineering properties of recycled materials in geotechnical applications (Incineration ashes, coal ash, surplus soils, dredged soils) Geoenvironmental impact assessment and control of waste utilization Case histories
Presentation and discussion	2-3	Student presentation, discussion, and summary on above topics

【Textbook】Not specified.

Several technical papers related to the course will be distributed.

[Textbook(supplemental)] Geoenvironmental Engineering (Kyoritsu Shuppan Publishing, ISBN: 9784320074293)

Handbook of Geoenvironmental Engineering (Asakura Publishing, ISBN: 9784254261523)

Introduction to Environmental Geotechnics (Japanese Geotechnical Society, ISBN: 9784886444196)

[Prerequisite(s)] Having knowledge on soil mechanics and geotechnical engineering at bachelor level is preferable, but not requirement.

【Independent Study Outside of Class】

[Web Sites]

Disaster Prevention through Geotechnics

地盤防災工学

[Code] 10F109 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd [Location]C1-117 [Credits]2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Ryosuke Uzuoka and Kyohei Ueda

[Course Description] The lecture covers nonlinear continuum mechanics and dynamic three-phase analysis of ground and geotechnical structures. In particular, the lecture covers the geo-hazards mechanism and prediction of failure modes, and mitigation measure against geo-hazards. The lecture ranges from fundamental mechanics of granular materials to numerical simulation.

[Grading] Based on reports to exercises and attendance.

[Course Goals] Successful students will have the ability to initiate their own research work on geo-hazards based on the solid understanding of the mechanics of granular materials and numerical analysis.

Theme	Class number of times	Description
Introduction	1	Introduction to the course (objectives, contents, and grading procedure)
		- Geo-hazards induced by heavy rain and earthquake
		- Application of numerical analysis to predict the geo-hazards
Nonlinear continuum mechanics 1	3	Nonlinear continuum mechanics 1
		- Vector and tensor algebra
		- Kinematics (motion and strain tensors)
		- Concept of stress tensors
Nonlinear continuum mechanics 2	3	Nonlinear continuum mechanics 2
		- Balance Principles
		- Objectivity and stress/strain rates
		- Constitutive laws
Fundamentals of numerical analysis for geo-hazards	4	Fundamentals of numerical analysis for geo-hazards
		- Balance equations
		- Constitutive equations
		- Numerical method
Applications of	4	Applications of Numerical analysis for geo-hazards
Numerical analysis		- Liquefaction
or geo-hazards		- Landslide

[Textbook] Handouts

[Textbook(supplemental)] Gerhard A. Holzapfel: Nonlinear Solid Mechanics: A Continuum Approach for Engineering, Wiley.

Javier Bonet, Antonio J. Gil, Richard D. Wood: Nonlinear Solid Mechanics for Finite Element Analysis: Statics, Cambridge University Press.

[Prerequisite(s)]

[Independent Study Outside of Class]

[Web Sites]

10F203

Public Finance 公共財政論

[Code] 10F203 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location]C1-173 [Credits]2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】Kobayashi, Matsushima,

[Course Description] The concept of public finance will be taught based upon the framework of Macro economics.

[Grading] Final Exam: 60-70% Mid-term Exam and Attendance: 30-40%

[Course Goals] Understand the concept of public finance

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Explain the outline of this course
GDP and 2. Circular flow model of macro economics	2	Explain about the circular flow model of macro economics and the definition of GDP
Input Output Table and General Equilibrium Model	2	Explain about the input-output table and its role on general equilibrium model
IS-LM Model	2	Explain about IS-LM model to analyze both goods market and money market
International Economics	2	Explain about the international account balance and IS-LM model with trade
AD-AS Model	2	Explain about AD-AS model which analyze the mid term
Economic Growth Model	2	Explain about economic growth model in which long term economic growth is analyzed
Summary	1	Summarize classes and check whether students could achieved its goal.
feedback	1	Accept feedback from students

[Textbook]

[Textbook(supplemental)] Dornbusch et al., Macroeconomics 10th edition, Mcgrow-hill, 2008

[Prerequisite(s)] Basic Microeconomics

【Independent Study Outside of Class】

[Web Sites] will be notified in the first class.

Urban Environmental Policy 都市社会環境論

[Code] 10F207 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location]C1-173 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

【Instructor】Ryoji Matsunaka

[Course Description] This lecture aims to learn urban environmental policy and its fundamental theory and methodology to solve social and environmental problems that occur in urban area as well as to understand the structure of these problems.

[Grading] evaluation by commitment, tests, reports and examination

[Course Goals] to understand the structure of social and environmental problems in urban area and urban environmental policy, its fundamental theory and methodology to solve the problems

[Course Topics]

Theme	Class number of times	Description
Outline	1	
Structure of urban	2	Expansion of urban areas, Increase of Environmental impact, Making compact
problems	3	cities
Basic theory of		
transportation and	2	Downtown activation, Road space re-allocation, Pedestrianisation
environment		
Road traffic and	2	Characteristics of traffic modes, Light Rail Transit, Bus Rapid Transit,
Public transportation	2	Mobility Management
Fundamental theory		
for measurements of	3	Utility, Equivalent Surplus, Compensating Surplus
environmental values		
Methodology to		Travel Cast Method Hadania Anneagh Contingant Valuation Method
measure	3	Travel Cost Method, Hedonic Approach, Contingent Valuation Method,
environmental values		Conjoint Analysis
Summary	1	

[Textbook] No textbook

【Textbook(supplemental)】

[Prerequisite(s)] basic knowledge of public economics is required

【Independent Study Outside of Class】

[Web Sites]

Quantitative Methods for Behavioral Analysis 人間行動学

[Code] 10F219 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 5th

[Location]C1-192 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

【Instructor】 Satoshi Fujii,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	3	
	3	
	3	
	3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Intelligent Transportation Systems 交通情報工学

[Code] 10F215 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd [Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] N. Uno, T. Yamada and T. Nakamura,

[Course Description] This class provides you with the outlines of engineering methodology with information and communication technology as its core element for improving the safety, efficiency and reliability of traffic and transportation systems and reducing the environmental burden. Concretely, we discuss the applicability of countermeasures, such as Travel Demand Management, modal-mix in transportation systems, traffic safety improvement schemes for relieving contemporary problems in traffic and transportation systems, in addition to brief introduction of innovative approaches to collect high-quality of real-time traffic data. Moreover, the methodology for policy evaluation and the related basic theory are explained.

[Grading] Final report: 45%, Mid-term report: 45% and Mark given for class participation: 10%

[Course Goals] Goal of this class is to cultivate basic and critical abilities of students for implementing effective traffic and transportation management using ITS (Intelligent Transportation System).

Theme	Class number of times	Description	
Basics for Transportation	_		
Network Analysis	1		
Estimation of OD Traffic			
Volume using Observed	1		
Link Traffic Counts			
Analytical Approaches			
Based on Transportation	4		
Network Equilibrium			
Outlines of ITS	1		
Traffic Management for	2		
Enhancing Efficiency	2		
Innovative Approaches			
for Data Collection	1		
Using ICT			
Application of ITS for	1		
Enhancing Traffic safety	1		
Travel Demand			
Management and	2		
Congestion Charging			
Application of Traffic	2		
Simulation	2		
Feedback of evaluation			
of report examination to	1		
students			
	1		

[Textbook]

【Textbook(supplemental)】
[Prerequisite(s)】
[Independent Study Outside of Class]
[Web Sites]

10A805

Remote Sensing and Geographic Information Systems

リモートセンシングと地理情報システム

[Code] 10A805 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd [Location] C1-117 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture & Exercise [Language] Japanese [Instructor] Nobuhiro Uno and Junichi Susaki [Course Description] Geoinformatics is the science and technologies dealing with spatially distributed data acquired with remote sensing, digital photogrammetry, global positioning system, etc, to address the problems in natural phenomena or human activities. This lecture particularly focuses on satellite remote sensing and explains the theory and the technologies for analyzing environmental changes or disaster effects. A free software MultiSpec is used in exercises to learn the basic techniques of image processing.

[Grading] Grading is based on the achievements in assignments.

[Course Goals] To understand the basic theory and to acquire the basic techniques of satellite remote sensing for observation and analysis of environmental changes, disaster effects and human activities in urban areas.

[Course Topics]

Theme	Class number of times	Description	
Introduction	0.5	Introduction to remote sensing and GIS is given, and the software supposed to use is introduced.	
Coordinate system and map projection	0.5	Principal coordinate systems and map projection methods used for satellite image and GIS data are explained.	
Radiation and reflection of electromagnetic waves, and optical sensor	1	Basic terms on electromagnetic radiation including radiation and reflection are introduced, and calculation of suface reflectance and temperature is explained. In addition, principles and applications of visible and infrare sensors are introduced.	
Land cover classification	1	Theory and procedure of land use/cover classification using satellite images are explained.	
Property of SAR	1	Concept of synthetic aperture radar (SAR) is first introduced, and the image processing, statistical property, speckle filtering and polarimetric SAR are explained.	
Measurement of topography using SAR data	1	Theory of Interferometric SAR (InSAR) and differential InSAR (DInSAR) is introduced. Then, long-term monitoring of land deformation by using multi-temporal SAR imagges is explained.	
(Analysis 1) Land cover classification using reflectance, temperature and elevation data	1	Land cover maps produced from optical satellite images and elevation data are presented, and the classifiers and data used are discussed.	
Least square method	1	Least square method (LSM) for generating estimates from observations is explained.	
Spatial statistics	1	Spatial auto-correlation observed among spatial data and removal of the effect are explained.	
Generation of DEM from airborne LiDAR data and application to landscape analysis	1	Generation of digital surface model (DSM) from airborne light detection and ranging (LiDAR) data is explained. As an application, landscape assessment using airborne LiDAR data is introduced.	
Generation of DEM using photogrammetry	1	Generation of DSM by using photogrammetry, and the difference of DSMs between photogrammetry, SAR and airborne LiDAR is explained.	
(Analysis 2) Spatially statistical analysis of land price data	1	Spatially statistical analysis of land price data with other variables is presented, and the validity and applicability to other areas are discussed.	
Change in observations and management in traffic and transportation syst	1	 Methodological change in traffic and transportation observations Progress in location estimation technology and sophistication of management 	
Utilization of geographical information system in urban management	1	 Issues in urban management and importance of information Utilization of geographic information system and its difficulties 	
Materialization of Smart City and role of Big Data	1	- What is Smart City? - How to utilize and analyze Big Data	
Assessment of understanding	1	Assess students' understanding levels	

[Textbook]

[Textbook(supplemental)] - Junichi Susaki and Michinori Hatayama, Geoinformatics, Corona Publisher, 2013

- W. G. Rees, Physical Principles of Remote Sensing 3rd ed., Cambridge University Press, 2013.

- J. A. Richards and X. Jia , Remote Sensing Digital Image Analysis: An Introduction, 5th ed., Springer-Verlag, 2013.

-M. Netler and H. Mitasova, Open Source GIS: A GRASS GIS Approach 3rd ed., The International Series in Engineering and Computer Science, 2008.

[Prerequisite(s)] Basic knowledge in computer information processing

【Independent Study Outside of Class】

[Web Sites] http://www.gi.ce.t.kyoto-u.ac.jp/user/susaki/rsgis/index.html

Civic and Landscape Design

景観デザイン論

[Code] 10A808 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture and practice

[Language] Japanese [Instructor] Masashi Kawasaki,Keita Yamaguchi,Keiichiro Okabe

[Course Description] Lecture for Landscape Design, Design of Urban infrastructure, and Landscape Architecture Practice

[Grading] Reports (Kawasaki: 50%) and design practice (Okabe: 50%)

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Guidance. Landscape	1	Guidance, Lecture on landscape and image.
and image Architectural Design		
of city and urban	3	Lecture on planning and designing about landscape design of urban facilities such as roads and plazas, parks, waterfront and waterfront and public space.
facilities		
Landscape Design and Management	4	The history of landscape policy, the method of evaluating landscape, the case and method of landscape planning, examples and methods of urban design both in Japan and abroad
Landscape Architecture Practice	6	Designed for streets, parks
Feedback	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10F223

Risk Management Theory

リスクマネジメント論

[Code] 10F223 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 3rd

[Location] C1-173 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture and exercise [Language] English

【Instructor】 Muneta Yokomatsu,

(Course Description **)** The aim of the class is to provide the basic knowledge of risk management methods for various types of risks such as natural disaster, environment and natural resources in urban and rural areas. Students will learn the decision making principle under risks in Economics and asset pricing methods in Financial Engineering as well as have exercises of application on public project problems.

[Grading] 20% of score is valuated on attendance and discussion in classes, and 80% on reports.

[Course Goals] It is targeted to understand 1) representative concepts of risk and risk management process, 2) expected utility theory and 3) foundation of Financial Engineering, and examine 4) public project problems by applying the above knowledge.

Theme	Class number of times	Description	
Basic framework of	2	1-1 Representative concept of risk	
risk management	2	1-2 Risk management technologies	
Decision making	2	2-1 The Bayes' theorem	
theory under risks	3	2-2 The Expected utility theory	
		3-1 The Capital Asset Pricing Model	
Financial	6	3-2 Option pricing theory	
engineering	6	3-3 The arbitrage theorem	
		3-4 The Black-Scholes formula	
Decision making	3	4-1 The decision tree analysis	
methods for projects	3	4-2 The real option approach	
Comprehension	1	5 Comprehension check	
check	1	5 Comprehension check	

[Course Topics]

[Textbook]

【Textbook(supplemental)】 1.Ross, S.M.: An Elementary Introduction To Mathematical Finance, Cambridge University Press, 1999

2.Sullivan W.G.: Engineering Economy, Pearson, 2012

[Prerequisite(s)] Fundamental understanding of probability

【Independent Study Outside of Class】

[Web Sites]

Disaster Risk Management

災害リスク管理論

[Code] 10X333 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th [Location] C1-171 [Credits]2 [Restriction] [Lecture Form(s)]Lecture [Language]English [Instructor]TATANO Hirokazu,YOKOMATSU Muneta, [Course Description] Natural disasters have low frequencies but high impacts. It is very important to make an integrated risk

management plan that consists of various countermeasures such as prevention, mitigation, transfer, and preparedness. This class will present economic approaches to natural disaster risk management and designing appropriate countermeasures.

[Grading] Evaluate mainly by the presentations in the class as well as end-of-term report, taking active and constructive participation in the class into account.

[Course Goals] Students are expected to understand fundamental ways of economic analyses of disaster prevention such as economic valuation of disaster losses, decision making principle under risks, derivation of benefits of risk management.
[Course Topics]

Theme	Class number of times	Description	
Introduction to disaster	1		
risk management	1	Introduction and Explanation of Course Outline, The Global Trends of Natural Disasters	
1. Decision making	1		
theory under uncertainty	1	Bayes' theorem, Expected utility function	
Methods of disaster risk	1		
management	1	Risk control and risk finance	
Economic valuation of		Cost-Benefit analysis, conventional valuation method, catastrophic risks and economic	
catastrophic risk	1	valuation of disaster mitigation	
mitigation			
Risk perception bias,			
land-use and risk	2	Risk perception bias, land-use model, risk communication	
communication			
Disaster risk finance	2	Recent issues of risk finance market, reinsurance, CAT bond, roles of government,	
Disaster fisk finance	2	derivatives	
Risk curve and risk	1	Fracility aurus and rick assessment	
assessment	1	Fragility curve and risk assessment	
General equilibrium			
analysis under disaster	1	General equilibrium model under disaster risk	
risk			
Macrodynamics under	1	GDP, economic growth	
disaster risk	1	ODI, ceonomie growth	
Disaster accounting	1	Accounting systems	
Exercise and	2	Students' exercise and presentation	
presentation	2	Students exercise and presentation	
Confirmation of the			
learning achievement	1	Confirmation of the learning achievement degree	
degree			

[Textbook] Tatano, H., Takagi, A.(ed.): Economic Analysis of disaster prevention, Keiso pub., 2005 (in Japanese).

[Textbook(supplemental)] Froot, K.A.(ed) "The Financing of Catastrophic Risk", the University of Chicago Press Kunreuther H. and Rose, A., "The Economics of Natural Hazards", Vol.1 & 2, The International Library of Critical Writings in Economics 178, Edward Elgar publishers, 2004

Okuyama, Y., and Chang, S.T.,(eds.) "Modeling Spatial and Economic Impacts of Disasters" (Advances in Spatial Science), Springer, 2004.

[Prerequisite(s)] Nothing

【Independent Study Outside of Class】

[Web Sites] No web site

Disaster Information 防災情報特論

[Code] 693287 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Hirokazu Tatano(DPRI), Katsuya Yamori(DPRI), Michinori Hatayama(DPRI), Shingo Suzuki(DPRI),

[Course Description] This lecture gives an outline of disaster prevention and reduction countermeasures both inside and outside Japan with special reference to disaster information related topics. Concrete examples of disaster information systems are introduced to show that psychological aspect of information users under critical social conditions is carefully taken into account in such current disaster information systems.

[Grading] Submit every class reports and end-of-term report Every class reports:

" Point out 3 discoveries for you and 1 request which you want to know more with reasons in this class.

Submit report via Email by the following rules

1. Address: disasterinfo@imdr.dpri.kyoto-u.ac.jp

2. subject: "Disaster Information Report [Date] Student ID, Name "

3. Don 't use attached file.

4. Dead line: Next Tuesday

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
What is disaster		
prevention?	1	
Information system in	3	
emergency	2	
Information system in	1	
emergency	1	
Case examples on		
introduction of disaster	1	
information system		
Information system for	1	
evacuation planning,	1	
Information system for	1	
rescue activity	1	
Social psychological		
study of disaster	2	
information		
Disaster information and	2	
evacuation behavior	2	
Gaming approach to		
disaster risk	3	
communication		
Test	1	

[Textbook] Nothing

【Textbook(supplemental)】 Only Japanese Books

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Office Hours: After Class, Make an appointment immediately after.

Questions via Email: disaster, nfo@imdr.dpri.kyoto-u.ac.jp

Theory & Practice of Environmental Design Research 環境デザイン論

[Code] 10A845 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	7	
	8	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10A402

Resources Development Systems 資源開発システム工学

[Code] 10A402 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 1st

[Location]C1-172 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Sumihiko Murata, Assoc. Prof., Dept. of Urban Management

[Course Description] Development of mineral resources and energy resources is essential to the sustainable development of our society. In this class, the exploration and development process of natural resources are reviewed including the environmental conservation and harmony. In addition, fundamentals of reservoir engineering for the evaluation of production behavior and reserves of oil and natural gas are lectured.

[Grading] Evaluation is made by the average score of report problems. They are presented 2 or 3 times in the semester.

[Course Goals] The goal of this class is to understand the natural resources development concerning environment and master the reservoir engineering needed for the exploration and development of oil and natural gas resources.

Theme	Class number of times	Description	
From exploration to		The exploration and development processes of mineral and energy resources,	
development of	1	which are essential to the sustainable development of our society, are reviewed	
natural resources		including the environmental conservation and harmony.	
Fundamentals of	3	The properties of reservoir fluids and the material balance method to evaluate	
reservoir engineering	5	the reserve of oil and natural gas are explained.	
		Basic equations of multi-phase fluid flow in the reservoir and analytical	
Fluid flow in the	7	solution for the flow of oil and natural gas around a well are explained.	
reservoir	/	Furthermore, the concept and the method of well test analysis are also	
		explained.	
Enhanced oil and		The displacement processes of oil and gas in a reservoir are explained.	
	4	Furthermore, methods of enhanced oil and gas recovery (EOGR) are	
natural gas recovery		overviewed, and the essentials of each EOGR method are explained.	

[Course Topics]

【Textbook】 Handouts are delivered.

[Textbook(supplemental)] L.P.Dake, Fundamentals of Reservoir Engineering, Developments in petroleum science Vol.8, Elsevir, ISBN 0-444-41830-X

[Prerequisite(s)] It is desirable to have knowledge of calculus of undergraduate level.

[Independent Study Outside of Class] Self study is required using supplemental book.

[Web Sites] Web page of this class is not provided. Information is shown in the class when it is needed.

[Additional Information] Office hours are set 10:30-12:00 and 14:30-16:00 on the same day of the class.

Applied Mathematics in Civil & Earth Resources Engineering 応用数理解析

[Code] 10F053 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 3rd

[Location]C1-192 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number of times	Description
5	
2	
4	
5	
1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Environmental Geosphere Engineering 地殻環境工学

[Code] 10A405 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd [Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Katsuaki KOIKE, [Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction of		
structure and content of	1	
this course		
Physics of Earth system	2	
Chemistry of Earth	3	
system	3	
Fundamentals of		
Geoinformatics (1):	2	
Spatical modeling	2	
techniques		
Fundamentals of		
Geoinformatics (2):	1	
Scaling of geological	1	
structure		
Fundamentals of		
Geoinformatics (3):	2	
Remote sensing		
Fundamentals of		
Geoinformatics (4):		
Earth survey and	1	
geochemical		
exploration		
Geosphere		
environments (1):	2	
Weathering process and	2	
geohazards		
Geosphere		
environments (2): CCS	1	
and HLW		
	1	
Mineral and energy resources	1.5	

[Textbook] Handouts will be distributed at each class.

[Textbook(supplemental)] References will be introduced in the handouts.

[Prerequisite(s)] Fundamental knowledges on geology, physics, and chemistry are required.

【Independent Study Outside of Class】

[Web Sites]

Applied Elasticity for Rock Mechanics 応用弾性学

[Code] 10F071[Course Year] Master and Doctor Course[Term] 2nd term[Class day & Period] Fri 3rd[Location]C1-172[Credits] 2[Restriction] No Restriction[Lecture Form(s)] Lecture[Language] Japanese

[Instructor] Sumihiko Murata, Assoc. Prof., Dept. of Urban Management

(Course Description **)** Theory of elasticity relating to the deformation and failure of rock and rock mass and design of rock structures is explained. Specifically, two-dimensional analysis of elasticity using the basic equations, constitutive equations, and the complex stress function are explained. In addition, poroelasticity is explained. Several applications of this analysis to rock mechanics, rock engineering, and fracture mechanics are also explained.

[Grading] Evaluation is made by the score of two report problems or homeworks (25% each) and semester final examination (50%).

[Course Goals] The goal of this class is to master the theory of elasticity so as to solve the elastic problem in rock mechanics, rock engineering, and fracture mechanics.

Course	Topics]
---------------	----------

Theme	Class number of times	Description
Airy 's stress function and complex stress function	2	Airy 's stress function used to solve a two-dimensional elastic problem is first explained, and then the complex stress functions that are the representation of Airy 's stress function by the complex variables are explained.
Two-dimensional elastic analysis using the complex stress function	8	Analytical solutions of two-dimensional elastic problems in fracture mechanics and rock engineering are derived by using the complex stress functions. The mechanical behavior of rock material is also explained based on the derived solutions.
Application of two-dimensional elastic analysis	2	The theory of rock support, ground characteristic curve, theoretical equations used for the evaluation of rock stress, which are derived from the solution of two-dimensional elastic problem, are explained.
Poroelasticity	2	Basic equations and parameters of poroelasticity are explained. Futhrermore, the applications of poroelasticity are explained.
Summary and Achievement check	1	The contents of this class are summarized. In addition, the achievement of course goals is checked.

[Textbook] Handouts are delivered.

[Textbook(supplemental)] J.C. Jaeger, N.G.W. Cook, and R.W. Zimmerman: Fundamentals of Rock Mechanics -4th ed., Blackwell Publishing, 2007, ISBN-13: 978-0-632-05759-7

[Prerequisite(s)] The knowledge and calculation skill of calculus, vector analysis and complex analysis are required.

[Independent Study Outside of Class] Review of the each class is required.

[Web Sites] Web page of this lecture is not provided. When preparing it by need, the information is shown in the class.

[Additional Information] Office hour is set 10:30-12:00 and 14:30-1600 on the same day of the class.

10F073

Fundamental Theories in Geophysical Exploration 物理探査の基礎数理

[Code] 10F073 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 5th [Location]C1-173 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor] Hitosih Mikada, Tada-nori Goto,

(Course Description **)** We are outlining various basic mathematical principles used for the analysis of the dynamic and kinematic earth-scientific problems in conjunction with wave propagation, mass transfer, etc. in the crust, and presenting examples of such analysis techniques in the area of earth sciences and earth resources engineering.

[Grading] Rating is performed by the combination of exams (40%) and the attendance to the class (60%).

[Course Goals] The aims of the class is to understand various signal-processing theories, the applied seismology, and the applied geo-electromagnetics with respect to exploration geophysics as application tools in seismology and in geo-electromagnetics.

[Course Topics]

Theme	Class number of times	Description
Introduction to exploration geophysics	1	General introduction to the lecture.
Seismic wave propagation and signal processing	8	Acquire knowledge on the propagation phenomena of elastic waves to learn the equivalency of 1D propagation with the theory of system function. The topics included would be, z-transform, Levinson recursion, Hilbert transform, etc.
Fundamentals of geo-electromagnetics and their application to exploration geophysics	5	Learn fundamental theories of magnetotellurics, instantaneous potential, spontaneous potential, and apparent resistivity methods, etc. that deal with geo-electromagnetic phenomena. Case studies are introduced to understand the advantages of geo-electromagnetic exploration schemes.
Wave propagation problem in seismic exploration	1	Discussing fundamental theories of elastic wave propagation, used in subsurface structural surveys, in terms of the actual utilization and the theories of wave phenomena.

【Textbook】

[Textbook(supplemental)] Claerbout, J.F. (1976): Fundamentals of Geophysical Data Processing (Available online URL: http://sep.stanford.edu/oldreports/fgdp2/)

[Prerequisite(s)] Students should understand exploration geophysics of undergraduate level.

【Independent Study Outside of Class】

[Web Sites] Could be specified by the lecturers if any.

Underground space and petrophysics

地下空間と地殻物性

[Code] 10F076 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location]C1-172 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Professor Weiren Lin, Professor Tsuyoshi Ishida, Assistant Professor Naotoshi Yasuda, Part-time Lecture Tatsuya Yokoyama

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Guidance	1	
Physical properties	4	
and strength of rocks	4	
Rock stress and its	2	
measurements	2	
Underground		
stability and rock	2	
stress problems		
Redioactive waste	3	
repository	3	
Tunnel	2	
Feedback	1	

[Textbook] No set text

【Textbook(supplemental)】 Instructed in class

[Prerequisite(s)] Taking Underground Development Engineering and Rock Engineering (when undergraduate) are desirable.

【Independent Study Outside of Class】

[Web Sites]

10A420

Lecture on Exploration Geophysics 探查工学特論

[Code] 10A420 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 4th

[Location] C1-117 [Credits] 2

[Restriction] The class of Fundamental theories of geophysical exploration is recommended to acuire.

[Lecture Form(s)] Lecture [Language] English [Instructor] Hitosih Mikada, Tada-nori Goto

[Course Description] Applied geophysical exploration technologies in disaster mitigation, civil engineering, and earth resources engineering is discussed in terms of seismological and of electromagnetic theories. Students may be asked to process data or design digital filters in the course.

[Grading] Brief explanations on the grading will be given at the time of the lecture.

[Course Goals] Understanding seismiclogical and electromagnetic theories used in geophysical exploration and subsurface-imaging technologies.

[Course Topics]

Theme	Class number of times	Description
Electromagnetic	2	Principles of magnetotelluric methods, electromagnetic sources and noise
signal processing	3	reduction.
Modeling		Subsurface structure modeling in EM methods. The offects of surface
technologies in	2	Subsurface structure modeling in EM methods. The effects of surface
electromagnetic	3	weathered layers, the identification of spatial dimensions, and modeling
methods		methodologies are discussed.
Signal processing in	4	Digital filtaning in agiamia data magazaing
seismics	4	Digital filtering in seismic data processing.
Reflection	3	Fundamental theories of reflection seismic data processing. Seismic migration
seismology	3	is the one to be briefly discussed.
Petrophysics 2	2	Fundamental petrophysics, and fundamental measurement theories in
	geophysical logging are discussed.	

【Textbook】 Specified in the course.

[Textbook(supplemental)] J.F.Claerbout, 1976, Fundamentals of Geophysical Data Processing,

(OOP:photocopies to be specified)

[Prerequisite(s)] The credits of Exploration Geophysics in undergraduate course and Fundamental Theories of Geophysical Exploration in graduate course are requested to obtain before the classes.

【Independent Study Outside of Class】

[Web Sites] Would be specified by the lecturers.

Measurement in the earth's crust environment 地殻環境計測

[Code] 10F085 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Tsuyoshi ISHIDA, Yoshitaka NARA, Koji YAMAMOTO, Kiyoshi AMEMIYA

[Course Description] Information necessary to understand environment in the upper layer of the earth's crust will be explained for various engineering projects. Among them, measurements of rock stress and mechanical properties of rock will be focused in the relation to the projects of oil and gas exploitation, underground disposal of radio active waste, geological sequestration of CO2, construction of underground power houses and hot dry rock geothermal power extraction.

[Grading] Grading will be made from scores of the followings; report for subjects, achievement tests and number of attendance to the classes.

[Course Goals] Goals of this course are the followings. 1) To understand effects of initial rock stress on stability of underground chambers for verious purposes. 2) To understand a stress relief method as one of typical rock stress measurement . 3) To understand the principle of a least square method though learning a procedure to determine initial rock stress condition from released strains measured on a borehole wall. 4) To understand effects of rock stress for oil and gas exploitation through borehole breakout problems and others. 5)To understand purposes and latest technologies for long term monitoring up to 100,000 years. 6) To understand mechanical properties of rock (strength, permeability, fracturing, etc.) under different environmental condition with methodology of their measurements.

[Course Topics]

Theme	Class number of times	Description
Importance of rock stress condition in underground development (by ISHIDA) Stress relief methods to	3	Necessity of rock stress measurements and their applications for various engineering projects will be explained. Among the projects, underground disposal of radio active waste, geological sequestration of CO2, construction of underground power houses and hot dry rock geothermal power extraction will be focused. Actual field works of stress relief methods to measure initial rock stress condition will be
measure rock stress and applicaiton of least square method (by ISHIDA)	3	explained. Though learning a procedure to determine an initial rock stress condition from released strains measured on a borehole wall, the principle of a least square method will be explained. The report subject will be shown in the last week.
Effect of rock stress on oil and gas exploitation	4	Estimation of rock stress condition by hydraulic fracturing and logging, which is conducted at various steps for oil and gas exploitation, will be explained. Importance of rock stress affecting on borehole stability will be explained as well.
Monitoring in Deep Underground Facility - to ensure the long term stability-	2	The purposes and latest technologies of monitoring are shown in this lecture, focusing on the methods of ensuring the long term (up to 100,000 years) safety assessment of radioactive waste disposal.
Measurement of mechanical properties of rock under various environment	2	Mechanical properties of rock (strength, permeability, fracturing, etc.) under different environmental condition are shown, as well as the methodology of measurements. In addition, the relationship between the rock properties and radioactive waste disposal is described.
Confirmation of understanding	1	Feedback through tests and others.

[Textbook] None. Handouts will be given in classes when needed.

[Textbook(supplemental)] 1) Amadei, B. & Stephansson, O.: Rock Stress and Its Measurements, Capman & Hall, 1977.

2) Vutukuri, V. S. & Katsuyama, K.: Introduction to Rock Mechanics, Industrial Publishing & Consulting, Inc., Tokyo, 1994.

[Prerequisite(s)] Elasticity, Linear Algebra (Calculation of Matrices) and Computer Literacy (for example, Excel, Word and so on.) [Independent Study Outside of Class] When you make a report, it is necessary to calculate matrixes by using a Microsoft Excel and others.

[Web Sites]

【Additional Information】 This class is made by English.

Earth Resources Engineering 地球資源学

[Code] 10F088 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd [Location] C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Katsuaki Koike [Course Description] Securance and development harmonious with natural environments of the mineral and fossil energy resources, and utilization of storage function of geologic strata have become important issues for constructing sustainable society. This subject introduces comprehensively the present situation of uses of mineral and energy resources, crust structure and dynamics, economic geology for the genesis and geologic environments of deposits, physical and chemical exploration methods of marine deposits, mathematical geology for reserve assessment, engineering geology for resource development and geological repository, and problems and promise of natural energy such as geothermal, solar, wind, and tide.

[Grading] Integrated evaluation by attendance to the classes and report grades.

[Course Goals] To find out directionality about the technologies required for constructing sustainable society by yourself with full understandings of genetic mechanism, biased distribution, and the present situation of demand and supply of the mineral and energy resources. [Course Topics]

Theme	Class number of times	Description
Introduction of this course	1	Definition of renewable and non-renewable resources. Interaction among Earth environment,
and resources	1	human society, and natural resources. Existence pattern of natural resources in the crust.
1. Internal structure of	2	Inner structure of the Earth, geodynamics, geologic composition, temperature structure, rock
Earth and geodynamics	2	physics, and chemical composition of crust.
2. Present and future of	1	Classification of energy sources, recent trend on social demand of energy, physical characteristics
energy resources	1	of each energy resources, and sustainability.
3. Present and future of	1	Classification of minerals used for resources, recent trend on social demand of mineral resources,
mineral resources	1	industrial uses of each mineral, and sustainability.
4 Economic coolegy (1)	1	Classification of ore deposits, distribution of each type of ore deposit, generation mechanism of
4. Economic geology (1)	1	deposit.
4. Economic geology (2)	1	General structure and distribution of fuel deposits (coal, petroleum, and natural gas), generation
4. Economic geology (2)	1	mechanism of deposits, and geological process of formation.
5. Resource exploration (1	1	Physical and chemical exploration technologies for natural resources in terrestrial area.
): Terrestrial area		Representative methods are remote sensing, electric sounding, electromagnetic survey, and seismic
). Terrestriar area		prospecting.
6. Resource exploration (2	1	Introduction of marine natural resources such as methane hydrate, cobalt-rich crust, and
): Sea area	1	manganese nodule, and exploration technologies for the deposits in sea area.
7. Assessment of ore		Fundamentals of geostatistics, variography for spatial correlation structure, spatial modeling by
reserves and deposit	2	kriging, geostatistical simulation, integration of hard and soft data, and feasibility study.
characterization		kinging, geostatistical simulation, integration of hard and soft data, and reasionity study.
8. Resource development	1	Development and management technologies of energy resources related to coal, petroleum, and
o. Resource development	1	natural gas.
9. Engineering geology	1	Fundamentals of deep geological repository for high-level nuclear waste, CCS (carbon dioxide
9. Engineering geology	1	capture and storage), and underground storage of petroleum and gas.
10. Sustainability		Characteristics of natural energy related to geothermal, solar, wind, and tide, aand ssessment of
	1	natural energy resources. Co-existence of natural resource development with environment,
		low-carbon society, and problems for human sustainability.
Feedback	1	Based on evaluation of the reports, contents that are not well understood will be explained
	1	additionally using KLUSIS or by personal interview.

[Textbook] Printed materials on the class contents are distributed at each class.

[Textbook(supplemental)] References on each topic will be instructed in the classes.

[Prerequisite(s)] Elementary knowledge of engineering, mathematics, physics, and geology are required.

[Independent Study Outside of Class] Deepen the understanding by solving assignments.

[Web Sites]

[Additional Information] This course is opened every two years, and opened in 2017.

Urban Infrastructure Management

都市基盤マネジメント論

[Code] 10X311 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] C1-173 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] English

[Instructor] OHTSU Hiroyasu,

【Course Description】 This lecture aims to provide interdisciplinary knowledge associated with how urban infrastructure is comprehensively management, from viewpoints of not only economy but also "human security engineering". In detail, the contents of lectures consist of following topics: Urban Infrastructure Asset Management, Urban Disaster Risk Mitigation Management, Urban Transport/Logistics Management and Urban Food/Water Supply Management.

[Grading] Attendance(20), Report(80)

[Course Goals] Aquisition of interdisciplinary knowledge associated with how urban infrastructure is comprehensively management, from viewpoint of not only economy but also human security engineering.

[Course Topics]

Theme	Class number of times	Description
Guidance,		
Introduction of	1	Guidance & Introduction to Urban Infrastructure Asset Management
Urban Infrastructure	1	
Asset Management		
Urban Infrastructure		Urban Infrastructure Asset Management on Geotechnical structures, Bridge
Asset Management	5	and Pavement
Urban Disaster Risk		
Mitigation	2	Urban Disaster Risk Mitigation Management
Management		
Urban Food/Water	3	Urban Food/Water Supply Management
Supply Management	5	Urban Food/Water Supply Management
Urban		
Transport/Logistics	2	Urban Transport/Logistics Management
Management		
Report	1	Report
Feed back	1	Feed back

[Textbook]

【Textbook(supplemental)】Hand-out

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Global Survivability Studies

グローバル生存学

[Code] 10F113 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 5th

[Location] Yoshida, Higashi Ichijokan, Shishukan Hall [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] English [Instructor] Kaoru Takara, Junji Kiyono, Satoshi Fujii, Takahiro Sayama, Mika Shimizu

[Course Description] Modern global society is facing risks or social unrests that are caused by huge natural hazards and disasters, man-made disasters and accidents, regional environmental change/degradation including infectious diseases, and food security. Introducing such examples at global and regional scales, this subject lectures how to cope with them at national, local and community levels for making the society sustainable/survivable. Future countermeasures are also discussed under the uncertain circumstances such as climate change, population growth, energy and socio-economic issues.

[Grading] Attendance to lectures (40%) and Presentation and discussion (60%).

[Course Goals] The objectives of this class are to have basic knowledge about global issues threatening safety and security of the earth society such as catastrophic natural disasters, man-made disasters and accidents, regional environmental change (including infectious diseases) and food security, and to enhance student 's ability to express his/her own ideas and discuss with professors and students from other study areas. [Course Topics]

Theme	Class number of times	Description
Introduction of Global	1	
Survivability Studies	1	Introduction of Global Survivability Studies.
Earthquake disaster	1	
mitigation	1	Discuss on earthquake disaster mitigation focusing on lessons learnt from Tohoku EQ.
Mitigation of earthquake		
damage to historic	1	Discuss on the mitigation of earthquake damage to historic structures.
structures		
Why we need GSS?	1	Discuss on why we need Global Survivability Studies (GSS).
Global agendas for		
sustainable development	1	Discuss on global agendas for sustainable development and resilient societies.
and resilient societies		
Building national	1	Discuss on building national resilience based on Japanese experiences.
resilience in Japan	1	
Globalism as	1	Discuss on globalism as totalitarianism.
totalitarianism	1	
Public policy and systems		I acture and group work on public policy and systems approach for slokal shapped in disaster
approach for global	1	Lecture and group work on public policy and systems approach for global changes in disaster
changes in disaster risks		risks.
Disaster risk management		
and governance for global	1	Lecture and group work on disaster risk management and governance for global changes.
changes		
Water-related disaster risk	1	Discuss on water related disaster rick management: concept and recent every
management	1	Discuss on water-related disaster risk management: concept and recent experiences.
Water cycle and climate	1	Discuss on water availa and alimete aliange
change	1	Discuss on water cycle and climate change.
Presentation by students &	4	Presentation by students related to this lectures and discussions on the presented topics.
discussions	4	resentation by students related to this fectures and discussions on the presented topics.

【Textbook】 Nothing special.

【Textbook(supplemental)】 Nothing special.

[Prerequisite(s)] Nothing special.

[Independent Study Outside of Class] If handouts (teaching materials) are distributed (or downloaded from the website), students should read them prior to the class. They may be distributed at the classroom (or put on the website). Students can make use of them after the class for reviewing lectures and preparing presentation materials and discussion sessions which will be organized in the latter half of the semester. [Web Sites]

[Additional Information] This subject is compulsory for students enrolled in the Inter-Graduate School Program for Sustainable Development and Survivable Societies. Students other than ones in Graduate School of Engineering should submit a registration card for taking this class.

Emergency Management Systems 危機管理特論

[Code] 693291 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st

[Location] Faculty of Engineering Integrated Research Bldg. 213 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Haruo HAYASHI, Norio MAKI, Shingo SUZUKI,

[Course Description] Damage from disasters is defined by two factors: scale of hazard and social vulnerability. Two strategies exist to reduce damage from disasters?namely, crisis management as a post-event countermeasure and risk management as a pre-event measure. This course introduces students to a system for effective emergency management, consisting of response, recovery, mitigation, and preparedness.

[Grading] Every after lecture, please submit short report writing following things 1) Three points you could learn in this lecture, and reason 2) What you would like to explain more? Please send your short report to following address by following formats 1.address: disaster.reporti2@drs.dpri.kyoto-u.ac.jp 2.subject: ^r Emergency Management Report " date "" ID " " Name " 3.No attach file

[Course Goals] Learning about Techniques for Business Continuity Management consisted of Risk Assessment, Strategic Planning, Emergency Response, and Training.

[Course Topics]

Theme	Class number of times	Description
Business Continuity	3	What is emergency response, and business continuity management.
Management		
Risk Assessment	3	Techniques for Risk Identification, and Risk Assessment
Strategic Planning	3	Techniques for Strategic Planning and Evaluation
Emergency Response	3	Incident Command System, and Design of Emergency Operation Center
Training	3	Learning, drill, Exercises for Emergency Response

[Textbook] Haruo Hayashi et.al., Soshiki no Kikikannri Nyuumon, Maruzen, 2008// Kyodai, NTT Resilience Kennkyuu Group, Shinayakana Syakai no Souzou, Nikkei BP, 2009

[Textbook(supplemental)] Tom Demarco et.al, Waltzing With Bears: Managing Risk on Software Projects, Dorset House, 2003// Project Management Institute : A Guide to the Project Management Body of Knowledge 2000 Edition, Project Management Institute, Inc, 2000// R. Max Wideman : Risk Management - A guide to Managing Project Risk & Opportunities - , Project Management Institute, Inc, 2000// Memorial Conference in Kobe, 12 sai karano hisaisya gaku, NHK Press, 2005//

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Urban Transport Policy

都市交通政策フロントランナー講座

[Code] 10Z001 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] see the handbook for course registration

[Location] conference room, TPU karasuma office (see the handbook for course registration) [Credits] 1

[Restriction] see the handbook for course registration [Lecture Form(s)] Intensive Lecture [Language] Japanese

【Instructor】Ryoji Matsunaka, Tetsuharu Oba

[Course Description] This class will provide lectures on the new transport policy carried out in domestic and foreign cities and to understand the difference between the conventional transport policy and the new urban transport policy. Also, it will cover a process to realize the new urban transport policy.

[Grading] evaluation by attendance and class participation

[Course Goals] to understand the difference between the conventional transport policy and the new urban transport policy

[Course Topics]

Theme	Class number of times	Description
Outline	1	
Front runner of urban		
transport policy in	2	Reallocation of road space, Pedestrianisation
the world		
Front runner of urban		Downtown activation, Strategies of sustainable transport for our cities, Climate
transport policy in	1	change
Japan		change
Front runner of urban		
transport policy in	2	Eco model city, Transport demand management, Public transport network
Kyoto		
Discussion	2	
【Textbook】No textbo 【Textbook(supplement		
[Prerequisite(s)]		
【Independent Study Ou	utside of Cl	ass]

[Web Sites] http://www.upl.kyoto-u.ac.jp/index.html

Policy for Low-Carbon Society 低炭素都市圏政策論

[Code] 10Z002 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] see the handbook for course registration

[Location] conference room, TPU karasuma office (see the handbook for course registration) [Credits] 1

[Restriction] see the handbook for course registration [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor] Ryoji Matsunaka, Masashi Kawasaki

[Course Description] This class will provide lectures on the contents of policies and the methods to realize a low carbon society. Also, it will cover the knowledge and the technical skill to relate to urban activation, reduction of the environmental load, compact city planning, and so on.

[Grading] evaluation by attendance and class participation

[Course Goals] to understand the knowledge and the technical skill to relate to urban activation, reduction of the environmental load, compact city planning, and so on.

[Course Topics]

Theme	Class number of times	Description
Measures against	1	Plan for measures against global warming, Eco model city
global warming	-	
Urban policy		
management for	1	Eco model city, Guideline for low-carbon city construction
low-carbon society		
Landscape &		
environmental	1	Landscape design in public space, View structure
planning		
Urban policy for		
low-carbon society	1	Public transport, Pedestrianisation
and change of urban	1	rubic transport, redestrialisation
structure		
Roles and issues of		Transport and urban policy. Transport policy in EU. Doilways, Light Diel
urban transport	1	Transport and urban policy, Transport policy in EU, Railways, Light Rial
policy		Transit
Discussion	3	

[Textbook] No textbook

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] http://www.upl.kyoto-u.ac.jp/index.html

Urban Transport Management

都市交通政策マネジメント

[Code] 10Z003 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] see the handbook for course registration

[Location] conference room, TPU karasuma office (see the handbook for course registration) [Credits] 1

[Restriction] see the handbook for course registration [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor] Ryoji Matsunaka, Satoshi Fujii, Nobuhiro Uno

[Course Description] This class will provide lectures on characteristics and problems of transport modes such as car, public transport, and foot. Also, it will cover the technical skill to analyze present urban traffic problems quantitatively.

[Grading] evaluation by attendance and class participation

[Course Goals] to understand characteristics and problems of transport modes such as car, public transport, and foot.

[Course Topics]

Theme	Class number of times	Description	
Plan and practice of	2		
public transport	2	City activation and attractiveness, Public transport, Light rail transit, Bus	
Basic concept of		Mability management Activation of the mublic transment Downtown	
mobility	1	Mobility management, Activation of the public transport, Downtown	
management		activation	
Investigation,			
interpretation, and	2	Person trip survey, Transportation demand management, Cost-benefit analysis	
evaluation on urban			
traffic phenomenon			
Exercise and	2		
discussion	3		
Textbook] No textbo	ook		
Textbook(supplement	ntal) 🕽		

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] http://www.upl.kyoto-u.ac.jp/index.html

Engineering Seminar for Disaster Resilience in ASEAN countries

強靱な国づくりのためのエンジニアリングセミナー

[Code] 10F380 [Course Year] Master 1st [Term] Late August [Class day & Period] Late August

[Location] School of Engineering, Kasetsart University, Bangkok, Thailand [Credits] 2

[Restriction] Due to the capacity, students attending "Study Area of Approaches for Disaster Resilience" have priority.

[Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] Prof. Hiroyasu Ohtsu, Related lecturers in ASEAN collaborative universities,

(Course Description **)** The purpose of this course is to provide practical lessons in ASEAN countries associated with disaster risk mitigation such as early warning and evacuation program, and disaster recovery/restoration from viewpoints of problems-finding/problem-solving through short term intensive lecture and field work. By taking the applied practical programs of shared major classes under the instructions of teachers in charge, the students can improve the ability of resolving issues on practical projects. Topics taught in this seminar are earthquake, flood, landslide, land subsidence, and geo-risk engineering.

[Grading] 40% for course work assignments and reports, 60% for final exam.

[Course Goals] Course aims to foster international leaders who are able to solve and manage problems concerned about natural disaster, disaster mitigation, health and environmental issues, especially about case studies in ASEAN countries.

[Course Topics]

Theme	Class number of times	Description
Introduction:		
Engineering for	1	
Disaster Resilience		
Earthquake Disaster	2	
Landslide Disaster	2	
Geo-Risk	2	
Engineering	2	
Flood Disaster	2	
Land Subsidence	2	
Site Visit	5	
Evaluation of	1	
understanding	1	

[Textbook] Lecture notes provided by the instructors.

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] Consortium for International Human Resource Development for Disaster-Resilient Countries, Kyoto University http://www.drc.t.kyoto-u.ac.jp/rsdc/eng/

[Additional Information] Those who want to take this course have to apply for Study area of Approaches for Disaster Resilience. Refer the website above.

10F382

Disaster and Health Risk Management for Liveable City

安寧の都市のための災害及び健康リスクマネジメント

[Code] 10F382 [Course Year] Master Course [Term] 1st term [Class day & Period] Intensive course (2 weeks)
[Location] Meeting room at Research Bldg. No.5 [Credits] 2 [Restriction] 30 students, priority for DRC course students
[Lecture Form(s)] Relay Lecture [Language] English [Instructor] Kiyono, Koyama, Kikuchi, Mitani, Fujii, Kawasaki, Ando, Teo,
[Course Description] Various types of disasters constantly attack to Asian countries, and those countries sometimes are very
vulnerable to the natural disasters and health risk. The interdisciplinary approach of engineering and medical science is indispensable
to construct disaster-resilient countries. The 2011 Tohoku earthquake was one of the worst disasters in recent Japanese history.
However many lessons to mitigate and manage the disaster are learnt from the event. In order to solve the related issues, the course
provides selected topics about natural disaster, disaster-induced human casualty, emergency response, urban search and rescue,
emergency medical service, principle of behavior based on neuroscience, urban search and rescue, reconstruction and rehabilitation
policy, social impact of disaster, transportation management, logistics during earthquake disaster and so on.
[Grading] Course work assignments and reports

[Course Goals] Course aims to foster international leaders who are able to solve and manage problems concerned about natural disaster, disaster mitigation, health and environmental issues, logistics and amenity for constructing liveable city.

Course Topics			
Theme	Class number of times	Description	
Guidance and Group			
Work	2		
ORT	3		
Earthquake disaster and	1		
human casualty	1		
Earthquake protection			
and emergency	1		
responses			
Human brain function	1		
and behavior	1		
Disaster medicine and	1		
epidemiology	1		
Resilient society	1		
Transition of the design			
for amenity in the	1		
river-front			
Concern that elderly			
people in rural area have	1		
over health and mobility			
Differences in logistics			
and humanitarian	1		
logistics			
Unique challenges of	1		
humanitarian logistics	1		
Advancement on	1		
humanitarian logistics	1		
Achievement evaluation	1		

[Textbook] Textbook for the course is provided by the instructor on the first day.

【Textbook(supplemental)】 Some literatures would be introduced by professors.

[Prerequisite(s)] No special knowledge and techniques are necessary.

【Independent Study Outside of Class】

[Web Sites] Consortium for International Human Resource Development for Disaster-Resilient Countrie, Kyoto University http://www.drc.t.kyoto-u.ac.jp/

[Additional Information] Contact person: Prof.Kiyono <kiyono@quake.kuciv.kyoto-u.ac.jp

Project Management in Engineering

エンジニアリングプロジェクトマネジメント

[Code] 10i049 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 4th [Location] A2-308 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto, Ashida

Assoc.Prof. Lintuluoto

[Course Description] This course provides a basic knowledge required for the project management in various engineering fields such as process design, plant design, construction, and R&D projects. Also, visiting lecturers from industry and public works provide management insights of actual engineering projects. [Grading] Evaluated by assignments (project report exercise) and class contribution

[Course Goals] This course will help students gain a fundamental knowledge of what project management in engineering is. Throughout the course, students will learn various tools applied in project management. Students will also understand the importance of costs and money, risks, leadership, and environmental assessment in managing engineering projects. This course is followed with the course "Seminar on Project Management in Engineering." in the second semester. [Course Topics]

Theme	Class number of times	Description
		4/14 (Ashida)
Guidance	1	Course guidance
Introduction to project		4/21 (Takatori)
management & Project phases	1	Introduction to project management
		Project phases
		4/28 (Lintuluoto)
Tools for project management,	1	Tools
cost, and cash flows I		Work breakdown structure
		Gantt charts
Project scheduling I	1	5/12 (Ashida)
		Project scheduling I
Project scheduling II	1	5/19 (Ashida)
		Project scheduling II
Tools for project management,	1	5/26 (Lintuluoto)
cost, and cash flows II	1	Cost
Tools for project management,	1	6/2 (Lintuluoto)
cost, and cash flows III	1	Cash flow
	1	6/9
TBA		To be announced
T 1 1' T	1	6/16 (Tanaka)
Leadership I		Leadership I
	1	6/23 (Tanaka)
Leadership II		Leadership II
		6/30 (Matsumoto)
Risk I	1	Risk I
		7/7 (Matsumoto)
Risk II	1	Risk II
Environmental Impact		7/14 (Mizuno)
Assessment I	1	Environmental Impact Assessment I
Environmental Impact	1	7/21 (Mizuno)
Assessment II		Environmental Impact Assessment II
Special lecture		-
Project management ~Tender		7/28 @ A2-306 (Cluster A, Katsura Campus)
process of Panama Canal	1	Lecturer: Taizo SHIMOMURA, Dr. (TAISEI CORPORATION)
expansion project~		

【Textbook】 Course materials will be provided.

[Textbook(supplemental)] 1. Lock, Dennis. Project Management. 10th edition. Gower Publishing Ltd.

2 . Cleland, David L., and Lewis R. Ireland. Project Management. 5th edition. McGraw-Hill Professional

[Prerequisite(s)] No pre-requisite

【Independent Study Outside of Class】

 $\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\right]}\xspace{\,\operatorname{The}}\xspace{\,\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{$

^{3.} Roger Miller and Donald R. Lessard. The strategic management of large engineering projects, Shaping Institutions, Risks, and Governance, The MIT Press

10i050

Exercise on Project Management in Engineering

エンジニアリングプロジェクトマネジメント演習

[Code] 10i050 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] B-Cluster 2F Seminar Room [Credits] 1 [Restriction] Student number will be limited.

[Lecture Form(s)] Seminar [Language] English

[Instructor] GL center: J.Assoc.Prof. Mizuno, Tanaka, Matumoto, Ashida, Maeda Assoc.Prof. Lintuluoto

(Course Description **)** In this course, students will apply the engineering know-how and the skills of management, and group leadership which they learned in the course of Project Management in Engineering to build and carry out a virtual inter-engineering project. This course provides a forum where students ' team-plan based on ideas and theories, decision making, and leadership should produce realistic engineering project outcomes. The course consists of intensive group work, presentations, and a few intermediate discussions. A written report will be required.

[Grading] Report, class activity, presentation

[Course Goals] This course prepares engineering students to work with other engineers within a large international engineering project. In particular this course will focus on leadership and management of projects along with applied engineering skills where the students learn various compromises, co-operation, responsibility, and ethics.

Theme	Class number of times	Description	
	_	10/6	
California		Introduction to Exercise on Project Management in Engineering	
Guidance	1	Lecture on tools for the Project management in engineering	
		Practice	
Teamwork	7	Each project team may freely schedule the group works within given time	
		frame. The course instructors are available if any need is required.	
		Some lectures will be provided, such as Leadership structuring, Risk	
Lecture & Teamwork	2	Management, and Environmental Impact Assessment, depending on projects	
		you propose.	
Presentation	1	Each project team will have a presentation based on its proposed project.	

[Course Topics]

[Textbook] Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] Fundamental skills about group leading and communication, scientific presentation.

【Independent Study Outside of Class】

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] The number of students may be restricted. Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department.

Environmental Risk Analysis

環境リスク学

[Code] 10F439 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th
[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English
[Instructor] Yoneda, Takano, Matsuda, Shimada, Matsui,

[Course Description] Paying attention to the environment of children in particular, students themselves study, make presentation, and debate about the environmental risk. Students learn the backgound, the actual situation, and the theory for quantitative risk analysis through practice of investigation and discusion by themselves.

[Grading] Grading based on the participation and performance in presentation and discussion.

[Course Goals] To understand or master the necessity of environmental risk analysis, its practical exampls, framework for solving problems concerning to risk evaluation, technical and basic knowledge for environmental risk analysis, and the way of thinking for risk analysis

[Course Topics]

Theme	Class number of times	Description	
Introduction			
Framework of risk	2	Introduction of lecture and grading. Framework of risk analysis for children of	
analysis		WHO.	
Children and health	1		
risk	1	1) Why children 2) Children are not little adults	
Children and	1	2) The application and incompared and health history (1) Clobel shares and shillow	
environmental change	1	3) The paediatric environmental and health history 4) Global change and children	
Air pollution	1	5) Outdoor air pollution 6) Indoor air pollution	
Lead and pesticide	1	7) Pesticides 8) Lead	
Heavy metal	1	9) Mercury 10) Other heavy metals	
Various risk	1	11) Noise 12) Water 13) Food safety	
Chemicals	1	14) Children and chemicals 15) Persistent Organic Pollutants	
Tobacco and natural	1	16) Second-hand tobacco smoke 17) Mycotoxins, plants, fungi and derivates	
toxin	1		
Occupational risk and	1	18) Injuries 19) Ionizing and non-ionizing radiations 20) Occupational risks	
radiation	1	18) Injuries 19) folizing and hon-folizing radiations 20) Occupational fisks	
Respiratory diseases	1	21) Deprimetory discours 22) Childhood	
and cancer	1	21) Respiratory diseases 22) Childhood cancer	
Innume disorders and	1		
neural system	1	23) Immune disorders 24) Neurobehavioral and neurodevelopmental disorders	
Endocrine system and			
environmental	1	25) Endocrine disorders 26) Bio-monitoring and environmental monitoring	
monitoring			
D evelopmental	1		
toxicity and indicators	1	27) Early developmental and environmental origins of disease 28) Indicators	

【Textbook】 Necessary files are supplied.

[Textbook(supplemental)] To be introduced if necessary.

[Prerequisite(s)] Not necessary in particular.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] The contents may be changed according to the progress of lecture.

10A632

Urban Metabolism Engineering 都市代謝工学

[Code] 10A632 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 3rd

[Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] English / Japanese [Instructor] Masaki Takaoka, Gakuji Kurata, Kazuyuki Oshita,

[Course Description] Much energy and resources are consumed to maintain various activities in urban city. As the result, various environmental loads such as exhaust gas, wastewater and waste generate and should be reduced to levels natural environment can accept .To establish sustainable urban metabolism, concept, elements, control, optimization and management of urban metabolism are explained.

[Grading] Small tests and reports are evaluated.

[Course Goals] To understand technological measures by learning about current trend and issue of urban metabolism and related engineering principles.

[Course Topics]

Theme	Class number of times	Description	
Introduction	1	Concept of urban metabolism and its system are explained	
Elements of urban metabolic system	8	Planning and selection of urban metabolic system, Transportation & collection, Engineering principles on Recycling, Thermal recovery, Engineering principles on flue gas treatment and Landfill management are explained.	
Control, optimization and management of urban metabolic system and environmental equipment	3	Fundamentals of control theory, optimization, system identification and simulation of urban metabolic system and environmental equipment	
Design of sewage treatment system in urban area	2	Properties and chemical compositions of sewage and sludge. Introduction and developing trend of sewage treatment system. Elemental and heat balance analysis of sedimentation, aeration tank, anaerobic fermentation and incineration.	
Feedback and summary	1	Feedback of small tests and summary	

[Textbook] Recent paper and/or books will be used.

[Textbook(supplemental)]

[Prerequisite(s)] Environmental plant engineering

【Independent Study Outside of Class】

[Web Sites]

Systems Approach on Sound Material Cycles Society 循環型社会システム論

[Code] 10F454 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 3rd [Location] C1-192
[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese/English
[Instructor] Shinichi Sakai, Yasuhiro Hirai,

[Course Description] It has become a major political/ social issue to establish a Sound Material-Cycle Society in order to save the earth resources and energy and to preserve environmental conservation. This course mainly covers the following topics: 1) History, current status, and future prospect of waste issues and establishment of a sound material-cycles society. 2) Basic concepts and current conditions/ challenges of the following items: The Basic Law for Establishing the Material Cycles Society and the Basic Plan for accomplishing it; Containers and Packaging Recycling Law; Home Appliance Recycling Law; End-of-Life Vehicle Recycling Law and others. 3) Basic concept and application of material flow analysis and life cycle assessment; these tools are important to grasp the whole flow of each recycling, resource use, product consumption, recycle and disposal of waste electrical and electronic equipment, for which it is required to take Clean Cycle & Control concepts in relation to chemical substances. Along with above topics, source origin, behavior, and decomposition of persistent organic pollutants, which should be inevitably linked to the realization of a Sound Material-Cycle Society, will also be discussed in the class.

[Grading] Evaluation will be done based on the test scores and learning attitude in class.

[Course Goals] The goal of this class is to help students understand the systems and technologies for establishing a Sound Material Cycles Society; students learn how to think about material flow analysis and life cycle assessment in order to develop deep understanding of the whole system of material flow (i.e., resource use, product consumption, cycles and disposal of waste). [Course Tonics]

Theme	Class number of times	Description
The Basic Law for Establishing the Material Cycles Society and the Basic Plan for Material Cycles	1	Lean the frame work and three indices of this basic plan in detail, and examine recent globally developed " 3R Initiative " activities and status of material cycles in Asian countries.
Development of Each Recycling System	3	Learn the following items separately designated as effective measures under The Basic Law for Establishing the Material Cycles Society: 1) Containers and packaging 2) Home Appliance 3) End-of-Life Vehicle 4) Construction Material 5) Food Material
Each Recycling System and Clean, Cycles & Control Concepts	3	Examine application of the following strategic concepts for waste electrical and electronic equipment, end-of-life vehicles, and battery waste. 1) Clean: Avoid the use of hazardous waste and chemical substances. 2) Cycle: Apply cycle concept when use effects are expected but no alternatives are available.
Basic concept and application of material flow and life cycle analyses	5	Lean about basic concept of Material Flow Analysis (MFA) and Life Cycle Assessment (LCA). Examine food waste recycling using these analyses as a case study.
Environmental Transport Model and Behavior of Persistent Organic Pollutants (POPs)	2	Learn basic concept and application of the model. Examine case studies of global mobility of POPs and behavior of PCB on regional and global scales.
Confirmation of Attainment	1	Confirm students ' levels of understanding on the course topics, and make sure of the points of MFA, LCA, and systems and techniques for establishing a sound material-cycle society.

[Textbook] Not specified. Materials and references will be distributed when needed.

[Textbook(supplemental)] Introduced in class when necessary.

[Prerequisite(s)] Solid Waste Management

【Independent Study Outside of Class】

[Web Sites]

Water Quality Engineering 水環境工学

[Code] 10F441 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd

[Location]C1-171 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Hiroaki TANAKA,Fumitake NISHIMURA,Naoyuki YAMASHITA,Makoto YASOJIMA,Sei-ichiro OKAMOTO

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	5	
	5	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Water Sanitary Engineering

水質衛生工学

[Code] 10F234 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] English/Japanese [Instructor] Sadahiko Itoh, Koji Kosaka, Yasuhiro Asada

[Course Description] The ultimate goal of this course is to understand Sanitary Engineering quantitatively. Students will learn methods to quantify chemical and microbial risk in drinking water and realize concept and methods of risk management and control.

[Grading] Evaluated by assignments.

[Course Goals] To quantify chemical and microbial risk in drinking water and to realize methodologies of risk management and control.

[Course Topics]

Theme	Class number of times	Description	
Environmental risk	1	Introduction and goal of the class. Concept of Sanitation. Environmental risk	
and quantification	1	and quantification. Safety of drinking water and acceptable risk level.	
Quantitative		Coexistence and competition between human and microbes. Quantitative	
microbial risk	5	microbial risk assessment (QMRA). Comparison of the risk assessment and	
assessment and	5	management methods between chemicals and microbes. Disability adjusted	
management		life years (DALYs).	
Risk assessment and control of hazardous chemicals	3	Risk assessment of hazardous chemicals. Drinking water quality standards. Derivation of drinking water quality standards. The benchmark dose method.	
Perspectives of water treatment technology	5	Development of advanced water treatment processes. Water supply technology and its prospects. Water reuse and health risk. Access to safe drinking water in developing countries and global burden of disease.	
Feedback and summary	1	Feedback of assignments and summary.	

【Textbook】 Class handouts

【Textbook(supplemental)】 Itoh, S., Echigo, S.: Disinfection By-products in Water, GIHOUDOU SHUPPAN Co., Ltd., 2008 (in Japanese).

[Prerequisite(s)] General understanding of water quality and water treatment process

【Independent Study Outside of Class】

[Web Sites] Data for assignments will be at http://www.urban.env.kyoto-u.ac.jp

10F461

Nuclear Environmental Engineering, Adv. 原子力環境工学

[Code] 10F461 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd [Location] C1-192 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] Japanese [Instructor] Yoko Fujikawa, Satoshi Fukutani, Maiko Ikegami [Course Description] Various wastes are generated from the use of nuclear energy, one of the key technologies to overcome the global warming, and the associated industrial activity. This course is inended to understand the type and origin of radioactive wastes, as well as the management, treatment, and final disposal of these wastes, from the viewpoint of environmental engineering.

[Grading] Attendance to the lecture plus report

[Course Goals] By providing the students with the knowledge on various radioactive wastes generated by the use on neclear energy as well as the radiological risk of such wastes, the course will enable the students to consider the future of nuclear industries based on their own judgement. [Course Topics]

Theme	Class number of times	Description	
Course Introduction	1	Course Introduction	
Nuclear disaster action program	1	uclear disaster action program	
Nuclear reactors	1	Nuclear reactors	
Treatment of liquid radioactive waste	1	Treatment of liquid radioactive waste	
Treatment of gaseous and solid radioactive waste	1	Treatment of gaseous and solid radioactive waste	
Legislation of radioactive wastes	1	Legislation of radioactive wastes	
Decomissining and clearance	1	ecomissining and clearance	
Radiological risk	1	The risk of radiation exposure, history of radiation dose limit set by international organizations, and dose limit under different situations are discussed	
Fukushima Daiichi Nuclear Power Plant (F1) accident and nuclear disaster prevention	1	Discuss the relation between the events in F1 and the radiation dose in the environment as well as pollution of environment. The evacuation activity conducted in Fukushima and the related lessons are summarized.	
Problems of designated waste	1	In the aftermath of the F1 accident, municipal solid waste contaminated with radioactive cesium has b produced in 12 Prefectures, some of these wastes were classified as designated wastes (DSW). The concept of DSW is compared with that of conventional radioactive wastes.	
Geological disposal of high level radioactive wastes (HLW) and the safety assessment	1	Inventory, the method of disposal (critical path and nuclides), philosophy of radiological protection, etc are discussed.	
Behavior of radionuclides in the environment and mathematical modeling of nuclide migration	1	Behavior of radionuclides in the geosphere has governing effect on the safety of geological disposal of HLW. The behavior based on the chemical characteristics of each nuclides and mathematical modeling of their behavior are discussed.	
Behavior and qualitative/ quantitative analysis of radionuclides in the environment	1	Behavior and qualitative/ quantitative analysis of radioactive Cs, Co, Sr, I, Se, U, Pu and Ra in the environment, and events of radioactive pollution of the environment in the past, are introduced.	
The risk of radiation and the society	1	After the F1 accident, the risk of radiation has drawn intense attention from citizens. The risk communication methodology to facilitate the understanding of radiation is discussed.	
Discussion with /between students	1	Discussion on issues such as lifestyle in the contaminated environment (under existing exposure situation), whether residents should return to the contaminated areas, and how to deal with siting problems of final disposal of HLW, etc	

【Textbook】 Related papers etc. will be distributed in each lecture.

[Textbook(supplemental)] Related literature will be notified in each lecture.

[Prerequisite(s)] Basic knowledge on health physics, chemistry and earth science.

[Independent Study Outside of Class] NOt specified.

[Web Sites] None

Atmospheric and Global Environmental Engineering, Adv. 大気·地球環境工学特論

[Code] 10F446 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd [Location] C1-172 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese/English [Instructor] Gakuji KURATA,

[Course Description] The contents of the lecture are as follows. (1) History of Global Warming problem, Radiative forcing, Green house gas emission, Carbon cycle, Mechanism of Climate Change, Mitigation measures, Social and Natural impact of Climate change (2) Mechanism of formation of Photochemical oxidant and Acid rain, Global scale transportation of atmospheric pollutants, Deposition and its impact of air pollutants, control measure of air pollution. Also, students make presentation and discussion on the related papers.

[Grading] Points are allocated for the quiz at every lectures, the presentation and discussion, report.

[Course Goals]

[Course Topics]

Theme	Class number of times		Description
Guidance, IPCC,			
Observation of a	1	(Kurata)	
climate change			
Radiative forcing	1	(Kurata)	
Greenhouse gas	1	(Kurata)	
Carbon cycle and	1	(Vurata)	
response of climate	1	(Kurata)	
Impact of Climate	1	(Varmata)	
Change	1	(Kurata)	
Energy system and			
mitigation of climate	1	(Kurata)	
change			
Cross-border			
transportation and the	1	(Kurata)	
international measure	1	(Kurata)	
against air pollution			
Urban Air pollution	1	(Kurata)	
Acid Deposition and its	1	(Kurata)	
impact	1	(Kurata)	
Simulation of advection	1	(Kurata)	
and diffusion	1	(ixuiaia)	
Simulation of	1	(Kurata)	
Atmospheric Chemistry	1	(ixuiata)	
Indoor air pollution and	1	(Kurata)	
health impact	1	(ixuiata)	
Practice	1	(Kurata)	
Achievement test	1		
	1		

[Textbook] Handout
[Textbook(supplemental)]
[Prerequisite(s)]
[Independent Study Outside of Class]
[Web Sites]
[Additional Information]

10F400

Seminar on Urban and Environmental Engineering A

都市環境工学セミナーA

[Code] 10F400 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Urban and Environmental Engineering B

都市環境工学セミナー B

[Code] 10F402 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10U401

Advanced Seminar on Urban and Environmental Engineering A

都市環境工学特別セミナ-A

[Code] 10U401 [Course Year] Doctor Course [Term] 1st+2nd term

[Class day & Period] First: Thu 3rd and 4th, Second: Wed 1st and 2nd [Location] C1-226 [Credits] 4

[Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	9	
	1	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar on Urban and Environmental Engineering B

都市環境工学特別セミナー B

[Code] 10U403 [Course Year] Doctor Course [Term] 1st+2nd term

[Class day & Period] First: Fri 3rd and 4th, Second Thu 3rd and 4th [Location] C1-226 [Credits] 4 [Restriction]

 $\label{eq:lecture Form(s)} \ensuremath{\mathsf{Seminar}}\xspace \ensuremath{\mathsf{Seminar}}\xspace \ensuremath{\mathsf{Instructor}}\xspace \ensuremath{\mathsf{Ins$

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	9	
	1	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10A643

Environmental Microbiology, Adv. 環境微生物学特論

[Code] 10A643 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 1st
[Location]C1-172 [Credits]2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese
[Instructor] Hiroshi TSUNO, Hiroaki TANAKA, Fumitake NISHIMURA, Naoyuki YAMASHITA,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	2	
	2	
	1	
	1	
	1	
	1	
	3	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Environmental Health 環境衛生学特論

[Code] 10A626 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 3rd

[Location]C1-172 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Seminar [Language]Japanese

【Instructor】Hirohisa Takano,Kayo Ueda,

[Course Description] Environmental factors and genetic factors are responsible for our health and diseases. This seminar has the lecture on the relationships between environmental factors and our health. Also, Students make presentation and discussion on the previous and recent environmental problems, with special emphasis on their relation with health concerns.

[Grading] Points are allocated for the activities on the presentation and discussion.

[Course Goals] Students learn about the fundamentals of environmental health and make use of the knowledge for the development of related areas.

[Course Topics]

Theme	Class number of times	Description
Environment and	2	I acture on the relationships between environmental factors and our bealth
health	2	Lecture on the relationships between environmental factors and our health
Seminar on the		
previous and recent	12	Presentation and discussion on the previous and recent environmental
environmental	13	problems, with special emphasis on their relation with health concerns
problems		

[Textbook] on demand

【Textbook(supplemental)】 on demand

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H424

Environmental-friendly Technology for Sound Material Cycle 環境資源循環技術

[Code] 10H424 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 3rd

[Location]C1-192 [Credits] [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor]

【Course Description】 Global warming, ecosystem crisis, and depletion of natural resources are of great concern today. To solve these problems, we have to build the sustainable society where low carbon dioxide emission, low environmental burdens, and the reduction of wastes by recycling are realized. It is possible to utilize municipal wastes, wastewaters, and unused biomass as resources instead of the natural resources used at present. Recycling-oriented technologies that enable sustainable utilization of those wastes and the concept to develop those technologies are introduced.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	3	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Geohydro Environment Engineering. Adv. 地圈環境工学特論

[Code] 10A622 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 1st

[Location] C1-173 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

【Instructor】,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number of times	Description
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10X321

Lecture on Environmental Management Leader 環境リスク管理リーダー論

[Code] 10X321 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 5th [Location] C1-171 [Credits] 2 [Restriction]

[Lecture Form(s)] Relay Lecture [Language] English [Instructor] TANAKA Hiroaki,SHIMIZU Yoshihisa,FUJII Shigeo,

[Course Description] In this class, we'll give lectures on theory of risk analysis, risk identification, risk assessment, risk evaluation, and risk reduction and avoidance in the field of urban human security including human health risk and ecological risk. The main purpose of this lecture is to provide students basic viewpoint and knowledge required for environmental leaders who can practically solve environmental issues occurring in developing countries, showing several international environmental projects as practical case works.

[Grading] Participation, Oral and Poster Presentation, and Report

[Course Goals] The main purpose of this lecture is to provide students with the basic viewpoint and knowledge required for environmental leaders able to practically solve environmental issues occurring in developing countries, focusing on several international environmental projects as practical case works.

[Course Topics]

In this introduction Introduction In this introductory lecture, the current situation and problems of the environment in Asian developing countries are explained, and basic ideas for their improvement measures are given together with fundamental terminologies. Energy and Environment Interminologies. Interminolo	Theme	Class number of	Description
Introduction are explained, and basic ideas for their improvement measures are given together with fundamental terminologies. Energy and Environment i View point and commineent i to rural environmental issues i Disaster Risk Management a and Grass-roots International i Cooperation i Constraintion i Constraintion i Mater, Sanitation and Solid i Water, Sanitation and Solid i Presentations and Discussions 2 Presentation and Solid Solid i Solid Waste Management for 1 Solid Waste Management Amagement i Solid Waste Management Amagement Amagement i Solid Waste Management Amagement		times	
ierminologies. Energy and Environment 1 View point and comment 1 to rural environmental issues 1 Disaster Risk Management 1 and Grass-roots International 1 Cooperation 1 Environmental Risk 1 Assessment and Risk 1 Commication 1 Water, Sanitation and Solid View Sanitation and Solid Waste Management for 1 Presentations and Discussions 2 Aparis' Lessens on Economy 1 Appendix Sustainability in 1 Solid Waste Management 1 Solid Waste Management 1 Solid Waste Management 1 Solid Waste Management 1 Water Supply and Several 1 Socioriy 1 Binerodon River Water 1 Management and the Basin 1 Socioriy 1 Binerodon River Water 1 Management and the Basin 1 Goverance			
Energy and Environment 1 View point and commitment 1 to rural environmental issues 1 Sisster Risk Management 1 and Grass-roots International 1 Cooperation 1 Environmental Risk 1 Assessment and Risk 1 Communication 1 Water, Sanitation and Solid Waste Management for Developing Countries 1 Presentiations and Discussions 2 Japan's Lessens on Economy 2 A Development 1 Solid Waste Management 1 Solid Waste Management 1 Solid Waste Management 1 Secority 1 Water Supply and Human 2 Security 1 Impending Issues in Lake 1 Biva-Yodo River Water 1 Management and the Basin 1 Governance 1 Environment & Sanitary 1 Engineering Research 1 International Session 1 Environment & Sanitary 1 </td <td>Introduction</td> <td>1</td> <td></td>	Introduction	1	
Ver point ad commitment to rural environmental issues 1 Disaster Risk Management and Grass-roots International 1 Cooperation 1 Environmental Risk 1 Assessment and Risk 1 Communication 1 Water, Sanitation and Solid 1 Water Sanitation and Solid 1 Water Sanitation and Solid 1 Water Sanitation and Solid Waste Management 1 Solid Waste Management 1 Solid Waste Management 1 Solid Waste Management 1 Sector 1 Water Supply and Severage 1 Sector 1 Management and the Basin 1 Governance 1 Environment & Sanitary 1 Engineering Research 1 International Session 1 Poster Presentation in 1 Environment & Sanitary 1			terminologies.
to raral environmental issues 1 Disaster Risk Management and Gras-roots International 1 Cooperation 1 Environmental Risk 1 Assessment and Risk 1 Communication 4 Water, Sanitation and Solid Waste Management for 1 Developing Countries 2 Presentations and Discussions 2 Ingents Lessens on Economy 4 & Development 1 Solid Waste Management 1 Ensuring Sustainability in 1 Water Supply and Sewerage 1 Sector 1 Water Supply and Human 1 Sector 1 Mater Supply and Human 1 Sector 1 Mater Supply and Human 1 Sector 1 Freenation In Lessens I 1 Biwa-Yodo River Water 1 Management and the Basin 6 Governance 1 Environment & Sanitary 1 Engineering Research 1 Poster Presentation in Environment & Sanitary 1 Engineering Research 1 Environment & Sanitary 1 Environment & S		1	
Disaster Risk Management 1 and Grass-roots International 1 Cooperation	-	1	
and Grass-roots International 1 Cooperation Environmental Risk Assessment and Risk Communication Water, Sanitation and Solid Water, Sanitation I Developing Countries Presentations and Discussions 2 Apan's Lessens on Economy Above the Sanitaty Engineering Research I I I I I I I I I I I I I	to rural environmental issues		
Cooperation Environmental Risk Assessment and Risk Assessment and Risk Vater, Sanitation and Solid Waste Management for Beveloping Countries Presentations and Discussions 2 Appan's Lessens on Economy & Development Solid Waste Management 0 Vater Supply and Severage 1 Solid Waste Management Solid Waste Management 1 Solid Waste Management Solid Waste Management 1 Ensuring Sustainability in Water Supply and Severage 1 Sector 1 Water Supply and Human 1 Security 1 Impending Issues in Lake 1 Biva-Yodo River Water 1 Management and the Basin 1 Governance 1 Environment & Sanitary 1 Engineering Research 1 International Session 1 Environment & Sanitary 1 Environment & Sanitary 1 <tr< td=""><td>Disaster Risk Management</td><td></td><td></td></tr<>	Disaster Risk Management		
Environmental Risk 1 Assessment and Risk 1 Communication 1 Water, Sanitation and Solid 1 Waste Management for 1 Developing Countries 1 Presentations and Discussions 2 Japan's Lessens on Economy 1 & Development 1 Solid Waste Management 1 Ensuring Sustainability in Water Supply and Sewerage Vater Supply and Sewerage 1 Sector 1 Water Supply and Human 1 Security 1 Impending Issues in Lake 1 Biwa-Yodo River Water 1 Management and the Basin 1 Governance 1 Environment & Sanitary 1 Engineering Research 1 International Session 1 Poster Presentation in 1 Environment & Sanitary 1 Engineering Research 1 International Session 1 Poster Presentation in 1 Environment & Sanitary 1		1	
Assessment and Risk 1 Communication I Water, Sanitation and Solid I Waste Management for 1 Developing Countries I Presentations and Discussions 2 Japan's Lessens on Economy 1 & Development 1 Solid Waste Management 1 Ensuring Sustainability in I Water Supply and Severage 1 Sector I Water Supply and Human I Security 1 Impending Issues in Lake I Biva-Yodo River Water 1 Management and the Basin 1 Governance I Environment & Sanitary I Engineering Research 1 International Session I Poster Presentation in I Environment & Sanitary I <t< td=""><td>Cooperation</td><td></td><td></td></t<>	Cooperation		
Communication Water, Sanitation and Solid Waste Management for 1 Developing Countries Presentations and Discussions 2 Japan's Lessens on Economy 1 & Development 1 Solid Waste Management 1 Ensuring Sustainability in 1 Water Supply and Sewerage 1 Sector 1 Water Supply and Human 1 Sector 1 Biwa-Yood River Water 1 Management and the Basin 1 Governance 1 Environment & Sanitary 1 Engineering Research 1 International Session 1 Poster Presentation in 1 Environment & Sanitary 1	Environmental Risk		
Water, Sanitation and Solid Waste Management for 1 Developing Countries 1 Presentations and Discussions 2 Japan's Lessens on Economy 1 & Development 1 Solid Waste Management 1 Ensuring Sustainability in 1 Water Supply and Sewerage 1 Sector 1 Water Supply and Human 1 Security 1 Impending Issues in Lake 1 Biwa-Yodo River Water 1 Management and the Basin 1 Governance 1 Environment & Sanitary 1 International Session 1 Poster Presentation in 1 Environment & Sanitary 1	Assessment and Risk	1	
Waste Management for 1 Developing Countries 2 Iapan's Lessens on Economy 1 & Development 1 Solid Waste Management 1 Ensuring Sustainability in 1 Water Supply and Sewerage 1 Sector 2 Water Supply and Human 2 Security 1 Impending Issues in Lake 1 Biwa-Yodo River Water 1 Management and the Basin 1 Governance 1 Environment & Sanitary 1 Engineering Research 1 Poster Presentation in 1 Environment & Sanitary 1	Communication		
Developing Countries 2 Presentations and Discussions 2 Japan's Lessens on Economy 1 & Development 1 Solid Waste Management 1 Ensuring Sustainability in 1 Water Supply and Sewerage 1 Sector 1 Water Supply and Human 1 Security 1 Impending Issues in Lake 1 Biwa-Yodo River Water 1 Amagement and the Basin 1 Governance 1 Environment & Sanitary 1 Engineering Research 1 Poster Presentation in 1 Environment & Sanitary 1 Engineering Research 1 Environment & Sanitary 1	Water, Sanitation and Solid		
Presentations and Discussions 2 Japan's Lessens on Economy 1 & Development 1 Solid Waste Management 1 Ensuring Sustainability in Water Supply and Sewerage Water Supply and Sewerage 1 Sector	Waste Management for	1	
Japan's Lessens on Economy 1 & Development 1 Solid Waste Management 1 Ensuring Sustainability in Water Supply and Sewerage 1 Sector 1 Water Supply and Human 1 Security 1 Impending Issues in Lake 1 Biwa-Yodo River Water 1 Management and the Basin 1 Governance 1 Environment & Sanitary 1 International Session 1 Poster Presentation in 1 Environment & Sanitary 1 Engineering Research 1	Developing Countries		
& Development 1 Solid Waste Management 1 Ensuring Sustainability in 1 Water Supply and Sewerage 1 Sector 1 Water Supply and Human 1 Security 1 Impending Issues in Lake 1 Biwa-Yodo River Water 1 Management and the Basin 1 Governance 1 Environment & Sanitary 1 International Session 1 Poster Presentation in 1 Environment & Sanitary 1	Presentations and Discussions	2	
& Development Solid Waste Management 1 Ensuring Sustainability in Water Supply and Sewerage 1 Sector 1 Water Supply and Human 1 Security 1 Impending Issues in Lake 1 Biwa-Yodo River Water 1 Management and the Basin 1 Governance 1 Environment & Sanitary 1 Engineering Research 1 International Session 1 Poster Presentation in 1 Environment & Sanitary 1	Japan's Lessens on Economy	1	
Ensuring Sustainability in Water Supply and Sewerage 1 Sector Water Supply and Human Security 1 Impending Issues in Lake Biwa-Yodo River Water Management and the Basin Governance Environment & Sanitary Engineering Research 1 International Session Poster Presentation in Environment & Sanitary Engineering Research 1	& Development	1	
Water Supply and Sewerage 1 Sector 1 Water Supply and Human 1 Security 1 Impending Issues in Lake 1 Biwa-Yodo River Water 1 Management and the Basin 1 Governance 1 Environment & Sanitary 1 Engineering Research 1 International Session 1 Poster Presentation in 1 Environment & Sanitary 1	Solid Waste Management	1	
Sector Water Supply and Human Security Impending Issues in Lake Biwa-Yodo River Water Management and the Basin Governance Environment & Sanitary Engineering Research Poster Presentation in Environment & Sanitary Environment & Sanitary Environment & Sanitary Poster Presentation in Environment & Sanitary Engineering Research 1	Ensuring Sustainability in		
Water Supply and Human 1 Security 1 Impending Issues in Lake 1 Biwa-Yodo River Water 1 Management and the Basin 1 Governance 1 Environment & Sanitary 1 International Session 1 Poster Presentation in 1 Environment & Sanitary 1 Environment & Sanitary 1	Water Supply and Sewerage	1	
Security 1 Impending Issues in Lake 1 Biwa-Yodo River Water 1 Management and the Basin 1 Governance 1 Environment & Sanitary 1 Engineering Research 1 International Session 1 Poster Presentation in 1 Environment & Sanitary 1 Environment & Sanitary 1 Environment & Sanitary 1	Sector		
Security Impending Issues in Lake Biwa-Yodo River Water Management and the Basin Governance Environment & Sanitary Engineering Research International Session Poster Presentation in Environment & Sanitary Engineering Research International Session	Water Supply and Human	1	
Biwa-Yodo River Water 1 Management and the Basin 6 Governance 1 Environment & Sanitary 1 Engineering Research 1 International Session 1 Poster Presentation in 1 Environment & Sanitary 1 Engineering Research 1	Security	1	
Management and the Basin 1 Governance 1 Environment & Sanitary 1 International Session 1 Poster Presentation in 1 Environment & Sanitary 1 Engineering Research 1	Impending Issues in Lake		
Management and the Basin Governance Environment & Sanitary Engineering Research 1 International Session Poster Presentation in Environment & Sanitary Engineering Research 1	Biwa-Yodo River Water	1	
Environment & Sanitary Engineering Research 1 International Session Poster Presentation in Environment & Sanitary Engineering Research 1	Management and the Basin	1	
Engineering Research 1 International Session 1 Poster Presentation in 1 Environment & Sanitary 1 Engineering Research 1	Governance		
International Session Poster Presentation in Environment & Sanitary Engineering Research	Environment & Sanitary		
Poster Presentation in Environment & Sanitary Engineering Research	Engineering Research	1	
Environment & Sanitary 1 Engineering Research	International Session		
Engineering Research	Poster Presentation in		
Engineering Research	Environment & Sanitary	1	
Symposium	Engineering Research	1	
	Symposium		

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] To be announced at class about poster presentation in Environment & Sanitary Engineering Research Symposium.

New Environmental Engineering I, Advanced 新環境工学特論 I

[Code] 10F456 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 5th

[Location] Reserch Bldg.No.5-Lecture Room(2nd floor)/C1-171 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Relay Lecture [Language] English [Instructor] Y. Shimizu (Prof), H. Tanaka (Prof), and S. Fujii (Prof),

[Course Description] This course provides various kinds of engineering issues related to the water environment in English,

which cover fundamental knowledge, the latest technologies and regional application examples. These lectures, English

presentations by students, and discussions enhance English capability and internationality of students.

The course is conducted in simultaneous distance-learning from Kyoto University, or from remote lecture stations in University of Malaya, and Tsinghua University of China. For the distance-learning, a hybrid system is used, which consists of prerecorded lecture VIDEO, VCS (Video conference system) and SS (slide sharing system).

[Grading] Evaluated by class attendance, Q&A and presentation.

[Course Goals] Each student is requested to give a short presentation in English in the end of the course. The students will understand the present circumstance of environments in the world, and the students may improve their English skill and international senses through these lectures, presentations, and discussions.

Theme	Class number of times	Description
Wastewater Treatment	1 4	Guidance & Self Introduction of Students & Lecturer on "Wastewater Treatment
in Japan	1.4	Plants Case Study in Japan (Fujii)
Ecological Sanitation	1.4	From Ecotoilets to Ecotowns (Shimizu)
Wastewater Treatment in China and Nutrient Removal	1.4	Wastewater Treatment Plant: Case Study in China, Biological Nutrient Removal (BNR) (Prof. Wen, Tsinghua University)
Wastewater Reuse	1.3	Wastewater Reuse & Disinfection (Tanaka)
Wastewater Treatment in Malaysia	1.4	History of Water Pollution in Malaysia (Prof. Ghufran, University of Malaya) Case studies of wastewater treatment plants design & operation (Prof. Nuruol, University of Malaya)
Anaerobic Treatment	1.3	Anaerobic Biological Treatment Technologies (Prof. Shaliza, University of Malaya)
Membrane Technology	1.3	Treatment Technologies (Practical & Advanced Technology I): Membrane Technology (MT) (Prof. Huang, Tsinghua University)
Advanced Oxidation Processes	1.3	Advanced Oxidation Processes (Prof. Zhang, Tsinghua University)
Student Presentation	1.4	Student Presentations /Discussions I (all)
Student Presentation	1.4	Student Presentations /Discussions II (all)
Student Presentation	1.4	Student Presentations /Discussions III (all)

【Textbook】 Class handouts

[Textbook(supplemental)] Introduced in the classes

[Prerequisite(s)] General understanding of water environmental issues

[Independent Study Outside of Class] The students should study the PPT file used in the lectures. Students also need to enough literature review and related prior to their presentation.

[Web Sites]

[Additional Information] PowerPoint slides are main teaching materials in the lectures, and their hard copies are distributed to the students. In addition, a list of technical terms and difficult English words is given to the students with their explanation and Japanese translation.

10F458

New Environmental Engineering II, Advanced 新環境工学特論 II

[Code] 10F458 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 5th

[Location] Reserch Bldg.No.5-Lecture Room(2nd floor)/C1-171 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Prof. Shimidzu, Prof. Takaoka, Associate Prof. Kurata, Prof. Fujii,

[Course Description] This course provides various kinds of engineering issues related to atmospheric environment and solid wastes management in English, which cover fundamental knowledge, the latest technologies and regional application examples. These lectures, English presentations by students, and discussions enhance English capability and internationality of students. The course is conducted in simultaneous distance-learning from Kyoto University, or from remote lecture stations in University of Malaya, and Tsinghua University. For the distance-learning, a hybrid system is used, which consists of prerecorded lecture VIDEO, VCS (Video conference system) and SS (slide sharing system). The students are requested to give a short presentation in English in the end of the lecture course. This course may improve students ' English skill and international senses through these lectures, presentations, and discussions.

[Grading] Evaluate by class attendance, Q&A and presentation.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Global warming and Low	1.4	
carbon society	1.4	Global warming and Low carbon society
Atmospheric diffusion and	1.4	A consideration of the station of the Ware This characteristics)
modeling	1.4	Atmospheric diffusion and modeling (Prof. S Wang, Tsinghua University)
Air Pollution, Its		
Historical Perspective	1.4	Air Pollution, Its Historical Perspective from Asian Countries (I), China (Prof. Hao, Tsinghua
from Asian Countries	1.4	University)
(I),China		
Air Pollution, Its		
Historical Perspective	1.4	Air Pollution, Its Historical Perspective from Asian Countries (II), Malaysia (Prof. Nik, University
from Asian Countries (II),	1.4	of Malaya)
Malaysia		
Air Pollution, Its		
Historical Perspective	1.4	Air Pollution, Its Historical Perspective from Asian Countries (III), Japan (Kurata)
from Asian Countries (III),	1.4	
Japan		
Student Presentations	1.4	Student Presentations /Discussions I (all)
/Discussions I	1.4	Student Presentations / Discussions I (all)
Introduction to Municipal		Introduction to Municipal Solid Waste (MSW) Management in Malaysia (Prof. Agamuthu,
Solid Waste (MSW)	1.4	
Management in Malaysia		University of Malaya)
Solid Waste Management,	1.4	Solid Waste Management, Case Study in China (Prof. Wang, Tsinghua University)
Case Study in China	1.4	Sond waste Management, Case Study in China (Pior. wang, Tsinghua University)
Solid Waste Management,	1.4	Solid Works Management Cons Studie in Jacon (Talasha)
Case Study in Japan	1.4	Solid Waste Management, Case Study in Japan (Takaoka)
Solid Waste Management,	1.4	Colid Works Management Cone Study in Malauria (Drof. A compthy Hair with a SM-1)
Case Study in Malaysia	1.4	Solid Waste Management, Case Study in Malaysia (Prof. Agamuthu, University of Malaya)
Student Presentations	1	Student Dresentations (Dissussions II (all))
/Discussions II	1	Student Presentations /Discussions II (all)

【Textbook】 Class handouts

[Textbook(supplemental)] Introduce in the lecture classes

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Either of this course or "New Environmental Engineering I, advanced" can be dealt as "Asian Environmental Enigneering". PowerPoint slides are main teaching materials in the lectures, and their hard copies are distributed to the students. In addition, a list of technical terms and difficult English words is given to the students with their explanation and Japanese translation.

Environmental Organic Micropollutants Analysis Lab. 環境微量分析演習

[Code] 10F468 [Course Year] Master and Doctor Course [Term] Intensive course (26-28th Sep.)

【Class day & Period】 9:00 am- 6:00 pm

[Location] Seminer Room, Research Center for Environmental Quality Management [Credits] 2

[Restriction] around 10 students [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor] Shimizu, Yoshihisa, Matsuda, Tomonari,

[Course Description] There is increasing concern about proper risk evaluation and management of hazardous chemicals such as dioxins and endocrine disruptors. To manage this problem, it is necessary to understand analytical methods and toxicity of those hazardous chemicals. In this class, lectures and experiments will be carried out about chromatography, bioassays and mass spectrometry.

[Grading] It is required to attend all 3 days for lectures and experiments. Attendance and reports are considered for grading.

[Course Goals] Understand about principle and practical techniques of chromatography. Understand about principle of several bioassays.

[Course Topics]

Theme	Class number of times	Description
HPLC -How to	3	Learn about principle and practice of HPLC separation. How do you choose
separate it-	3	columns, solvents and detectors? How to improve peak separation?
Fractionation and		
Purification by using	3	Learn about practical techniques of fractionation and purification using HPLC.
HPLC		
		Learn about principle and practice of LC/MS/MS analysis. Understand about 3
LC/MS/MS	5	different scan modes, full scan, daughter scan and MRM. How to make an
		analytical method in a refined way for substances of your interest.
		Lecture about several bioassays which are used for evaluation of
Bioassays	4	environmental toxicity, and discuss about how to identify toxic compounds in
		environment by using HPLC in combination with bioassays.

【Textbook】 Handouts are distributed.

[Textbook(supplemental)] Daniel C. Harris: Quantitative Chemical Analysis ISBN-13: 978-1-4292-3989-9

[Prerequisite(s)]

[Independent Study Outside of Class] We hope active participation of students. It is welcome that patticipants additionally try to analyze the sample their own interest.

[Web Sites]

[Additional Information] This intensive course is useful especially for students who usually use or intend to use HPLC and LC/MS/MS for their research.

10F470

Advanced Enivironmental Engineering Lab. 環境工学先端実験演習

[Code] 10F470 [Course Year] Master and Doctor Course [Term] 2nd term

[Class day & Period] Monday 3,4 [Location] C1-173 [Credits] 2 [Restriction] less than 10 students

[Lecture Form(s)] Seminar and Exercise [Language] English / Japanese

[Instructor] Sadahiko Itoh, MInoru Yoneda, Masaki Takaoka, Shinya Echigo, Gakuji Kurata, Makoto Yasojima,

[Course Description] Analytical methods to characterize environmental samples are learnt through practical training including site visit to other research institute or analytical company. Also, integration of environmental information using GIS is also mastered.

[Grading] Attendance at the class (50%) and report subjects(50%) are evaluated.

[Course Goals] To promote your own research by learning each research method with wide vision

[Course Topics]

Theme	Class number of times	Description
Guidance and Safety	1	The content of subject and safety education for the following experiment are
Education	1	explained.
Quantitative analysis	3	The principle of multielement analysis is explained and practical training of
of elements	3	ICP-AES or ICP-MS machine is conducted.
Qualitative analysis	2	The principle of X-ray based methods is explained and practical training of
of elements	2	one or two X-ray based machine is conducted.
Qualitative analysis		Qualitative analysis of organic compounds such as mass spectrometry, NMR,
of organic	F	
compounds and	5	ESR and IR and bioassey are explained and practical training of GC-MS etc. is
bioassey		conducted.
GIS	3	The way to use GIS is learnt.
Site visit	1	Site visit to research institute or analytical company

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminer on Practical Issues in Urban and Environmental Enginering 環境工学実践セミナー

[Code] 10F472 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] Fri 4th

[Location]C1-192 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Seminar [Language]Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	5	
	1	
	1	
	5	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10F449

Exercises in Urban and Environmental Engineering A 都市環境工学演習 A

[Code]10F449 [Course Year] Master Course [Term]1st+2nd term [Class day & Period] Fri 5th [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	10	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Exercises in Urban and Environmental Engineering B 都市環境工学演習 B

[Code] 10F450 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10F475

ORT on Urban and Environmental Engineering

都市環境工学 ORT

[Code] 10F475 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	13	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Wed 5th [Location] Funai Hall [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] GL center: J.Assoc. Tanaka, Mizuno, Takatori, Matsumoto, Ashida and Related professors

[Course Description] This course provides lectures and panel discussions by lecturers inside and outside the campus who have a remarkable achievement in engineering and are active as international leaders.

[Grading] Refer material about grading this course which is provided in 1st and 2nd lectures.

[Course Goals] This course cultivates the ability to develop familiar problem consciousness into a big concept through utilizing the materials of advanced fields in each field. This course also shows how leaders have improved their response to problems. Through this course, students learn fundamental culture, and the importance of human growth.

[Course Topics]

Theme	Class number of times	Description	
Construction of solar			
updraft power generation	1	Prof. Kunimasa Sugiura (Civil and Earth Resources Engineering) Apr. 12	
(SUPG) system on the ocean			
Record and protection of			
world cultural heritage by	1	Prof. Ari Ide (Mechanical Engineering and Science) Apr. 19	
advanced image processing			
Mysterious characteristics of			
smell: from development of	1	Dr. Jun-ichi Kita (Shimadzu Corporation) Apr. 26	
smell identification device			
Science and engineering of			
metals and potential of	1	Prof. Nobuhiro Tsuji (Materials Science and Engineering) May 10	
metals			
My days with radiation ray	1	Dr. Katsumi Hayashi (Hitachi, Corporation) May 17	
Material synthesis			
considering feeling of	1	Prof. Yasujiro Murata (Energy and Hydrocarbon Chemistry) May 24	
molecules			
Practical Marketing not on			
books	1	Dr. Fuminori Takaoka (Edge, Ltd.) May 31	
Direct visualization of			
atoms and molecules	1	Prof. Hirofumi Yamada (Electronic Science and Engineering) Jun. 7	
Encouragement for serial			
innovator	1	Prof. Mitsuaki Oshima (Panasonic Corporation) Jun. 14	
Idle time and idle space	1	Prof. Kiyoshi Takeyama (Architecture and Architectural Engineering) Jun. 21	
Research of cancer therapy	4		
by heavy ion beams	1	Dr. Koji Noda (National Institutes for Quantum and Radiological Science and Technology) Jun. 28	
Seven Wonders of powders	1	Prof. Shuji Matsusaka (Chemical Engineering) Jul. 5	
Strong company			
organizations in Japan, USA	1	Dr. Masahiko Mori (DMG MORI Co., Ltd.) Jul. 12	
and Germany			
Development of			
construction techniques:			
from development of	1	Dr. Ichiro Nagashima (Taisei Corporation) Jul. 19	
advanced technique to big			
projects			
Manufacturing by advanced	1	Prof Vivotaka Miura (Matarial Chamistry) Jul 26	
optical machining	1	Prof. Kiyotaka Miura (Material Chemistry) Jul. 26	

[Prerequisite(s)]

[Independent Study Outside of Class] [Web Sites] [Additional Information]

10i045

Exercise in Practical Scientific English 実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 4th or 5th [Location] A2-304

[Credits] 1 [Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] English (Japanese)

[Instructor] M. Nishikawa, Y. Tanaka, T. Mizuno, A. Takatori, R. Matsumoto, R. Ashida

[Course Description] This course is open to all master and doctoral engineering students. It is designed to help students understand how to write a research paper step by step. In this course, the students will write a short research paper (i.e. Extended Research Abstract for Proceeding. approx. 1000 -1500 words) on a topic drawn from assigned readings.

[Grading] Evaluation based on 10% participation, 60% reports, 30% final paper *More than twice unexcused absence can result in course failure

[Course Goals] The primary goal of this course is to deepen an understanding of the main features of each part of a scientific paper (IMRaD). Throughout the course, students will develop the core competencies required for language, grammar, and style to produce a research manuscript in English.

[Course Topics]

Theme	Class number of times	Description	
Unit 1: Course Overview	1	Course Overview: Introduction to writing scientific research articles	
Unit 2: Introduction	1	Raising awareness of the register of science research articles (genre, audience, purpose)	
Unit 3: Preparing to Write	1	Writing a proposal for a research paper, using corpus-based approach (Exercise: Creating own Corpus)	
Unit 4: Preparing to Write	1	Paraphrasing ideas from source texts, using citations and references in formal writing	
Unit 5: Writing Processes	1	Identifying the "moves" for an Abstract section by hint expressions	
Unit 6: Writing Processes	1	Writing an Abstract (Title) & peer feedback	
Unit 7: Writing Processes	1	Identifying the "moves" for an Introduction section by hint expressions	
Unit 8: Writing Processes	1	Writing an Introduction section & peer feedback	
Unit 9: Writing Processes	1	Writing a Method section & peer feedback	
Unit 10: Writing Processes	1	Writing a Result section & peer feedback	
Unit 11: Writing Processes	1	Writing a Discussion and a Conclusion section	
Unit 12: Writing Processes	1	Writing a cover letter to reviewers and how to respond to reviewers	
Unit 13: Monitoring and	1	Online feedback	
Revising	1	Online feedback	
Unit 14: Monitoring and	1	Pavising a paper based on peer feedback	
Revising	1	Revising a paper based on peer feedback	
Unit 15: Submission	1	Final Paper Due, August 6.	

[Textbook] Handout materials will be supplied by the instructor.

【Textbook(supplemental)】ALESS (2012). Active English for Science- 英語で科学する - レポート、論文、プレゼンテーション . The University of Tokyo Press. Cargill, M., & O'Connor, P. (2013). Writing scientific research articles: Strategy and steps. John Wiley & Sons. Cowell, R., & She, L. (2015). Mastering the Basics of Technical English『技術英語の基礎』 . 2nd Ed., Corona Publishing. 野口ジュディー・深山晶子・岡本真由美.(2007). 『理系英語のライティング』. アルク

[Prerequisite(s)] Students who intend to join this course must attend the first class.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] We may restrict the class size to enhance students ' learning. Students who intend to join the course are required to attend the first-day guidance. Office Hours: (by appointment) nishikawa.mikako7w@kyoto-u.ac.jp (Ext. 2052)

Project Management in Engineering

エンジニアリングプロジェクトマネジメント

[Code] 10i049 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 4th [Location] A2-308 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto, Ashida

Assoc.Prof. Lintuluoto

[Course Description] This course provides a basic knowledge required for the project management in various engineering fields such as process design, plant design, construction, and R&D projects. Also, visiting lecturers from industry and public works provide management insights of actual engineering projects. [Grading] Evaluated by assignments (project report exercise) and class contribution

[Course Goals] This course will help students gain a fundamental knowledge of what project management in engineering is. Throughout the course, students will learn various tools applied in project management. Students will also understand the importance of costs and money, risks, leadership, and environmental assessment in managing engineering projects. This course is followed with the course "Seminar on Project Management in Engineering." in the second semester. [Course Topics]

Class number of	Description
times	
	4/14 (Ashida)
1	Course guidance
	4/21 (Takatori)
1	Introduction to project management
	Project phases
	4/28 (Lintuluoto)
1	Tools
1	Work breakdown structure
	Gantt charts
1	5/12 (Ashida)
1	Project scheduling I
1	5/19 (Ashida)
1	Project scheduling II
1	5/26 (Lintuluoto)
1	Cost
1	6/2 (Lintuluoto)
1	Cash flow
	6/9
1	To be announced
1	6/16 (Tanaka)
	Leadership I
1	6/23 (Tanaka)
	Leadership II
	6/30 (Matsumoto)
1	Risk I
	7/7 (Matsumoto)
1	Risk II
	7/14 (Mizuno)
1	Environmental Impact Assessment I
	7/21 (Mizuno)
1	Environmental Impact Assessment II
1	7/28 @ A2-306 (Cluster A, Katsura Campus)
1	Lecturer: Taizo SHIMOMURA, Dr. (TAISEI CORPORATION)
	times

【Textbook】 Course materials will be provided.

[Textbook(supplemental)] 1. Lock, Dennis. Project Management. 10th edition. Gower Publishing Ltd.

2 . Cleland, David L., and Lewis R. Ireland. Project Management. 5th edition. McGraw-Hill Professional

3. Roger Miller and Donald R. Lessard. The strategic management of large engineering projects, Shaping Institutions, Risks, and Governance, The MIT Press

[Prerequisite(s)] No pre-requisite

【Independent Study Outside of Class】

 $\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\right]}\xspace{\,\operatorname{The}}\xspace{\,\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{$

10i050

Exercise on Project Management in Engineering

エンジニアリングプロジェクトマネジメント演習

[Code] 10i050 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] B-Cluster 2F Seminar Room [Credits] 1 [Restriction] Student number will be limited.

[Lecture Form(s)] Seminar [Language] English

[Instructor] GL center: J.Assoc.Prof. Mizuno, Tanaka, Matumoto, Ashida, Maeda Assoc.Prof. Lintuluoto

(Course Description **)** In this course, students will apply the engineering know-how and the skills of management, and group leadership which they learned in the course of Project Management in Engineering to build and carry out a virtual inter-engineering project. This course provides a forum where students ' team-plan based on ideas and theories, decision making, and leadership should produce realistic engineering project outcomes. The course consists of intensive group work, presentations, and a few intermediate discussions. A written report will be required.

[Grading] Report, class activity, presentation

[Course Goals] This course prepares engineering students to work with other engineers within a large international engineering project. In particular this course will focus on leadership and management of projects along with applied engineering skills where the students learn various compromises, co-operation, responsibility, and ethics.

Theme	Class number of times	Description
		10/6
California	1	Introduction to Exercise on Project Management in Engineering
Guidance	1	Lecture on tools for the Project management in engineering
		Practice
T 1	7	Each project team may freely schedule the group works within given time
Teamwork	/	frame. The course instructors are available if any need is required.
	2	Some lectures will be provided, such as Leadership structuring, Risk
Lecture & Teamwork		Management, and Environmental Impact Assessment, depending on projects
		you propose.
Presentation	1	Each project team will have a presentation based on its proposed project.

[Course Topics]

[Textbook] Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] Fundamental skills about group leading and communication, scientific presentation.

【Independent Study Outside of Class】

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] The number of students may be restricted. Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department.

Advanced Theory of Architectureand Architectural Engineering I 先端建築学特論

[Code] 10Q021 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] C2-213 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] Japanese

[Instructor] Monnai, Kishi, Katoh, Takada, Yamagishi, Kanki, Hokoi, Takahashi, Harada, Maki,

[Course Description] Each professor gives a lecture for one or two hours.

[Grading] Each professor assigns one report at the end of his/her lecture. Students choose three of ten assignments and submit reports (about 1200 words per report). Evaluation will be done as follows: Regular students: Evaluation is done only by reports. But students must attend at least half of lectures. Working students: Evaluation is done by either (1) reports (80%) and attendance (20%), or (2) reports only (100%). In case (2), student must submit four reports. In any case, students can submit reports for the lectures they attended.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】 none

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

【Web Sites】 none

Advanced Theory of Architectureand Architectural Engineering II 先端建築学特論

[Code] 10Q022 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Architecture and Architectural Engineering (Advanced Engineering Course Program (3yr Course))

10Q005

Seminar on Architectural Design and Planning I

建築設計・計画学セミナー

[Code] 10Q005 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Architectural Design and Planning II

建築設計・計画学セミナー

[Code] 10Q006 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Architecture and Architectural Engineering (Advanced Engineering Course Program (3yr Course))

10Q017

Seminar on Architectural Design and Planning III

建築設計・計画学セミナー

[Code] 10Q017 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Architectural Design and Planning IV

建築設計・計画学セミナー

[Code] 10Q018 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Architecture and Architectural Engineering (Advanced Engineering Course Program (3yr Course))

10Q008

Seminar on Structural Engineering of Buildings I 建築構造学セミナー

[Code] 10Q008 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Structural Engineering of Buildings II 建築構造学セミナー

[Code] 10Q009 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Structural Engineering of Buildings III 建築構造学セミナー

[Code] 10Q015 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Structural Engineering of Buildings IV 建築構造学セミナー

[Code] 10Q016 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Architecture and Architectural Engineering (Advanced Engineering Course Program (3yr Course))

10Q011

Seminar on Environmental Engineering I 建築環境工学セミナー

[Code] 10Q011 [Course Year] Doctor Course [Term] 1st term

[Class day & Period] To be determined among participants and instructors

[Location] To be determined among participants and instructors [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Seminar [Language] Japanese [Instructor] Instructors in Architectural Environmental Lab's

[Course Description] Seminar topics are selected among heat transfer, human comfort on thermal, lighting, sound sensation, building systems such as HVAC, water supply, sanitation and electricity. Through discussions, the participants are encouraged to understand deeply the subject and to develop ability to think themselves. To increase the progress of doctoral study, presentation and report are obligatory in order to receive instructions by professors and to join discussion among participants.

【Grading】 Presentation of research contents of his/her own and discussions among other participants and professors are necessary. The degree of understanding, the ability of conducting research by his/her own intension, the skills of presentation will be evaluated. In addition, the interest to broader range of research area, the ability of finding and solving problems are judged.

[Course Goals] The course intends to summarize the development of his/her own research, to devlope skills to convey his/her ideas to the researchers in other areas and to join discussions in multiple viewpoints properly.

[Course Topics]

Theme	Class number of times	Description
Research		Participants shall make presentations on the research of his/her own and make
presentations and	15	
discussion		discussions among other participants and instructors.

[Textbook] None specified.

[Textbook(supplemental)] Supplemental textbooks will be specified during the course if necessary.

[Prerequisite(s)] As a general rule, students belonging to laboratories on the architectural environmental engineering are permitted to attend.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This seminar shall not be registered in parallel with Seminar on Environmental Engineering III.

Seminar on Environmental Engineering II

建築環境工学セミナー

[Code] 10Q012 [Course Year] Doctor Course [Term] 2nd term

[Class day & Period] To be determined among participants and instructors

[Location] To be determined among participants and instructors [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Seminar [Language] Japanese [Instructor] Instructors in Architectural Environmental Lab's

(Course Description **)** Seminar topics are selected among heat transfer, human comfort on thermal, lighting, sound sensation, building systems such as HVAC, water supply, sanitation and electricity. Through discussions, the participants are encouraged to understand deeply the subject and to develop ability to think themselves. To increase the progress of doctoral study, presentation and report are obligatory in order to receive instructions by professors and to join discussion among participants.

[Grading] Presentation of research contents of his/her own and discussions among other participants and professors are necessary. The degree of understanding, the ability of conducting research by his/her own intension, the skills of presentation will be evaluated. In addition, the interest to broader range of research area, the ability of finding and solving problems are judged.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Research		Participants shall make presentations on the research of his/her own and make
presentations and	15	discussions among other participants and instructors.
discussion		discussions among other participants and instructors.

【Textbook】 None specified.

[Textbook(supplemental)] Supplemental textbooks will be specified during the course if necessary.

[Prerequisite(s)] As a general rule, students belonging to laboratories on the architectural environmental engineering are permitted to attend.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This seminar shall not be registered in parallel with Seminar on Environmental Engineering IV.

Seminar on Environmental Engineering III 建築環境工学セミナー

[Code] 10Q013 [Course Year] Doctor Course [Term] 1st term

[Class day & Period] To be determined among participants and instructors

[Location] To be determined among participants and instructors [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Seminar [Language] Japanese [Instructor] Instructors in Architectural Environmental Lab's

[Course Description] Seminar topics are selected among heat transfer, human comfort on thermal, lighting, sound sensation, building systems such as HVAC, water supply, sanitation and electricity. Through discussions, the participants are encouraged to understand deeply the subject and to develop ability to think themselves. To increase the progress of doctoral study, presentation and report are obligatory in order to receive instructions by professors and to join discussion among participants.

【Grading】 Presentation of research contents of his/her own and discussions among other participants and professors are necessary. The degree of understanding, the ability of conducting research by his/her own intension, the skills of presentation will be evaluated. In addition, the interest to broader range of research area, the ability of finding and solving problems are judged.

[Course Goals] The course intends to summarize the development of his/her own research, to devlope skills to convey his/her ideas to the researchers in other areas and to join discussions in multiple viewpoints properly.

[Course Topics]

Theme	Class number of times	Description
Research		Participants shall make presentations on the research of his/her own and make
presentations and	15	
discussion		discussions among other participants and instructors.

【Textbook】 None specified.

[Textbook(supplemental)] Supplemental textbooks will be specified during the course if necessary.

[Prerequisite(s)] As a general rule, students belonging to laboratories on the architectural environmental engineering are permitted to attend.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This seminar shall not be registered in parallel with Seminar on Environmental Engineering I.

Seminar on Environmental Engineering IV

建築環境工学セミナー

[Code] 10Q014 [Course Year] Doctor Course [Term] 2nd term

[Class day & Period] To be determined among participants and instructors

[Location] To be determined among participants and instructors [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Seminar [Language] Japanese [Instructor] Instructors in Architectural Environmental Lab's

(Course Description **)** Seminar topics are selected among heat transfer, human comfort on thermal, lighting, sound sensation, building systems such as HVAC, water supply, sanitation and electricity. Through discussions, the participants are encouraged to understand deeply the subject and to develop ability to think themselves. To increase the progress of doctoral study, presentation and report are obligatory in order to receive instructions by professors and to join discussion among participants.

[Grading] Presentation of research contents of his/her own and discussions among other participants and professors are necessary. The degree of understanding, the ability of conducting research by his/her own intension, the skills of presentation will be evaluated. In addition, the interest to broader range of research area, the ability of finding and solving problems are judged.

[Course Goals] The course intends to summarize the development of his/her own research, to devlope skills to convey his/her ideas to the researchers in other areas and to join discussions in multiple viewpoints properly.

[Course Topics]

Theme	Class number of times	Description
Research		Participants shall make presentations on the research of his/her own and make
presentations and	15	
discussion		discussions among other participants and instructors.

【Textbook】 None specified.

[Textbook(supplemental)] Supplemental textbooks will be specified during the course if necessary.

[Prerequisite(s)] As a general rule, students belonging to laboratories on the architectural environmental engineering are permitted to attend.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This seminar shall not be registered in parallel with Seminar on Environmental Engineering II.

10D051

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Wed 5th [Location] Funai Hall [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] GL center: J.Assoc. Tanaka, Mizuno, Takatori, Matsumoto, Ashida and Related professors

[Course Description] This course provides lectures and panel discussions by lecturers inside and outside the campus who have a remarkable achievement in engineering and are active as international leaders.

[Grading] Refer material about grading this course which is provided in 1st and 2nd lectures.

[Course Goals] This course cultivates the ability to develop familiar problem consciousness into a big concept through utilizing the materials of advanced fields in each field. This course also shows how leaders have improved their response to problems. Through this course, students learn fundamental culture, and the importance of human growth.

[Course Topics]

Theme	Class number of times	Description	
Construction of solar			
updraft power generation	1	Prof. Kunimasa Sugiura (Civil and Earth Resources Engineering) Apr. 12	
(SUPG) system on the ocean			
Record and protection of			
world cultural heritage by	1	Prof. Ari Ide (Mechanical Engineering and Science) Apr. 19	
advanced image processing			
Mysterious characteristics of			
smell: from development of	1	Dr. Jun-ichi Kita (Shimadzu Corporation) Apr. 26	
smell identification device			
Science and engineering of			
metals and potential of	1	Prof. Nobuhiro Tsuji (Materials Science and Engineering) May 10	
metals		gg,	
My days with radiation ray	1	Dr. Katsumi Hayashi (Hitachi, Corporation) May 17	
Material synthesis	· ·		
considering feeling of	1	Prof. Yasujiro Murata (Energy and Hydrocarbon Chemistry) May 24	
molecules			
Practical Marketing not on		Dr. Fuminori Takaoka (Edge, Ltd.) May 31	
books	1		
Direct visualization of			
atoms and molecules	1	Prof. Hirofumi Yamada (Electronic Science and Engineering) Jun. 7	
Encouragement for serial			
innovator	1	Prof. Mitsuaki Oshima (Panasonic Corporation) Jun. 14	
Idle time and idle space	1	Prof. Kiyoshi Takeyama (Architecture and Architectural Engineering) Jun. 21	
Research of cancer therapy			
by heavy ion beams	1	Dr. Koji Noda (National Institutes for Quantum and Radiological Science and Technology) Jun. 28	
Seven Wonders of powders	1	Prof. Shuji Matsusaka (Chemical Engineering) Jul. 5	
Strong company		, , , , , , , , , , , , , , , , , , , ,	
organizations in Japan, USA	1	Dr. Masahiko Mori (DMG MORI Co.,Ltd.) Jul. 12	
and Germany			
Development of			
construction techniques:			
from development of	1	Dr. Ichiro Nagashima (Taisei Corporation) Jul. 19	
advanced technique to big		• · • • ·	
projects			
Manufacturing by advanced	-		
optical machining	1	Prof. Kiyotaka Miura (Material Chemistry) Jul. 26	

[Prerequisite(s)]

[Independent Study Outside of Class] [Web Sites] [Additional Information]

10i045

Exercise in Practical Scientific English 実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 4th or 5th [Location] A2-304

[Credits] 1 [Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] English (Japanese)

[Instructor] M. Nishikawa, Y. Tanaka, T. Mizuno, A. Takatori, R. Matsumoto, R. Ashida

[Course Description] This course is open to all master and doctoral engineering students. It is designed to help students understand how to write a research paper step by step. In this course, the students will write a short research paper (i.e. Extended Research Abstract for Proceeding. approx. 1000 - 1500 words) on a topic drawn from assigned readings.

[Grading] Evaluation based on 10% participation, 60% reports, 30% final paper *More than twice unexcused absence can result in course failure

[Course Goals] The primary goal of this course is to deepen an understanding of the main features of each part of a scientific paper (IMRaD). Throughout the course, students will develop the core competencies required for language, grammar, and style to produce a research manuscript in English.

[Course Topics]

Theme	Class number of times	Description
Unit 1: Course Overview	1	Course Overview: Introduction to writing scientific research articles
Unit 2: Introduction	1	Raising awareness of the register of science research articles (genre, audience, purpose)
Unit 3: Preparing to Write	1	Writing a proposal for a research paper, using corpus-based approach (Exercise: Creating own Corpus)
Unit 4: Preparing to Write	1	Paraphrasing ideas from source texts, using citations and references in formal writing
Unit 5: Writing Processes	1	Identifying the "moves" for an Abstract section by hint expressions
Unit 6: Writing Processes	1	Writing an Abstract (Title) & peer feedback
Unit 7: Writing Processes	1	Identifying the "moves" for an Introduction section by hint expressions
Unit 8: Writing Processes	1	Writing an Introduction section & peer feedback
Unit 9: Writing Processes	1	Writing a Method section & peer feedback
Unit 10: Writing Processes	1	Writing a Result section & peer feedback
Unit 11: Writing Processes	1	Writing a Discussion and a Conclusion section
Unit 12: Writing Processes	1	Writing a cover letter to reviewers and how to respond to reviewers
Unit 13: Monitoring and	1	Online feedback
Revising		
Unit 14: Monitoring and	1	Revising a paper based on peer feedback
Revising		
Unit 15: Submission	1	Final Paper Due, August 6.

[Textbook] Handout materials will be supplied by the instructor.

【Textbook(supplemental)】ALESS (2012). Active English for Science- 英語で科学する - レポート、論文、プレゼンテーション . The University of Tokyo Press. Cargill, M., & O'Connor, P. (2013). Writing scientific research articles: Strategy and steps. John Wiley & Sons. Cowell, R., & She, L. (2015). Mastering the Basics of Technical English『技術英語の基礎』 . 2nd Ed., Corona Publishing. 野口ジュディー・深山晶子・岡本真由美.(2007). 『理系英語のライティング』. アルク

[Prerequisite(s)] Students who intend to join this course must attend the first class.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] We may restrict the class size to enhance students ' learning. Students who intend to join the course are required to attend the first-day guidance. Office Hours: (by appointment) nishikawa.mikako7w@kyoto-u.ac.jp (Ext. 2052)

10i041

Professional Scientific Presentation Exercises (English lecture)

科学技術者のためのプレゼンテーション演習(英語科目)

[Code] 10i041 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Thu 5th
[Location] B-Cluster 2F Seminar Room [Credits] 1
[Restriction] The number of students might be limited if too many students will get enrolled.
[Lecture Form(s)] Semina r [Language] English

[Instructor] Juha Lintuluoto, Associate Professor, Department of Synthetic Chemistry and Biological Chemistry [Course Description] It is imperative for future engineers to be able to communicate and deliver effectively scientific information to large variety of audiences. This skill enables engineers to share and absorb information to more extended audiences, and facilitates success in selling ideas and products, publishing and team working. The purpose of this course is to teach the basic rules needed for successful professional scientific presentation, both orally and written. The course also prepares students to deliver scientific information presentations to wide audiences. The course is consisted of excessive exercises, of which the student should complete seven (7) tasks. The course holds 3-4 tasks for oral presentation exercises, and 3-4 tasks for professional scientific writing exercises. The exact number of both exercises is adjusted for each student ' s needs. The course is aimed for doctor course (DC) students, both Japanese and Foreign nationals

[Grading] Reports, class activity, presentation

[Course Goals] This course is aimed to foster engineering students ' scientific presentation skills. The successfully course completed students will be able to express and present complicated and specific scientific information at more generally understandable level. The students will also be able to pose relevant questions and effectively answer to the wide variety of questions.

[Course Topics]

Theme	Class number of times	Description	
1		Guidance and Professional presentation rules and etiquette	
	3	Oral presentations & questioning I, Written report I	
	3	Oral presentations & questioning I, Written report I	
	3	Oral presentations & questioning II, Written report II	
	3	3 Oral presentations & questioning II, Written report II	
	2	Oral presentations & questioning III, Written report III	
		Oral presentations & questioning III, Written report III	
		Oral presentations & questioning IV, Written report IV	
		Oral presentations & questioning IV, Written report IV I	
		Course summary and discussion	

【Textbook】 Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] -Fundamental skills about scientific presentation

-Advanced English skills

-Sufficient personal research results

【Independent Study Outside of Class】

[Web Sites] The web-site is listed in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credit of this course is counted as the unit for graduation requirement at department level. Course starts at April 13th, and the 1st lesson is repeated on April 20th. The course schedule is irregular. Most classes are biweekly, the detailed schedule is provided at the 1st lecture.

10i042

Advanced Engineering and Economy (English lecture) 工学と経済(上級)(英語科目)

[Code] 10i042 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 5th [Location] B-Cluster 2F Seminar Room [Credits] 2 [Restriction] The number of students might be limited if too many students will get enrolled. [Lecture Form(s)] Lectures, Group works&tasks [Language] English [Instructor] Juha Lintuluoto, Associate Professor, Department of Synthetic Chemistry and Biological Chemistry

[Course Description] Engineering economics plays central role in any industrial engineering project. For an engineer, it is important to apply the engineering know-how with the economic analysis skills to obtain the best available materials, methods, devices, etc. in the most economical way. This course is aimed to teach engineering students the basic economic methods to manage economically an engineering project. In addition, the report writing on various engineering economic issues prepares to write reports in a professional form. The lab sessions are meant for the verbal skills improvement as well as improvement of analytical thinking. The topics are of current relevant topics Small-group brain-storming method is used. The exercise sessions cover the use of Ms-Excel for various quantitative economic analyses.

[Grading] Final test, reports, class activity

[Course Goals] This course is aimed to strengthen engineering students ' skills in economics. The course concept is to teach students selectively those subjects which serve as major tools to solve economic tasks in engineering environment. The reports and lab sessions provide students stimulating and analytical thinking requiring tasks, and presentation skills training is an important part of this course.

[Course Topics]

Theme Class number times		Description		
Student orientation and				
Introduction to engineering economy	1	Course contents, goals		
Cost concepts and design economics	1	Cost terminology and classification		
Cost estimation techniques	1	WBS for cost estimation, estimation techniques (indexes, unit, factor, power-sizing, learning curve, CER, top down, bottom up), target costing		
The time value of money	1	Simple interest, compound interest, economic equivalence concept, cash-flow diagrams, PW, FW, AW		
Evaluating a single project	1	MARR, present wort method, bond value, capitalized worth, internal rate of return, external rate of return, payback method		
Comparison and selection among alternatives	1	Investment and cost alternatives, study period, equal and unequal useful lives, rate-of-return method, imputed market value		
Depreciation and income taxes	1	SL and DB depreciation methods, book value, after-tax MARR, marginal income tax rate, gain(loss) on asset disposal, after-tax economic analysis general procedure, EVA,		
Price changes and exchange rates	1	Actual dollars, real dollars, inflation, fixed and responsive annuities, exchange rates, purchasing power		
Replacement analysis	1	Determining economic life of challenger, determining economic life of defender, abandonment, after-tax replacement study		
Evaluating projects with the benefit-cost ratio method	1	Benefits, costs, dis-benefits, self-liquidating projects, multi-purpose projects, interest rate vs. public project, conventional B-C ratio PW and AW method, modified B-C ratio PW and AW method		
Breakeven and sensitivity analysis	1	Breakeven analysis, sensitivity analysis, spider plot		
Probabilistic risk analysis	1	Sources of uncertainty, discrete and continuous variables, probability trees, Monte Carlo simulation example, decision trees, real options analysis		
The capital budgeting process	1	Capital financing and allocation, equity capital and CAPM, WACC, WACC relation to MARR, opportunity cost		
Decision making considering multiattributes	1	Non-compensatory models (dominance, satisficing, disjunctive resolution, lexicography), compensatory models (non-dimensional scaling, additive weight)		
Final test	1	90 minutes, concept questions, calculation task (option of choice)		
		Additionally, students will submit three reports during the course on given engineering economy subjects. Also, required are the five lab participations (ca.60 min/each) for each student. Additionally, three exercise sessions (ca.60 min/each), where use of Ms-Excel will be practiced for solving various engineering economy tasks,		

should be completed

【Textbook】 Engineering Economy 15th ed. William G. Sullivan (2011)

[Textbook(supplemental)] Will be informed if necessary.

[Prerequisite(s)] -This course is highly recommended for those who attend "Project Management in Engineering" course , Small group working method [Independent Study Outside of Class]

[Web Sites] The web-site is listed in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credits of this course are counted as the units for graduation requirement at department level. The course starts on Oct.3rd.

Architecture and Architectural Engineering (Advanced Engineering Course Program (3yr Course))

10i010

International Internship in Engineering 1

工学研究科国際インターンシップ1

[Code] 10i010 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period]Intensive course [Location] [Credits]1 [Restriction]Defined by each internship program

 $\label{eq:lecture Form(s)} \$ Exercise $\$ Language $\$ English

[Instructor] Faculty members in charge of educational affairs of the Global Leadership Engineering Education Center and of the department the registrant belongs to.

[Course Description] Acquisition of international skills with the training of foreign language through the internship programs hosted by the University, the Graduate School of Engineering, or The Department the registrant belongs to.

[Grading] Merit rating is performed based on the presentation or the report(s) after the participation in each internship program. Each department is responsible to identify the number of credits to be granted to the student of the department, if the credits are included in the mandatory ones. The Global Leadership Engineering Education Center takes the role to evaluate the credits if the department the student belongs to deals the credits as optional ones. The number of credits to be earned is 1 and 2, respectively to the subjects International Internship in Engineering 1 and 2 depending on the period and the contents of the internship program the students has participated in.

[Course Goals] Acquisition of international skills with the training of foreign language.

[Course Topics]

Theme	Class number of times	Description
Orenne Laternalia	1	The contents to be acquired should be described in the brochure of each
Overseas Internship		internship program.
Final Presentation	1	A presentation by the student is required followed by discussion among
		participants.

[Textbook] Not Applicable

【Textbook(supplemental)】 Not Applicable

[Prerequisite(s)] Described in the application booklet for each internship program. The registrant is requested to have enough language skills for the participation.

【Independent Study Outside of Class】 Not Applicable

[Web Sites] Not Applicable

[Additional Information] It is required for students to check if the internship program to participate in could be evaluated as part of mandatory credits or not and could earn how many credits before the participation to the department or educational program the student in enrolled. If the credit could not be treated as mandatory ones, get in touch with the Global Leadership Engineering Education Center.

10i011

International Internship in Engineering 2

工学研究科国際インターンシップ2

[Code] 10i011 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period]Intensive course [Location] [Credits]2 [Restriction]Defined by each internship program

[Lecture Form(s)] Exercise [Language] English

[Instructor] Faculty members in charge of educational affairs of the Global Leadership Engineering Education Center and of the department the registrant belongs to.

[Course Description] Acquisition of international skills with the training of foreign language through the internship programs hosted by the University, the Graduate School of Engineering, or The Department the registrant belongs to.

[Grading] Merit rating is performed based on the presentation or the report(s) after the participation in each internship program. Each department is responsible to identify the number of credits to be granted to the student of the department, if the credits are included in the mandatory ones. The Global Leadership Engineering Education Center takes the role to evaluate the credits if the department the student belongs to deals the credits as optional ones. The number of credits to be earned is 1 and 2, respectively to the subjects International Internship in Engineering 1 and 2 depending on the period and the contents of the internship program the students has participated in.

[Course Goals] Acquisition of international skills with the training of foreign language. Detailed objectives should be described in each program.

Theme	Class number of times	Description
Overseas Internship	1	The contents to be acquired should be described in the brochure of each
Overseas internship		internship program.
Final Presentation	1	A presentation by the student is required followed by discussion among
		participants.

【Textbook】 Not Applicable.

【Textbook(supplemental)】 Not Applicable.

[Prerequisite(s)] Described in the application booklet for each internship program. The registrant is requested to have enough language skills for the participation.

[Independent Study Outside of Class] Not Applicable.

[Web Sites] Not Applicable.

[Additional Information] It is required for students to check if the internship program to participate in could be evaluated as part of mandatory credits or not and could earn how many credits before the participation to the department or educational program the student in enrolled. If the credit could not be treated as mandatory ones, get in touch with the Global Leadership Engineering Education Center.

10i049

Project Management in Engineering

エンジニアリングプロジェクトマネジメント

[Code] 10i049 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 4th [Location] A2-308 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto, Ashida

Assoc.Prof. Lintuluoto

[Course Description] This course provides a basic knowledge required for the project management in various engineering fields such as process design, plant design, construction, and R&D projects. Also, visiting lecturers from industry and public works provide management insights of actual engineering projects. [Grading] Evaluated by assignments (project report exercise) and class contribution

[Course Goals] This course will help students gain a fundamental knowledge of what project management in engineering is. Throughout the course, students will learn various tools applied in project management. Students will also understand the importance of costs and money, risks, leadership, and environmental assessment in managing engineering projects. This course is followed with the course "Seminar on Project Management in Engineering." in the second semester. [Course Topics]

Theme	Class number of times	Description	
	times	4/14 (Ashida)	
Guidance	1	Course guidance	
Introduction to project management & Project phases	1	4/21 (Takatori) Introduction to project management	
Tools for project management, cost, and cash flows I	1	Project phases 4/28 (Lintuluoto) Tools Work breakdown structure	
Project scheduling I	1	Gantt charts 5/12 (Ashida) Project scheduling I	
Project scheduling II	1	5/19 (Ashida) Project scheduling II	
Tools for project management, cost, and cash flows II	1	5/26 (Lintuluoto) Cost	
Tools for project management, cost, and cash flows III	1	6/2 (Lintuluoto) Cash flow	
ТВА	1	6/9 To be announced	
Leadership I	1	6/16 (Tanaka) Leadership I	
Leadership II	1	6/23 (Tanaka) Leadership II	
Risk I	1	6/30 (Matsumoto) Risk I	
Risk II	1	7/7 (Matsumoto) Risk II	
Environmental Impact Assessment I	1	7/14 (Mizuno) Environmental Impact Assessment I	
Environmental Impact Assessment II	1	7/21 (Mizuno) Environmental Impact Assessment II	
Special lecture Project management ~Tender process of Panama Canal expansion project~	1	7/28 @ A2-306 (Cluster A, Katsura Campus) Lecturer: Taizo SHIMOMURA, Dr. (TAISEI CORPORATION)	

【Textbook】 Course materials will be provided.

[Textbook(supplemental)] 1. Lock, Dennis. Project Management. 10th edition. Gower Publishing Ltd.

2 . Cleland, David L., and Lewis R. Ireland. Project Management. 5th edition. McGraw-Hill Professional

3. Roger Miller and Donald R. Lessard. The strategic management of large engineering projects, Shaping Institutions, Risks, and Governance, The MIT Press

[Prerequisite(s)] No pre-requisite

【Independent Study Outside of Class】

 $\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\right]}\xspace{\,\operatorname{The}}\xspace{\,\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{$

Architecture and Architectural Engineering (Advanced Engineering Course Program (3yr Course))

10i050

Exercise on Project Management in Engineering

エンジニアリングプロジェクトマネジメント演習

[Code] 10i050 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] B-Cluster 2F Seminar Room [Credits] 1 [Restriction] Student number will be limited.

[Lecture Form(s)] Seminar [Language] English

[Instructor] GL center: J.Assoc.Prof. Mizuno, Tanaka, Matumoto, Ashida, Maeda Assoc.Prof. Lintuluoto

(Course Description **)** In this course, students will apply the engineering know-how and the skills of management, and group leadership which they learned in the course of Project Management in Engineering to build and carry out a virtual inter-engineering project. This course provides a forum where students ' team-plan based on ideas and theories, decision making, and leadership should produce realistic engineering project outcomes. The course consists of intensive group work, presentations, and a few intermediate discussions. A written report will be required.

[Grading] Report, class activity, presentation

[Course Goals] This course prepares engineering students to work with other engineers within a large international engineering project. In particular this course will focus on leadership and management of projects along with applied engineering skills where the students learn various compromises, co-operation, responsibility, and ethics.

Theme	Class number of times	Description
	1	10/6
California		Introduction to Exercise on Project Management in Engineering
Guidance		Lecture on tools for the Project management in engineering
		Practice
Teamwork	7	Each project team may freely schedule the group works within given time
Teamwork		frame. The course instructors are available if any need is required.
	k 2	Some lectures will be provided, such as Leadership structuring, Risk
Lecture & Teamwork		Management, and Environmental Impact Assessment, depending on projects
		you propose.
Presentation	1	Each project team will have a presentation based on its proposed project.

[Course Topics]

[Textbook] Course materials will be provided.

[Textbook(supplemental)] Will be informed if necessary.

[Prerequisite(s)] Fundamental skills about group leading and communication, scientific presentation.

【Independent Study Outside of Class】

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] The number of students may be restricted. Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department.

Applied Numerical Methods

応用数値計算法

[Code] 10G001 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Toshiyuki Tsuchiya,

[Course Description] Numerical techniques, such as the finite element method and numerical control method, are indispensable in mechanical engineering. In this lecture, basics of numerical techniques which are required to study advanced methods for graduated students will be explained. The lecture will cover the error evaluation, linear system solution (Ax=b), eigenvalue analysis, interpolation approximation method, solutions of ordinary differential equation and partial differential equation. The programing exercise is included in this lecture.

[Grading] Home works (four home works will be assigned) and examination.

[Course Goals] Understandings of mathematical theories and programing implementations of the numerical methods.

[Course Topics]

Theme	Class number of times	Description		
		Introduction of this class		
Introduction	1	Numerical representations and errors		
		Macro programing using spread sheet applications		
		Matrix		
Linear system	1	Norms		
		Singular value decomposition		
Linear simultaneous	2	Solution of simultaneous linear equations		
equation 1	2	direct method, iteration method		
Eigenvalue analysis	2	Eigenvalue problems		
Interpolation	2	Interpolation and its errors		
Numerical integra 1	2	Numerical integration methods		
Normal differential		explicit method, implicit method		
equation and	1			
numerical integral		initial value problem, boundary value problem		
Doutin1 differentin1	3	Differential expression of partial differential		
Partial differential equation		Diffusion equation, wave equation		
		Poisson equation, Laplace equation		
Examination	1	Feedback for homework and examination		

[Textbook] Lecture note will be distributed through the course website.

[Textbook(supplemental)] Golub, G. H. and Loan, C. F. V., Matrix Computations, John Hopkins University Press

R.D.Richtmyer and K.W.Morton, Difference Methods for Initial-Value Problems, Second Edition, John Wiley & Sons 1967

[Prerequisite(s)] Basic mathematics for undergraduates

Basic macro programing

[Independent Study Outside of Class] Problems are based on macro on Microsoft Excel or LibreOffice (OpenOffice).

[Web Sites] Lecture notes, home works, and other info will be distributed through PandA:

https://panda.ecs.kyoto-u.ac.jp

[Additional Information] Have a PC with Microsoft Excel with VBA or LibreOffice (https://ja.libreoffice.org/). Apache OpenOffice(http://www.openoffice.org/ja/) wil be also ok.

Solid Mechanics, Adv.

固体力学特論

[Code] 10G003 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] H. Hirakata

[Course Description] This course provides fundamental concepts of solid mechanics such as stress, strain, and constitutive laws, and methods for analyzing stress/strain fields and deformation of solids and structures on the basis of the concepts. In particular, the course lectures theories of nonlinear problems such as plasticity and creep, and their numerical solutions, or finite element methods, which are important for design and development of mechanical structures.

[Grading] Grading is based on the examination, possibly with considerations of the homework reports.

[Course Goals] Students will be able to:

understand solid mechanics deeply and acquire basic knowledge to design mechanical structures.

analyze problems of plasticity and creep by finite element methods.

Class number of times	of Description	
1	Overview of solid mechanics	
1	Cauchy stress tensor, Equilibrium equation, Invariants	
	Material description and spatial description, Displacement, Deformation gradient,	
2	Lagrange-Green strain and Euler-Almansi strain, Infinitesimal strain, Material time	
	derivative	
1	L'incor electio state e static menero a Herber's leur	
1	Linear elastic stress-strain response, Hooke 's law	
1	Principle of virtual work, Principle of minimum potential energy	
1		
2	Basis of finite element method, Finite element equilibrium equations, Elements,	
3	Numerical integration	
3	Plasticity theory (uniaxial and multiaxial problems, yield criteria, flow rule,	
	hardening rule, constitutive equations), Finite element method for elasto-plastic	
	problems	
2	Creep theory (uniaxial and multiaxial constitutive equations), Finite element	
	method for creep problems	
1	Discussions and reports	
	times 1 1 2 1 1 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1	

[Course Topics]

[Textbook] Lecture materials are distributed in the classroom.

[Textbook(supplemental)] T. Kyoya, Continuum Mechanics, Morikita (2008) (in Japanese)

Y. Tomita, "Foundation and Application of Elastoplasticity" Morikita (1995) (in Japanese)

E. Neto et al., " Computational Methods for Plasticity, " John Wiley & Sons (2008).

[Prerequisite(s)] This course requires basic knowledge of mechanics of materials and solid mechanics.

【Independent Study Outside of Class】

[Web Sites]

Thermal Science and Engineering 熱物理工学

[Code] 10G005 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] H. Yoshida & M. Matsumoto

[Course Description] Several topics in advanced thermal physics are discussed. From microscopic view points, basics of stochastic process and related topics are given. From macroscopic ones, after the concept of entropy is revisited, applications in global environments and hydrogen energy are described.

[Grading] Reports, essays, and/or written examinations.

[Course Goals] Microscopic Viewpoints: Ability of multi-scale modelling

Macroscopic Viewpoints: Ability of global environment modelling

[Course Topics]

Theme	Class number of times	Description
(M) Brownian	1	
motion	1	
(M) Transport		
phenomena and	1	
correlation functions		
(M) Spectral analysis	2	
and fractal analysis	2	
(M) Stochastic		
process and its	3	
applications		
(Y) Entropy and free	1	
energy: revisit	1	
(Y) Science of		
atmosphere and	3	
ocean		
(Y) Hydrogen energy	3	
Check and feedback	1	

[Textbook] Not specified.

【Textbook(supplemental)】

[Prerequisite(s)] Elementary thermodynamics, Statistical physics, Heat transfer engineering, Numerical analysis etc.

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】(2017) Matsumoto: April 10 ~ May 29

Yoshida: June 5 ~ July 10

Introduction to Advanced Fluid Dynamics 基盤流体力学

[Code] 10G007 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	4	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Condensed Matter Physics

量子物性物理学

[Code] 10G009 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	4	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Design and Manufacturing Engineering 設計生産論

[Code] 10G011 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	2	
	3	
	2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Dynamic Systems Control Theory

動的システム制御論

[Code] 10G013 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	4	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Engineering Ethics and Management of Technology 技術者倫理と技術経営

[Code] 10G057 [Course Year] Master 1st [Term] 1st term [Class day & Period] Thu 3rd

[Location]Butsurikei-Kousya [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lectures and Exercise

[Language] Japanese [Instructor] Sawaragi, Nishiwaki, Tomita, M. Komori, Tsuchiya, Noda, Sato, Iseda,

【Course Description】 Basic knowledge of Engineering Ethics and Management of Technology needed for future project leaders in companies and society is taught. Students have to make group work after-class hours as well as presentations of wrapping-up the discussions. Engineering ethics is the field of applied ethics and system of moral principles that apply to the practice of engineering. The field examines and sets the obligations by engineers to society, to their clients, and to the profession. Management of Technology is a set of management disciplines that allows organizations to manage their technological fundamentals to create competitive advantage. This course consists of lectures, exercises, discussions and oral presentations under supervision of professional faculties and extramural lecturers.

[Grading] Submission of reports and presentations

[Course Goals] To cultivate a spirit of self-sufficiency needed for engineers

[Course Topics]

Theme	Class number of times	Description
	9	1. Introduction to Engineering Ethics (EE)
		2.Medical Engineering Ethics
		3.EE by Institution of Professional Engineers, Japan and abroad
		4. Product Safety and Product Liability
Engineering Ethics		5.Comprehensive Manufacturing and EE (1)
		6.Comprehensive Manufacturing and EE (2)
		7.Group Discussions
		8. History and Philosophy of EE
		9. Presentation on exercise of EE
	5	1. Product Portfolio, Strategy for Competition
Monogoment of		2. Bussiness Domain and MOT for Marketing
Management of Technology		3. Organizational Strategy for Corporates' R & D
		4. Management Theory for R & D
		5. Presentation on exercise of MOT
Summary	1	

[Textbook] No textbook

【Textbook(supplemental)】 Nothing

[Prerequisite(s)] Nothing particular

【Independent Study Outside of Class】

[Web Sites] No Web Site

【Additional Information】 Nothing particular

Fracture Mechanics

破壊力学

[Code] 10G017 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 1st

[Location]C3-Lecture Room 3 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

【Instructor】 Takayuki Kitamura,

[Course Description] The basics of the fracture mechanics will be lectured.

Elastic problem, Stress function of a crack, Stress field around a crack tip, Stress intensity factors, Energy release rate,

J-integral, Elastic plastic fracture mechanics, Interfacial fracture mechanics etc.

Fracture toughness, Crackings in fatigue, environmental fatigue and creep-fatigue etc.

[Grading] Mini-reports will be evaluated.

[Course Goals] The objective of this lecture is to master the basic knowledge of the fracture mechanics, and to be able to discuss about material strength on the basis of the knowledge.

[Course Topics]

Theme	Class number of times	Description
		Introduction
	2	Examples of fracture in real components
Introduction		Deformation and fracture
		Stress concentration and singular stress field
		Basics of solid mechanics
		Mechanics of cracked body under linear elasticity
T' C /		Singular stress field near a crack tip, Stress intensity factor, Energy release rate,
Linear fracture	3	J-integral, Small scale yielding
mechanics		Interfacial fracture mechnics in dissimilar materials, Stress field near an interface edge,
		Stress field near an interfacial crack
Nonlinear fracture		Fracture mechanics in non-linear elastic solid
	2	HRR singular field, J-integral, creep
mechanics		Stress field near an interface edge
		Application of fracture mechanics to fracture toughness
farcture phenomenon	2	Application of fracture mechanics to fatigue cracking
and mechanics	3	Application of fracture mechanics to environmental cracking
		Application of fracture mechanics to fatigue cracking at high temperatures
fracture mechanics on	1	Growth of physicall small crack
growth of small cracks	1	Growth of microstrucually small crack
Smakk crack and cavity	1	Cavity growth by diffusion creep
in creep	1	Difference of stress filed between crack and cavity
Fracture	1	Research works on fracture mechanics in nanometer scale
nanomechanics	1	Research works on fracture mechanics in nanometer scale
Fracture in atomic scale	1	Research works on fracture in atomic scale
Summary	1	Discussion and report

[Textbook] The teacher provide articles for this lecture.

【Textbook(supplemental)】

[Prerequisite(s)] The traditional material strength and the linear elastic mechanics should be learned before taking this lecture.

【Independent Study Outside of Class】

[Web Sites]

10B628

Physics of Neutron Scattering 中性子物理工学

[Code] 10B628 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 4th

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] K. Mori, Y. Onodera

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10B407

Robotics

ロボティクス

[Code] 10B407 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Fumitoshi Matsuno,

(Course Description **)** Understanding of intelligent behaviors of living things is very interesting. And realization of their intelligent motion by a robot is also attractive for mechanical engineering. In this lecture, we consider basic understanding of beautiful human skill " manipulation " on the point of view of dynamics and control. First modeling methodologies for a rigid multibody system and a general dynamic model of a manipulator are provided. Next, a typical nonlinear control law is introduced and some problems for applying the controller are shown. Based on nature of the dynamics of the manipulator, a very simple and robust controller can be derived by designing energy of the system. This lecture provides modeling methodologies and controller design strategies of the rigid multibody system and we analyze a beautiful human skill of the manipulation.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	1	
	3	
	3	
	2	
	1	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Mechanical Functional Device Engineering

メカ機能デバイス工学

[Code] 10G025 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Wed 3rd

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Masaharu Komori

(Course Description **)** For any machines, prime movers and powertrains are necessary to realize the required functions. In automobiles, an engine is the prime mover and a transmission, a clutch, and a shaft are parts of the powertrain. In machine tools, a motor is used as the prime mover and the powertrain uses feed screws. In this lecture, the prime mover is taken up. Types, characteristics, principles, advantages and disadvantages of the prime mover are explained. In addition, examples of the powertrains are shown using mechanism models.

[Grading] Evaluate comprehensively by participation in class, tests, reports, etc.

[Course Goals] Understand the principles and basic characteristics of the prime movers and powertrains taken up in the lecture.

[Course Topics]

Theme	Class number of times	Description
		Outline of mechanical functional device engineering, composition of
Outline	1	mechanical device, examples of prime movers, working parts, and powertrains,
		examples of actuators and mechanisms
Flastromagnotic		Principle used for actuators, type of electromagnetic motor, principle and
Electromagnetic	3	characteristics of synchronous motor, generating method of rotating magnetic
force		field, induction motor, reluctance motor, DC motor, stepping motor
Electrostatic force	1	Usage as actuator, explanation of principle and characteristics
		Piezoelectric effect, characteristics of piezoelectric effect, piezoelectric
Piezoelectric	1	material, polarization, displacement and force, hysteresis, type and basic
		structure, application
Fluid pressure	1	Fluid pressure actuator
Ultrasonic	1	Ultrasonic motor
Shape memory alloy	1	Shape memory effect, shape resilience
Mechanism	5	Introduction of mechanism using mechanism model
Feedback class	1	Answer questions

【Textbook】Instruct as necessary.

【Textbook(supplemental)】Instruct as necessary.

[Prerequisite(s)] Nothing.

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Schedule of lecture may be changed according to circumstances. Supplement in English as necessary.

Patent Seminar

特許セミナー

[Code] 10G029 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	3	
	2	
	2	
	5	
	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Basic Seminar on Mechanical Engineering and Science A 機械理工学基礎セミナーA

[Code]10G036 [Course Year] Master and Doctor Course [Term]1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Basic Seminar on Mechanical Engineering and Science B 機械理工学基礎セミナーB

[Code]10G037 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Mechanical Engineering and Science A

機械理工学セミナーA

[Code] 10G031 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Mechanical Engineering and Science B

機械理工学セミナー B

[Code]10G032 [Course Year]Doctor Course [Term]2nd term [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Finite Element Methods 有限要素法特論

[Code] 10G041 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd [Location]C3-Lecture Room 2 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture and Practice [Language] English [Instructor] Kotera and Nishiwaki,

[Course Description] This course presents the basic concept and mathematical theory of the Finite Element Method (FEM), and explains how the FEM is applied in engineering problems. We also address important topics such as the physical meaning of geometrical non-linearity, material non-linearity, and non-linearity of boundary conditions, and we explore numerical methods to deal with these nonlinearities. Also, we guide students in class in the use of software to solve several numerical problems, to develop practical skill in applying the FEM to engineering problems.

[Grading] Grading is based the quality of two or three reports and the final exam.

[Course Goals] The course goals are for students to understand the mathematical theory of the FEM and the numerical methods for analyzing non-linear problems based on the FEM.

Course	Topics]
---------------	----------

Theme	Class number of times	Description
Basic knowledge of the FEM	3	What is the FEM? The history of the FEM, classifications of partial differential equations, linear problems and non-linear problems, mathematical descriptions of structural problems (stress and strain, strong form and weak form, the principle of energy).
Mathematical background of the FEM	2	Variational calculus and the norm space, the convergence of the solutions.
FEM formulations	3	FEM approximations for linear problems, formulations of iso-parametric elements, numerical instability problems such as shear locking, formulations of reduced integration elements, non-conforming elements, the mixed approach, and assumed-stress elements.
Classifications of nonlinearities and their formulations	4	Classifications of nonlinearities and numerical methods to deal with these nonlinearities.
Numerical practice	2	Numerical practice using COMSOL.
Evaluation of student achievements	1	

【Textbook】

【Textbook(supplemental)】 Bath, K.-J., Finite Element Procedures, Prentice Hall

Belytschko, T., Liu, W. K., and Moran, B., Nonlinear Finite Elements for Continua and Structures, Wiley

[Prerequisite(s)] Solid Mechanics

【Independent Study Outside of Class】

[Web Sites]

[Course Topics]

Strength of Advanced Materials 先進材料強度論

[Code] 10B418 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd [Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] M. Hojo and M. Nishikawa,

[Course Description] The mechanism underlying mechanical and functional properties are lectured for advanced materials used and developed in advanced fields of current engineering. In particular, advanced composite materials, used for aircraft structure etc., are introduced, with a detailed description of the relationship between microscopic constituent materials and macroscopic properties from the perspective of multiscale mechanics; also the anisotropy of their properties, their fatigue and fracture properties are described in the basic discipline for strength of materials. The latest applications are introduced in the field of various transportation systems including airplanes.

[Grading] Grading is based on the reports. The assignments will be given around three times.

[Course Goals] The course goal is to understand basic concepts of composite materials and the underlying mechanism of their mechanical properties from multiscale viewpoints, while the physical understanding of composites is developed based on multiple disciplines.

Theme	Class number of times	Description
Concert of composite		The concept and definition of composite materials, their constituent materials and
Concept of composite	2	manufacturing methods are illustrated. Their application to aircraft structures etc. are also
materials		introduced.
Mechanical properties of		Resin for matrix and various fiber types are explained including their structure and
microscopic constituent	2	mechanical properties. The weakest link model and Weibull distribution are described as a
materials		basis of the statistic nature of strength.
		The specific strength, the specific stiffness, and the rule of mixture for elastic modulus and
		strength are lectured. In particular, the detailed explanation is made to the anisotropy of
Basic mechanical		elastic modulus, independent elastic constants in the generalized Hookean law, the
properties	4	anisotropic failure criteria, and laminate theory. The relationship between the mechanical
		properties of microscopic constituent materials and macroscopic properties of composite
		materials is also illustrated.
	2	The mechanism of transverse fracture is illustrated. The mechanical models are described for
		short fiber reinforced composites and particle dispersed composites. The micromechanical
Micromechanics		analyses based on finite element method is also illustrated for the physical understanding of
		the strength of composite materials.
Fracture mechanics		Fracture mechanics of anisotropic materials are described. The interlaminar fracture
	2	toughness and interlaminar fatigue crack propagation, the critical issues in the application of
properties		composite structures, are explained including their underlying mechanism.
C		High-temperature superconducting materials are the composite materials consisting of metals
Superconducting	1	and fibrous superconducting materials made of oxides. The mechanism are explained for
materials		understanding that their mechanical properties so much control their electric properties.
Durante and an about al		The molding and machining process of composite materials is explained to relate it to their
Process and mechanical properties of composite materials	1	mechanical properties. Fiber preform, the selection of resin, intermediate materials,
	1	machining and assembly and inspection methods are overviewed from the academic
		viewpoints.
Academic achievement	1	Academic achievements is assessed.
test	1	readenne achtevenients is assessed.

[Textbook] Supplementary handouts will be distributed in the class.

[Textbook(supplemental)] D.Hull and T.W.Clyne, An Introduction to Composite Materials, Cambridge University Press.

[Prerequisite(s)] Mechanics of Materials, Continuum Mechanics, Fundamentals of Materials, Solid Mechanics, Adv.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] The order and the item in the course are possibly subject to change.

10B622

Thermophysics for Thermal Engineering 熱物性論

[Code] 10B622 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] M. Matsumoto

[Course Description] Based on elementary thermodynamics and statistical physics, I will describe non-equilibrium thermodynamics and advanced statistical physics, including phase transition, pattern formation, and entropy production.

[Grading] Paper assignments

[Course Goals] Understanding the principle mechanisms of phase transition, cooperation phenomena, patern formation, and relaxation phenomena, in terms of advanced statistical mechanics and non-equilibrium thermodynamics.

Course	Topics]	
--------	----------	--

Theme	Class number of times	Description	
Elementary statistical physics: review	1	Review of equilibrium statistical mechanics	
Phase transition as a cooperative phenomenon	3	Statistical mechanics of interacting particle system - Exact calculation - Monte Carlo simulation - Mean field approximation	
Pattern formation of non-equilibrium systems	4	After a time dependent Ginzburg-Landau (TDGL) model is introduced, formation of spatial patterns is discussed from various viewpoints.	
Equilibrium thermodynamics: review	1	Review of elementary thermodynamics	
Non-equilibrium thermodynamics: Basics	2	System stability and the principle of irreversible process are discussed in terms of thermodynamics.	
Non-equilibrium thermodynamics: Applications	3	 Entropy production Linear response theory Onsager's reciprocal relation 	
Check and Feedback	1		

[Textbook] Lecture note will be prepared.

【Textbook(supplemental)】 will be listed in the class.

[Prerequisite(s)] Undergraduate level of Thermophysics, Heat transfer phenomena, and Statistical physics

[Independent Study Outside of Class]

[Web Sites]

Transport Phenomena 熱物質移動論

[Code] 10G039 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd [Location] C3-Lecture Room 2 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Nakabe, Kazuyoshi, Tatsumi, Kazuya,

[Course Description] The important learning objective of this class is to understand the fundamental mechanisms of momentum, heat, and mass transfer phenomena, the knowledge of which will be markedly required for the thermal energy control technologies to further practice conservations of natural resources and energies for sustainable development. Heat and mass transfer processes consisting of conduction and forced/natural convection will be highlighted in detail, referring to the similarity characteristics of flow velocity, fluid temperature, and species concentration. Some topics on Reynolds stress, turbulent heat flux, and phase change will be introduced, expanding to their numerical models, together with some recent trends of high-tech heat and energy devices.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Surrounding		
Examples of	1	
Transport	1	
Phenomena		
Governing Equations		
and	3 ~ 4	
Non-Dimensional	5~4	
Parameters		
Boundary Layer	2 ~ 3	
Flows	2~3	
External and Internal	1 ~ 2	
Flows	1 2	
Turbulent	2 ~ 3	
Phenomena	2 3	
Topics of Flow and		
Heat Transfer	2 ~ 3	
Mechanism		
Estimation on Study	1	
Achievement	1	

[Textbook]

[Textbook(supplemental)] Example: Transport Phenomena (Bird, R.B. et al.)

[Prerequisite(s)]

[Independent Study Outside of Class]

[Web Sites]

Engineering Optics and Spectroscopy 光物理工学

[Code] 10G021 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Masahiro Hasuo, Taiichi Shikama

(Course Description **)** Optics are widely used in many areas of modern science and technology. Students will learn the physical properties of light and light-matter interactions, and their applications. Topics such as light propagation in dielectric media, crystal optics, quantum optics, and lasers will be explored. Interactions of light with atoms, molecules and solids as examples will be also explored with introduction of the fundamentals of spectroscopy and their applications.

[Grading] Grade evaluation will be based on report examination.

【Course Goals】 Understand the principles of optical engineering and spectroscopy. Develop application abilities based on the principle understanding.

[Course Topics]

Theme	Class number of times	Description
Dispersion of light	6	propagation of light in dielectric media (Lorentz model), crystal optics, nonlinear optics
Quantum optics	1	quantum theory of light, principles of lasers
Light-matter	-	light-induced transition, quantum states of atoms, molecules, and solids, and
interactions	5	rules governing the transitions (selection rules)
Selection rules and group theory	2	introduction to group theory and its application to the selection rules
Confirmation of the achievement	1	

[Textbook] Recommended books will be discussed in class.

[Textbook(supplemental)] Lecture notes will be distributed.

[Prerequisite(s)] Undergraduate-level electromagnetism and quantum mechanics.

【Independent Study Outside of Class】

[Web Sites]

Optimum System Design Engineering

最適システム設計論

[Code] 10G403 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	2	
	5	
	2	
	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10B631

High Energy Radiation Effects in Solid

高エネルギー材料工学

[Code] 10B631 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 3rd [Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] A. Kinomura, Q. Xu, A. Yabuuchi

【Course Description】 Selection, fabrication and deterioration of materials are important factors for mechanical system design. It is necessary to understand conditions under which selected materials are actually used. In particular, special design policies are required for the materials used under irradiation of high-energy particles and radiation. On the other hand, it is possible to intentionally make use of property changes of materials by high-energy particle irradiation.

Irradiation of high-energy particles such as accelerated neutrons, ions and electrons deposits very high energies at local regions. Such irradiated regions undergo extreme conditions which cannot be realized by other methods. As a result, the irradiation leads to significant structural and stoichiometric changes in materials. This lecture gives general description of materials irradiation effects, irradiation effects on materials related to nuclear power plants, and academic/industrial applications of materials fabrication/analysis by using high-energy particles.

[Grading] Grading is based on small quizzes and report submission (if necessary) on the lecture.

[Course Goals] To understand reactions and property changes of materials under radiation and high-energy particle irradiation.

[Course Topics]

Theme	Class number of times	Description
		(1) Introduction
		(2) Scattering of high-energy particles with atoms in solids
		(3) Displacement of atoms in solids by high-energy particles
		(4) Motion and behaviors of point defects
		(5) Rate equation of point defects and secondary-defect formation
		(6) The influence of irradiation on material properties
		(7) Activation of materials
	15	(8) High-energy particle sources
		(9) Ion beam fabrication
		(10) Ion beam analysis
		(11) Electron beam applications
		(12) Materials irradiation studies
		(13) Neutron irradiation effects and nuclear materials
		(14) Positron analysis

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge on materials engineering and mechanics

【Independent Study Outside of Class】

[Web Sites]

Advanced Experimental Techniques and Analysis in Engineering Physics 先端物理工学実験法

[Code] 10B634 [Course Year] Master and Doctor Course [Term] (intensively; in summer vacation)

[Class day & Period] [Location] Research Reactor Institute [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
-------	--------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10Q807

Theory for Design Systems Engineering デザインシステム学

[Code] 10Q807 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Tetsuo Sawaragi and Hiroaki Nakanishi,

[Course Description] The lecture focuses on the human design activity; designing artifacts (things, events and systems) based on human intuitions, and designing human-machine systems in which the relations between human and objects are of importance.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
	2		
	2		
	3		
	3		
	2		
	2		
	1		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

High Precision Engineering 超精密工学

[Code] 10B828 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd
[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture
[Language] Japanese+Englihs [Instructor] Ari Ide-Ektessabi,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Class number of times	Description	
1	Introduction to High Precision Analysis Using Synchrotron Radiations	
r	Complexity of Dediction and V and Flagman Constant	
2	Synchrotron Radiation and X-ray Fluorescence Spectroscopy	
3	Micro Imaging and Quantitative XRF micro Analysis	
5	where maging and Quantitative AKI' mileto Anarysis	
4	Fine Structure Spectroscopy	
4	The Stucture Specifoscopy	
5	Fine Structure Spectroscopy	
5	The Stucture Specifoscopy	
6	Synchrotron Padiation Massurament	
0	Synchrotron Radiation Measurement	
7	Elemental Images of Single Neurons by Using SR-XRF I	
/		
8	Elemental Images of Single Neurons by Using SR-XRF II	
0	Elemental images of Single Neurons by Osing SK-AKI' II	
0	Elemental Imaging of Mouse ES Calls (Application)	
)	Elemental Imaging of Mouse ES Cells(Application)	
10	Application of Synchrotron Radiation in the Investigation of process of	
10	neuronal differentiation	
11	Chemical State Imaging for Investigations of Neurodegenerative Disorders	
11	(Parkinsonism-Dementia Complex)	
12	Chemical State Imaging for Investigations of Neurodegenerative Disorders:	
12	Chemical State of Iron in Parkinsonism Dementia Complex (PDC)	
13	Comparison with other techniques	
15	Comparison with other techniques	
14	Comparison with other techniques	
14	Comparison with other techniques	
15		
	times 1 2 3 4 5 6 7 8 9 10 11 12 13 14	

[Textbook]

[Textbook(supplemental)] Application of Synchrotron Radiation, Arid Ide-Ektessabi, Sp ringer 2007

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] http://ocw.kyoto-u.ac.jp/graduate-school-of-engineering-jp/ultra-high-precision-analysis/schedule [Additional Information]

10V003

Biomechanics

バイオメカニクス

[Code] 10V003 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] [Credits]2 [Restriction] [Lecture Form(s)] [Language]Japanese [Instructor]Taiji Adachi, [Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
	2	
	4	
	4	
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Introduction to Biomedical Engineering 医工学基礎

[Code] 10W603 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] Intensive lecture using 3 days on Saturdays since mid-June [Location] Katsura

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor],,,

[Course Description] Understand basic concepts related to clinical medicine and medical engineering. And expand the range of research by exchange each engineering knowledge and experience.

[Grading] Participate to the workshops submit a report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction to		
medicine for	3	
engineering students		
Introduction to	4	
Medical Engineeri	4	
Cross-field workshop	8	
【Textbook】no 【Textbook(supplement	tal) 🕽	
[Prerequisite(s)]		
【Independent Study O	utside of Class]	
[Web Sites]		
Additional Information	n]	

10B440

Environmental Fluid Dynamics 環境流体力学

[Code] 10B440 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	6	
	4	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Turbulence Dynamics

乱流力学

[Code] 10Q402 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Hanazaki,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	4	
	2	
	2	
	3	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Crystallography of Metals 金属結晶学

[Code] 10G055 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 3rd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description] Metallic crystal structure and deformation behavior are lectured on the basis of metal physics and dislocation theory. Especially, mechanical properties of dislocation and its substructure, which is changed in association with deformation, are introduced, and the effect of grain boundary and free surface on dislocation motion is explained.

【Grading】Reporting assignment

[Course Goals] The objective of this lecture is to deepen a further understanding of crystal growth methods, the dislocation theory and industrial problems.

[Course Topics]

Theme	Class number of times	Description
		Introduction
Tu tu a du ati au	1	Ideal strength and slip deformation
Introduction	1	Concept of dislocation
		Simulation
		Typical crystallographic structure
Basis of crystallography	1	Allotropic transformation
		Stereographic projection of crystal
High temperature and	1	Furnace
vacuum techniques	1	Vacuum pump
		Single- and bi-crystal growth
Crystal breeding	2	Crystal growth
Crystal brocking	2	Vapor deposition and thin film
		Plastic deformation of crystal
	3	Definition and type of dislocation
Dislocation theory		Strain field around dislocation
		Dislocation reaction
		Dislocation multiplication
		Dislocation substructure
Mechanical properties of		Grain boundary structure
single- and bi-crystals	1	Reaction between dislocation and grain boundary
		Deformation of micro- and nano- materials
		Fatigue of single crystal
Fatigue	3	Fatigue dislocation substructure
Taugue	5	Fatigue cracking mechanism
		Fatigue of micro- and nano- materials
Observation and analysis	2	Introduction of electron microscope and observation case
techniques	-	
Summary	1	Discussion and report

[Textbook **]** The teacher provide articles for this lecture.

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar: Dynamics of Atomic Systems

原子系の動力学セミナー

[Code] 10Q610 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 5th [Location]C3-Lecture Room 1 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture + Exercise [Language] Japanese and English

[Instructor] M. Matsumoto, M. Nishikawa, R. Matsumoto, T. Shimada, Y. Inoue

[Course Description] Particle simulations are a tool of analyzing microscopic phenomena, and widely used in various fields of science and engineering. After providing the basics of particle simulation methods through lectures and exercises, we show various practical applications in thermofluids, solid materials, biophysics, and quantum systems.

[Grading] Reports, presentation/discussion

[Course Goals] - Understanding the basics of particle simulations - Mastering data analysis techniques

[Course Topics]

Theme	Class number of times	Description
Basics of MD simulations (M.Matsumoto) Application: Thermofluidal systems (M.	6	 Numerical simulation of equations of motion Model potentials Data analysis Equilibrium vs. non-equilibrium Lennard-Jones fluids Interface, phase change, energy transport, etc.
Matsumoto) Application: Polymeric materials (Nishikawa)	2	 Fundamentals on mechanical (viscoelastic) properties of polymer materials Application of molecular dynamics method of polymer materials
Application: Biosystems (Inoue)	1	MD simulation of biomolecular systemsRecent examples
Application: Solid systems (R. Matsumoto)	1	Deformation and destructionAlternative methods
Application: Quantum systems (Shimada)	2	 First principle MD Mechanical and electronic properties on nanoscale
Check and Feedback	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Elementary Level of

Analytical mechanics, Quantum mechanics, Material science, Thermodynamics, Statistical physics, Numerical analysis

[Independent Study Outside of Class]

[Web Sites]

Neutron Science Seminor 1

中性子材料工学セミナー

[Code] 10V007 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] Research Reactor Institute [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	2-3	
	2-3	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Neutron Science Seminar II

中性子材料工学セミナー

[Code] 10V008 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] Reseach Reactor Institute [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] K. Mori

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	2	
	9	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10K013

Advanced Mechanical Engineering

先端機械システム学通論

[Code] 10K013 [Course Year] Master and Doctor Course [Term] 2nd term

[Class day & Period] Tue 5th and Thu 4th [Location] C3-Lecture Room 5 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Faculty members from several fields

[Course Description] Lectures on recent topics in various fields of mechanical engineering will be given in English. This is mainly for foreing students (MC/DC), but Japanese students are also welcome.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Mechanics	2	Detailed schedule will be annouced later.
Materials	2	
Thermodynamics	2	
Fluid dynamics	2	
Control	2	
Design	2	
Microengineering	2	
Examination/Feedback	: 1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This class will be given every two years; Not given in 2017.

Advanced Modern Science and Technology (English lecture) 現代科学技術特論(英語科目)

[Code]10K005 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period]Thu 5th [Location]A2-306 [Credits]2(Semester system) [Restriction]No Restriction [Lecture Form(s)] Relay Lecture [Language] English

 Instructor
 GL
 Edu.
 Center,
 J.
 Assoc.
 Prof.,
 Ryosuke
 Matsumoto

 Related professors
 <

[Course Description] Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system.

Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement. 【Course Goals】

[Course Topics]

Theme	Class number of times	Description	
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)	
Functional Organic Molecular Materials for Molecular Scale Nanoscience	1	This lecture explains functional organic molecular materials with functions like photochromism or molecular conductance, which are expected to play an active role in molecular scale nanoscience.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)	
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)	
Role of Nanoparticles Aiming at Theranostic Agents for Solid Cancers – Sustainable Universe Health Care in the Aged Society	1	Malignancy takes the first position for the cause of mortality in Japan. Realization of a "society of health and longevity" therefore requires a general method for diagnosis and therapy for cancers in the early stage. Nanoparticles are currently highly expected to this type of medicinal treatment, because nanoparticles can avoid expensive therapy, which would bankrupt our universal health care system.(S. Kimura: Dept. of Material Chemistry)	
What are polymers?	1	What is a polymer? Also, what is the difference between polymers and other molecules? The characteristics of polymers and polymerizations are explained with some examples on practical applications of polymers.(M. Ouchi: Dept. of Polymer Chemistry)	
Precision Polymerization and Functional Materials by Macromolecular Design	1	The methodology to synthesize polymers precisely and their features are described. In addition, some examples on functional materials using polymers whose molecular design is important are introduced.(M. Ouchi: Dept. of Polymer Chemistry)	
Analysis and Design of Socio-Technical Systems	1	When introducing various kinds of automation systems including robots into a new work environment, it is necessary to design and analyze from the viewpoint of socio-technical systems, which is the interaction system of people, technology and organization. In this lecture, specific problems and solutions are described.(T. Sawaragi: Dept. of Mechanical Engineering and Science)	
Computational Chemistry and computer science	1	Remarkable progress in the computer science has been revolutionizing scientific research and technological development for this decade. This trend will further accelerate in the future. This lecture reviews the impact of state of the art computer science on the molecular chemistry as an example.(R. Fukuda: Dept. of Molecular Engineering)	
Photofunctional Single-Walled Carbon Nanotubes	1	Basic chemical properties of single-walled carbon nanotubes are introduced, and then applications of them as photofunctional molecular platform and charge transport pathway are presented. (T. Umeyama: Dept. of Molecular Engineering)	
Renewable energies and rechargeable batteries	1	For the effective use of renewable energies, rechargeable batteries have been focused. Basic chemistry of batteries and how the rechargeable batteries are utilized for the storage of the energies will be given by the first lecture.(T. Abe: Energy and Hydrocarbon Chemistry)	
Renewable energies and hydrogen production	1	Fuel cells using hydrogen are clean energy sources. The second lecture is about the hydrogen production based on the renewable energies.(T. Abe: Energy and Hydrocarbon Chemistry)	
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)	
Optical clocks -measurement of time at the 18th decimal place	1	Time or frequency is the most precisely measurable quantity. Clocks referenced to atomic resonances, called atomic clocks, have extremely small uncertainies. They realize the definition of second and are applied to the global positioning system (GPS). This lecture introduces atomic clocks based on lasers, which improve the uncertainty to be the 18th decimal place.(K. Sugiyama: Dept. of Electronic Science and Engineering)	
Mechanism of particle electrification	1	The basic concepts and theories of charge transfer between solid surfaces are summarized and particle electrification caused by repeated impacts on a wall is formulated.(S. Matsusaka: Dept. of Chemical Engineering)	
Control of electrostatic charge on particles	1	On the basis of the concepts and formulation on particle electrification, new methods for the control of electrostatic charge on particles are presented.(S. Matsusaka: Dept. of Chemical Engineering)	

【Textbook】None

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students who take Autumn term should register Lecture code 10H006.

10X411

Design of Complex Mechanical Systems

複雑系機械システムのデザイン

[Code] 10X411 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Theory for Designing Artifacts

アーティファクトデザイン論

[Code] 10X402 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 5th [Location] C3-Lecture Room 4a [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Tetsuo Sawaragi, Kumiyo Nakakoji

[Course Description] The activity of design is fundamentally similar across a wide variety of domains. I use artifact in a broad and atypical sense to describe any product of intentional creation, including physical goods, services, information systems, buildings, landscapes, organizations, and societies. The central theme of this lecture is that a unifying framework informs the human activity of design across all domains. Especially, understanding user needs is a key element of problem definition, and that understanding is usually best developed with interactive and immersive methods. In this lecture, a variety of methodologies for participatory systems approach and an idea of user-experience are provided, and its contributions to the design process are discussed.

[Grading] Students will be evaluated based on the following criteria, in the order listed. (1) Exercises assigned in class: approx. 20% (2) Final exam: approx. 60% (3) Contributions to classwork (e.g., asking good questions): approx. 20%

[Course Goals] This course is aimed at developing the ability to apply methods for identifying problems and interactively analyzing/evaluating systems, based on understanding of the principles of artifact design and on systematic thinking.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	We will shed light on the concept of artifacts as something to be put on equal footing with natural objects and examine the history of artifacts in terms of how they were viewed in different ages?namely, artifacts as modes of representation in the ancient world, artifacts as necessities for survival in the middle ages, artifacts as forms of convenience in modern times, and artifacts as a means of perpetuation in the current era.
Artifact function and purpose	3	The effects that artifacts have on the outside world?i.e., other things?are "functions." Function is the concept of questioning the existence of an artifact, and design is the formulation of functions for achieving an intended purpose. We will discuss the categorization of artifacts in terms of how the "purpose" of artifacts relates to the context in which they are used, and look at the origins of artifacts from the perspective of semiosis.
Artifact design principles	2	To understand an artifact is to know how its internal structure acts on the outside world to realize its function. Today, cybernetics?which has explored the interaction between the physical world and the world of information?is expanding into a concept that encompasses society as well (second-order cybernetics), and concepts have been put forward for actively rethinking how human cognition and decision-making interact with the outside world (ecological approaches, socially distributed cognition, naturalistic decision-making). We will examine artifact design principles based on theories related human activity at the boundary of these externalities.
Artifact design representation and evaluation	3	Design must fulfill its role of enhancing the quality of life through the creation of not only individual artifacts, but also environments and social systems that encompass groups of artifacts and natural objects. We will discuss the path toward expanding the scope of design from physical objects to environments and social systems that include intangible services, including with regard to problem development/representation methods, how to set purposes of design, how to eliminate the ambiguities and conflicts among various goals, searching for alternative design strategies, design evaluation, and principles and methods of consensus-forming among different stakeholders.
User-centered artifact design	2	The quality of designs is something to be evaluated by the user, and hence there must be collaboration between users and designers/producers. Moreover, complex design challenges cannot be resolved by experts of only one discipline; they must be tackled by pooling the design-related knowledge of different domains. We will discuss the concept of user-centered design, design rationale, and international standards of design processes for achieving design that is grounded in the user 's needs/perspective.
Participatory systems approach	2	In order to deal with the design of large-scale, complex artifacts, one must take the approach of systemically structuring problems and basing design on diverse perspectives. We will broadly examine: interactive processes among system designers, users, and computers; methods of structurally modeling problems through repeated dialogue between experts in relative disciplines and computers; and ways of supporting the perceptions, interpretations, and decision-making of designers and users. We will also consider the utility of the participatory systems approach in smooth, effective implementation of system design.
Exercise in participatory systems approach	2	Students will apply the participatory systems approach to a real-world artifact design challenge, and report the results of this exercise.

[Textbook] Lecture notes used in class will be distributed as needed. Refer to "Textbook (supplemental)" below.

【Textbook(supplemental)】1. 吉川弘之 [2007] 人工物観,横幹,1(2),59-65 2. Suh, N.P. [1990] The Principles of Design, Oxford University Press (邦訳:スー(翻訳:畑村 洋太郎)「設計の原理?創造的機械設計論」,朝倉書店,1992.) 3. 吉川弘之 [1979] 一般設計学序説,精密機械 45 (8) 20?26, 1979. 4. Vladimir Hubka and W. Ernst Eder [1995] Design Science, Springer 5. Simon,H.[1996] The Sciences of the Artificial Third edition 秋葉元吉、吉原英樹訳 [1999]『システムの科学』パーソナルメディア 6. H・ A・サイモン [1979] 稲葉元吉・倉井武夫訳,『意思決定の科学』,産業能率大学出版部7. Hutchins, Edwin [1995] Cognition in the Wild. MIT Press 8. Klein, G., Orasanu, J., Calderwood, R., and Zsambok, C.E. [1993] Decision Making in Action: Models and Methods. Ablex Publishing Co., Norwood, NJ. 9. D・ノーマン [1986] The Design of Everyday Things, 野島久雄訳『誰のためのデザイン?:認知科学者のデザイン原論』、新曜社 10. 椹木、河村 [1981]:参加型システムズ・アプローチ 手法と応用、日 刊工業新聞社ほか

门工未初间江西刀

[Prerequisite(s)]
[Independent Study Outside of Class]

[Web Sites]

web sites 1

[Additional Information] Office hours will be held for one hour before and after each class period (preferably 5th period on Tuesdays, but also 3rd period on Wednesdays). Appointments for other times can be requested by e-mail.

693517

Theory of Symbiotic Systems 統合動的システム論

[Code] 693517 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Mon 4th

[Location] Integrated Research Bldg.-213 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],,,

[Course Description] Various theories on developing and maintaining harmonious symbiosis among humans, artifacts, and environments are lectured and discussed. Topics include typical forms of harmonious coexistence such as in ecological systems, caring and artistic nature of communication and interactions, philosophical discussions on deep-ecology, and methodologies for designing symbiotic systems.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	3	
	3	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Control Theory for Mechanical Systems

機械システム制御論

[Code] 693510 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-315 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3-4	
	2-3	
	3-4	
	3-4	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

693513

Theory of Human-Machine Systems

ヒューマン・マシンシステム論

[Code] 693513 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
	1		
	3		
	3		
	2		
	3		
	3		
	1-2		
	1-2		
	1-2		
	1-2		

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Dynamical Systems, Advanced

力学系理論特論

[Code] 693431 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 4th

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	2	
	2	
	2	
	2	
	1	
	2	
	2	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

653316

Heat Engine Systems 熱機関学

[Code] 653316 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 3rd [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
	1		
	1		
	2		
	2		
	1		
	1		
	2-3		
	2-3		
	1		
	1		

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Combustion Science and Engineering 燃焼理工学

[Code] 653322 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 1st [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
	1-2		
	1-2		
	1-2		
	1-2		
	1-2		
	1-2		
	1-2		
	1-2		
	1-2		
	1-2		

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Mechanical Engineering and ScienceA 機械理工学特別演習 A

[Code] 10V012 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Mechanical Engineering and ScienceB 機械理工学特別演習 B

[Code] 10V013 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Mechanical Engineering and ScienceC 機械理工学特別演習 C

[Code] 10V014 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Mechanical Engineering and ScienceD 機械理工学特別演習 D

[Code] 10V015 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Mechanical Engineering and ScienceE 機械理工学特別演習 E

[Code] 10V016 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Mechanical Engineering and ScienceF 機械理工学特別演習 F

[Code] 10V017 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10G049

Internship M

インターンシップ M (機械工学群)

[Code] 10G049 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese

【Instructor】Tabata, Hasuo

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Internship		
Presentation	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Internship DS

インターンシップ DS(機械工学群)

[Code] 10V019 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor] Tabata, Hasuo [Course Description]

Course Description

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Internship		
Presentation	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Internship DL

インターンシップ DL (機械工学群)

[Code] 10V020 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 6 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor] Tabata, Hasuo [Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Internship		
Presentation	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar of Complex Mechanical Engineering,A

複雑系機械工学セミナーA

[Code] 10V025 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

(Course Description **)** This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,B 海姆石機械工業セミナーP

複雑系機械工学セミナー B

[Code] 10V027 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

[Course Description] This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,C

複雑系機械工学セミナーC

[Code] 10V029 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

(Course Description **)** This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,D

複雑系機械工学セミナーD

[Code] 10V031 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda,

(Course Description **)** This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,E

複雑系機械工学セミナー E

[Code] 10V033 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

(Course Description **)** This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,F

複雑系機械工学セミナーF

[Code] 10V035 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] Engineering Science Depts Bldg.-215 [Credits] 1 [Restriction] [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda,

[Course Description] This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Experiments on Mechanical Engineering and Science, Adv. I

機械理工学特別実験及び演習第一

[Code] 10G051 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	9	
	10	
	10	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10G053

Experiments on Mechanical Engineering and Science,Adv. II 機械理工学特別実験及び演習第二

[Code] 10G053 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	9	
	10	
	10	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Applied Numerical Methods

応用数値計算法

[Code] 10G001 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Toshiyuki Tsuchiya,

[Course Description] Numerical techniques, such as the finite element method and numerical control method, are indispensable in mechanical engineering. In this lecture, basics of numerical techniques which are required to study advanced methods for graduated students will be explained. The lecture will cover the error evaluation, linear system solution (Ax=b), eigenvalue analysis, interpolation approximation method, solutions of ordinary differential equation and partial differential equation. The programing exercise is included in this lecture.

[Grading] Home works (four home works will be assigned) and examination.

[Course Goals] Understandings of mathematical theories and programing implementations of the numerical methods.

[Course Topics]

Theme	Class number of times	Description
		Introduction of this class
Introduction	1	Numerical representations and errors
		Macro programing using spread sheet applications
		Matrix
Linear system	1	Norms
		Singular value decomposition
Linear simultaneous	2	Solution of simultaneous linear equations
equation 1	2	direct method, iteration method
Eigenvalue analysis	2	Eigenvalue problems
Interpolation	2	Interpolation and its errors
Numerical integra 1	2	Numerical integration methods
Normal differential		explicit method, implicit method
equation and	1	
numerical integral		initial value problem, boundary value problem
Partial differential		Differential expression of partial differential
equation	3	Diffusion equation, wave equation
		Poisson equation, Laplace equation
Examination	1	Feedback for homework and examination

[Textbook] Lecture note will be distributed through the course website.

[Textbook(supplemental)] Golub, G. H. and Loan, C. F. V., Matrix Computations, John Hopkins University Press

R.D.Richtmyer and K.W.Morton, Difference Methods for Initial-Value Problems, Second Edition, John Wiley & Sons 1967

[Prerequisite(s)] Basic mathematics for undergraduates

Basic macro programing

[Independent Study Outside of Class] Problems are based on macro on Microsoft Excel or LibreOffice (OpenOffice).

[Web Sites] Lecture notes, home works, and other info will be distributed through PandA:

https://panda.ecs.kyoto-u.ac.jp

[Additional Information] Have a PC with Microsoft Excel with VBA or LibreOffice (https://ja.libreoffice.org/). Apache OpenOffice(http://www.openoffice.org/ja/) wil be also ok.

10G003

Solid Mechanics, Adv.

固体力学特論

[Code] 10G003 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] H. Hirakata

[Course Description] This course provides fundamental concepts of solid mechanics such as stress, strain, and constitutive laws, and methods for analyzing stress/strain fields and deformation of solids and structures on the basis of the concepts. In particular, the course lectures theories of nonlinear problems such as plasticity and creep, and their numerical solutions, or finite element methods, which are important for design and development of mechanical structures.

[Grading] Grading is based on the examination, possibly with considerations of the homework reports.

[Course Goals **]** Students will be able to:

understand solid mechanics deeply and acquire basic knowledge to design mechanical structures.

analyze problems of plasticity and creep by finite element methods.

Theme	Class number of times	Description
Introduction	1	Overview of solid mechanics
Stress	1	Cauchy stress tensor, Equilibrium equation, Invariants
		Material description and spatial description, Displacement, Deformation gradient,
Deformation	2	Lagrange-Green strain and Euler-Almansi strain, Infinitesimal strain, Material time
		derivative
Constitutive equation:	1	L'incer electic eterce eterie menere Hacks ' a leur
linear elasticity	1	Linear elastic stress-strain response, Hooke 's law
Principle of virtual		
work and principle of		Principle of virtual work, Principle of minimum potential energy
minimum potential	1	
energy		
Finite element method	3	Basis of finite element method, Finite element equilibrium equations, Elements,
for linear elasticity	3	Numerical integration
		Plasticity theory (uniaxial and multiaxial problems, yield criteria, flow rule,
Plasticity problems	3	hardening rule, constitutive equations), Finite element method for elasto-plastic
		problems
Creep problems	2	Creep theory (uniaxial and multiaxial constitutive equations), Finite element
	2	method for creep problems
Summary	1	Discussions and reports

[Course Topics]

[Textbook] Lecture materials are distributed in the classroom.

[Textbook(supplemental)] T. Kyoya, Continuum Mechanics, Morikita (2008) (in Japanese)

Y. Tomita, "Foundation and Application of Elastoplasticity "Morikita (1995) (in Japanese)

E. Neto et al., " Computational Methods for Plasticity, " John Wiley & Sons (2008).

[Prerequisite(s)] This course requires basic knowledge of mechanics of materials and solid mechanics.

【Independent Study Outside of Class】

[Web Sites]

Thermal Science and Engineering 熱物理工学

[Code] 10G005 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] H. Yoshida & M. Matsumoto

[Course Description] Several topics in advanced thermal physics are discussed. From microscopic view points, basics of stochastic process and related topics are given. From macroscopic ones, after the concept of entropy is revisited, applications in global environments and hydrogen energy are described.

[Grading] Reports, essays, and/or written examinations.

[Course Goals] Microscopic Viewpoints: Ability of multi-scale modelling

Macroscopic Viewpoints: Ability of global environment modelling

[Course Topics]

Theme	Class number of times	Description
(M) Brownian	1	
motion	1	
(M) Transport		
phenomena and	1	
correlation functions		
(M) Spectral analysis	2	
and fractal analysis	<i>L</i>	
(M) Stochastic		
process and its	3	
applications		
(Y) Entropy and free	1	
energy: revisit	1	
(Y) Science of		
atmosphere and	3	
ocean		
(Y) Hydrogen energy	3	
Check and feedback	1	

【Textbook】Not specified.

【Textbook(supplemental)】

[Prerequisite(s)] Elementary thermodynamics, Statistical physics, Heat transfer engineering, Numerical analysis etc.

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】 (2017) Matsumoto: April 10 ~ May 29

Yoshida: June 5 ~ July 10

10G007

Introduction to Advanced Fluid Dynamics

基盤流体力学

[Code] 10G007 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class nur time	Describtion
5	5
5	5
4	ł
1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Condensed Matter Physics 量子物性物理学

[Code] 10G009 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	4	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Design and Manufacturing Engineering 設計生産論

[Code] 10G011 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	2	
	3	
	2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

動的システム制御論

[Code] 10G013 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Engineering Ethics and Management of Technology 技術者倫理と技術経営

[Code] 10G057 [Course Year] Master 1st [Term] 1st term [Class day & Period] Thu 3rd

[Location]Butsurikei-Kousya [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lectures and Exercise

[Language] Japanese [Instructor] Sawaragi, Nishiwaki, Tomita, M. Komori, Tsuchiya, Noda, Sato, Iseda,

(Course Description **)** Basic knowledge of Engineering Ethics and Management of Technology needed for future project leaders in companies and society is taught. Students have to make group work after-class hours as well as presentations of wrapping-up the discussions. Engineering ethics is the field of applied ethics and system of moral principles that apply to the practice of engineering. The field examines and sets the obligations by engineers to society, to their clients, and to the profession. Management of Technology is a set of management disciplines that allows organizations to manage their technological fundamentals to create competitive advantage. This course consists of lectures, exercises, discussions and oral presentations under supervision of professional faculties and extramural lecturers.

[Grading] Submission of reports and presentations

[Course Goals] To cultivate a spirit of self-sufficiency needed for engineers

[Course Topics]

Theme	Class number of times	Description
		1. Introduction to Engineering Ethics (EE)
	9	2.Medical Engineering Ethics
		3.EE by Institution of Professional Engineers, Japan and abroad
		4. Product Safety and Product Liability
Engineering Ethics		5.Comprehensive Manufacturing and EE (1)
		6.Comprehensive Manufacturing and EE (2)
		7.Group Discussions
		8. History and Philosophy of EE
		9. Presentation on exercise of EE
	5	1. Product Portfolio, Strategy for Competition
Monogoment of		2. Bussiness Domain and MOT for Marketing
Management of Technology		3. Organizational Strategy for Corporates' R & D
		4. Management Theory for R & D
		5. Presentation on exercise of MOT
Summary	1	

[Textbook] No textbook

【Textbook(supplemental)】 Nothing

[Prerequisite(s)] Nothing particular

【Independent Study Outside of Class】

[Web Sites] No Web Site

【Additional Information】 Nothing particular

[Code] 10G203 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 4th

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] H. Kotera, O. Tabata, K. Eriguchi, I. Kanno, T. Tsuchiya,

[Course Description] Micro/nano fabrication processes and materials used to realize micro/nano systems are described. Topics will be photolithography, dry-etching, thin-film deposition, which includes bulk micro machining, surface micro machining and further advanced polymer processing.

[Grading] Evaluated by homework. All report must be submitted to obtain credits.

[Course Goals] To obtain fundamental knowledge about design and fabrication of micro/nano systems and to be familiar with recent fabrication technologies and micro/nano systems.

[Course Topics]

Theme	Class number of times	Description
Semiconductor	3	
microfabrication	5	
Thin-film process	3	
and evaluation	3	
Silicon	3	
micromachining	5	
3D lithography	3	
Soft-micromachining	2	
Feedback	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】

10G203

10G205

Microsystem Engineering

マイクロシステム工学

[Code] 10G205 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 4th [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] English

[Instructor] O. Tabata, H. Kotera, T. Tsuchiya, R. Yokokawa,

[Course Description] Microsystem covers not only technologies related to individual physical or chemical phenomenon in micro scale, but also complex phenomena which are eveolved from their interaction. In this course, the physics and chemistry in micro and nanoscale will be lectured in contrast to those in macro scale. The various kinds of application devices (ex. physical (pressure, flow, force) sensors, chemical sensors, biosensors, actuators (piezoelectric, electrostatic, and shape memory) and their system are discussed.

[Grading] The evaluation will be based on the reports given in each lecture.

[Course Goals] Understand the theory of sensing and actuating in microsystem. Acquire basic knowledge to handle various kinds of phenomena in microscale.

[Course Topics]

Theme	Class number of times	Description	
MEMS modeling	2	Multi-physics modeling in microscale.	
MEMS modeling	2	Electro-mechanical coupling analysis.	
MEMS simulation	2	System level simulation in MEMS.	
Electrostatic	3	Electrostatic sensors and actuators. Theory and application devices	
microsystem	5	Electrostatic sensors and actuators. Theory and application devices.	
Dhysical concors	1	Physical sensors as a fundamental application in microsystem. Accelerometer,	
Physical sensors	4	vibrating gyroscope, pressure sensors.	
Micro total analysys	4	Chemical analysis system and his sensing device using microsystem	
system	4	Chemical analysis system and bio-sensing device using microsytem.	

【Textbook】 Provided in the lecture.

[Textbook(supplemental)] Provided in the lecture.

[Prerequisite(s)] Students are required to take the 10G203 course Micro Process and Material Engineering.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] The student can register only to this class 10G205, but it is required to be able to take consecutive classes at Friday 4th and 5th. Those students who want to take this course has to contact Prof. Tabata (tabata@me.kyoto-u.ac.jp) by the end of 1st term. The student of this class is strongly recommended to take a course 10V201 Introduction to the Design and Implementation of Micro-Systems(10V201), which is a practice for designing microsystem. Those who want to take 10V201 have to take training course for CAD in advance.

Multi physics Numerical Analysis

マルチフィジクス数値解析力学

[Code] 10G209 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 1st

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	2	
	2	
	5	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Theory of Condensed Matter 量子物性学

[Code] 10B619 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Akitomo TACHIBANA

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
	2		
	3		
	3		
	6		
	1		

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Solid State Physics 1

物性物理学 1

[Code] 10G211 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Wed 1st

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)]

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number of times	Description
1	
1-2	
1	
1	
1 -2	
1	
1	
1	
1	
1	
1	
1	
1-2	
1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10G223

Basic Seminar on Micro Engineering A

マイクロエンジニアリング基礎セミナーA

[Code]10G223 [Course Year] Master and Doctor Course [Term]1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

マイクロエンジニアリング基礎セミナーB

[Code]10G224 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Micro Engineering

10G216

Seminar on Micro Engineering A

マイクロエンジニアリングセミナーA

[Code] 10G216 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	-	
	-	
	-	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Micro Engineering B

マイクロエンジニアリングセミナーB

[Code] 10G217 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	-	
	-	
	-	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Strength of Advanced Materials 先進材料強度論

[Code] 10B418 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd [Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] M. Hojo and M. Nishikawa,

[Course Description] The mechanism underlying mechanical and functional properties are lectured for advanced materials used and developed in advanced fields of current engineering. In particular, advanced composite materials, used for aircraft structure etc., are introduced, with a detailed description of the relationship between microscopic constituent materials and macroscopic properties from the perspective of multiscale mechanics; also the anisotropy of their properties, their fatigue and fracture properties are described in the basic discipline for strength of materials. The latest applications are introduced in the field of various transportation systems including airplanes.

[Grading] Grading is based on the reports. The assignments will be given around three times.

[Course Goals] The course goal is to understand basic concepts of composite materials and the underlying mechanism of their mechanical properties from multiscale viewpoints, while the physical understanding of composites is developed based on multiple disciplines.

Theme	Class number of times	Description
Concept of composite materials	2	The concept and definition of composite materials, their constituent materials and manufacturing methods are illustrated. Their application to aircraft structures etc. are also
materials		introduced.
Mechanical properties of		Resin for matrix and various fiber types are explained including their structure and
microscopic constituent	2	mechanical properties. The weakest link model and Weibull distribution are described as a
materials		basis of the statistic nature of strength.
		The specific strength, the specific stiffness, and the rule of mixture for elastic modulus and
		strength are lectured. In particular, the detailed explanation is made to the anisotropy of
Basic mechanical	4	elastic modulus, independent elastic constants in the generalized Hookean law, the
properties	4	anisotropic failure criteria, and laminate theory. The relationship between the mechanical
		properties of microscopic constituent materials and macroscopic properties of composite
		materials is also illustrated.
	2	The mechanism of transverse fracture is illustrated. The mechanical models are described for
		short fiber reinforced composites and particle dispersed composites. The micromechanical
Micromechanics		analyses based on finite element method is also illustrated for the physical understanding of
		the strength of composite materials.
	2	Fracture mechanics of anisotropic materials are described. The interlaminar fracture
Fracture mechanics		toughness and interlaminar fatigue crack propagation, the critical issues in the application of
properties		composite structures, are explained including their underlying mechanism.
		High-temperature superconducting materials are the composite materials consisting of metals
Superconducting	1	and fibrous superconducting materials made of oxides. The mechanism are explained for
materials		understanding that their mechanical properties so much control their electric properties.
D 1 1 1 1		The molding and machining process of composite materials is explained to relate it to their
Process and mechanical properties of composite materials		mechanical properties. Fiber preform, the selection of resin, intermediate materials,
	1	machining and assembly and inspection methods are overviewed from the academic
		viewpoints.
Academic achievement	1	Academic achievements is assessed.
test	-	

[Textbook] Supplementary handouts will be distributed in the class.

[Textbook(supplemental)] D.Hull and T.W.Clyne, An Introduction to Composite Materials, Cambridge University Press.

[Prerequisite(s)] Mechanics of Materials, Continuum Mechanics, Fundamentals of Materials, Solid Mechanics, Adv.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] The order and the item in the course are possibly subject to change.

Precision Measurement and Machining 精密計測加工学

[Code] 10G214 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location]C3 seminar room c1 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]

[Instructor] A. Matsubara and S. Ibaraki,

[Course Description] This course gives the principles of precision measurement and machining process for the meso-micro-nano metric fabrication. The optical measurement technologies (e.g. laser interferometer, optical encoders) and cutting technologies (e.g. cutting mechanics, tool, machine) are shown.

[Grading] Small exams in the term and the final exam

[Course Goals] Understand the basic principles of precision mesurement and machining associated with the applications

[Course Topics]

Theme	Class number of times	Description
Basics of		Concept of accuracy, precision, Relation of measurement, machining, and
measurement and	1	control
machining		control
Basics of precision	2	
measurement	Z	
Optical mesurement	4	
	3	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Micro Engineering

10V003

Biomechanics

バイオメカニクス

[Code] 10V003 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] [Credits]2 [Restriction] [Lecture Form(s)] [Language]Japanese [Instructor]Taiji Adachi, [Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
	2	
	4	
	4	
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Introduction to the Design and Implementation of Micro-Systems 微小電気機械システム創製学

[Code] 10V201 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] C3-Lecture room 1 or 3 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture and Pactice [Language] English

[Instructor] O. Tabata, H. Kotera, T. Tsuchiya, R. Yokokawa,

[Course Description] This is a joint lecture with Hong Kong University of Science and Technology (HKUST). A team consists of two students from each University work together to fullfill the assignment (design a microsystem) through paper survey, analysis, design, and presentation. A student can acquire not only the basic knowledge of a microsystem, but also comprehensive ability of English such as technical knowledge in English, skill for team work, and communication.

[Grading] Presentation, Assignments, and Achievement

[Course Goals] Acquire the knowledge and skill to design and analyze a microsystem.

[Course Topics]

Theme	Class number of times	Description
Tutorial on		Master CAD program for microsystem design and analysis which will be
microsystem CAD	3	utilized to accomplish an assignment.
software		utilized to accomptish an assignment.
Lecture and Task	2	Learn basic knowledge necessary to design a microsystem/MEMS(Micro
Introduction	Z	Electromechical Systems) utilizing microfabrication technology.
Design and analysis	3	Analyze and design a microsystem by communicating with a team member of
work	5	HKUST.
Presentation I	2	The designed device and its analyzed results is presented in detail by team in
Presentation 1		English.
Evatuation of device	3	Evaluate the fabricated microsystem.
Presentation II	2	The measured results and comparison between the analyzed results of the
Presentation II		fabricated microsystem is presented by team in English.

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)] Students are required to take the 10G203 course Micro Process and Material Engineering provoded in 1st term.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] The student of this class is required to register to the course 10G205 Microsystem Engineering provided at Friday 4th so as to be able to take consecutive classes at Friday 4th and 5th. Those who want to take this course have to take training course for CAD in advance. Those students who want to take this course has to contact Prof. Tabata (tabata@me.kyoto-u.ac.jp) by the end of 1st term.

10G041

Advanced Finite Element Methods 有限要素法特論

[Code] 10G041 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd [Location]C3-Lecture Room 2 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture and Practice [Language] English [Instructor] Kotera and Nishiwaki,

[Course Description] This course presents the basic concept and mathematical theory of the Finite Element Method (FEM), and explains how the FEM is applied in engineering problems. We also address important topics such as the physical meaning of geometrical non-linearity, material non-linearity, and non-linearity of boundary conditions, and we explore numerical methods to deal with these nonlinearities. Also, we guide students in class in the use of software to solve several numerical problems, to develop practical skill in applying the FEM to engineering problems.

[Grading] Grading is based the quality of two or three reports and the final exam.

[Course Goals] The course goals are for students to understand the mathematical theory of the FEM and the numerical methods for analyzing non-linear problems based on the FEM.

Course	Topics]
---------------	----------

Theme	Class number of times	Description
Basic knowledge of the FEM	3	What is the FEM? The history of the FEM, classifications of partial differential equations, linear problems and non-linear problems, mathematical descriptions of structural problems (stress and strain, strong form and weak form, the principle of energy).
Mathematical background of the FEM	2	Variational calculus and the norm space, the convergence of the solutions.
FEM formulations	3	FEM approximations for linear problems, formulations of iso-parametric elements, numerical instability problems such as shear locking, formulations of reduced integration elements, non-conforming elements, the mixed approach, and assumed-stress elements.
Classifications of nonlinearities and their formulations	4	Classifications of nonlinearities and numerical methods to deal with these nonlinearities.
Numerical practice	2	Numerical practice using COMSOL.
Evaluation of student achievements	1	

[Textbook]

【Textbook(supplemental)】 Bath, K.-J., Finite Element Procedures, Prentice Hall

Belytschko, T., Liu, W. K., and Moran, B., Nonlinear Finite Elements for Continua and Structures, Wiley

[Prerequisite(s)] Solid Mechanics

【Independent Study Outside of Class】

[Web Sites]

Introduction to Biomedical Engineering 医工学基礎

[Code] 10W603 [Course Year] Master and Doctor Course [Term] 1st term

[Class day & Period] Intensive lecture using 3 days on Saturdays since mid-June [Location] Katsura

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor],,,

[Course Description] Understand basic concepts related to clinical medicine and medical engineering. And expand the range of research by exchange each engineering knowledge and experience.

[Grading] Participate to the workshops submit a report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction to		
medicine for	3	
engineering students		
Introduction to	4	
Medical Engineeri	4	
Cross-field workshop	8	
【Textbook】no 【Textbook(supplement	tal) 🕽	
[Prerequisite(s)]		
【Independent Study O	utside of Class	
[Web Sites]		
[Additional Information	nn I	

Quantum Theory of Molecular Physics 量子分子物理学特論

[Code] 10B617 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Senami, Junior associate professor (Lecturer)

[Course Description] Basics for the application of quantum theory to molecular physics and recent progress. Main topics: analytic mechanics, relativistic quantum mechanics, quantum field theory, and path integral.

[Grading] Homework paper instructed in class

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
1. Analytic mechanics and symmetry in physics	2	Principle of least action, Equation of motion, Hamiltonian mechanics, Symmetry and conservation law in physics, Noether's theorem, Group theory
2. Classical relativistic theory	2	Invariance of the speed of light, Lorentz transformation, Relativistic form of electromagnetism, Four component vector potential
3. Relativistic quantum mechanics	4-6	Relativistic equation of motion, Nonrelativistic limit of Dirac equation, Covariance of Dirac equation, Plane wave solution for Dirac equation and negative energy, Hole theory and problem, Tani-Foldy-Wouthuysen transformation, Chrality
4. A primer of quantum field theory	2-4	Field operator, Charge conjugation, Noether's theorem, Gauge transformation and gauge symmetry, Application of quantum field theory to theoretical study of molecules and condensed matter
5. Electronic Structure Computation	2	Time evolution and propagator, Transition amplitude and path integral, Aharonov-Bohm effect, Path integral in quantum field theory
Confirmation	1	

[Textbook]

[Textbook(supplemental)] J. D. Bjorken, S. D. Drell, Relativistic Quantum Mechanics

J. J. Sakurai, Modern Quantum Mechanics, and Advanced Quantum Mechanics

R. P. Feynmann, A. R. Hibbs, Quantum Mechanics and Path Integrals

[Prerequisite(s)] Quantum Mechanics

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] If English support is required, please contact the instructor by email. Then words written on a blackboard and some supplementary documents are provided in English.

Quantum Theory of Chemical Physics 量子化学物理学特論

[Code] 10Q408 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Akitomo TACHIBANA

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number times	of Description
2	
4	
4	
4	
1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V205

Solid State Physics 2

物性物理学 2

[Code] 10V205 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)]

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number of times	Description
4-5	
4-5	
4-5	
1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Mechanical Engineering

先端機械システム学通論

[Code] 10K013 [Course Year] Master and Doctor Course [Term] 2nd term

[Class day & Period] Tue 5th and Thu 4th [Location] C3-Lecture Room 5 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Faculty members from several fields

[Course Description] Lectures on recent topics in various fields of mechanical engineering will be given in English. This is mainly for foreing students (MC/DC), but Japanese students are also welcome.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Mechanics	2	Detailed schedule will be annouced later.
Materials	2	
Thermodynamics	2	
Fluid dynamics	2	
Control	2	
Design	2	
Microengineering	2	
Examination/Feedback	x 1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This class will be given every two years; Not given in 2017.

Ryosuke

10K005

Matsumoto

Advanced Modern Science and Technology (English lecture) 現代科学技術特論(英語科目)

[Code]10K005 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period]Thu 5th [Location]A2-306 [Credits]2(Semester system) [Restriction]No Restriction [Lecture Form(s)] Relay Lecture [Language] English

 [Instructor]
 GL
 Edu.
 Center,
 J.
 Assoc.
 Prof.,

 Related professors

[Course Description] Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system.

Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement. [Course Goals]

[Course Topics]

Theme	Class number of	Description	
	times		
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)	
Functional Organic Molecular Materials for Molecular Scale Nanoscience	1	This lecture explains functional organic molecular materials with functions like photochromism or molecular conductance, which are expected to play an active role in molecular scale nanoscience.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)	
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)	
Role of Nanoparticles Aiming at Theranostic Agents for Solid Cancers – Sustainable Universe Health Care in the Aged Society	1	Malignancy takes the first position for the cause of mortality in Japan. Realization of a "society of health and longevity" therefore requires a general method for diagnosis and therapy for cancers in the early stage. Nanoparticles are currently highly expected to this type of medicinal treatment, because nanoparticles can avoid expensive therapy, which would bankrupt our universal health care system.(S. Kimura: Dept. of Material Chemistry)	
What are polymers?	1	What is a polymer? Also, what is the difference between polymers and other molecules? The characteristics of polymers and polymerizations are explained with some examples on practical applications of polymers.(M. Ouchi: Dept. of Polymer Chemistry)	
Precision Polymerization and Functional Materials by Macromolecular Design	1	The methodology to synthesize polymers precisely and their features are described. In addition, some examples on functional materials using polymers whose molecular design is important are introduced.(M. Ouchi: Dept. of Polymer Chemistry)	
Analysis and Design of Socio-Technical Systems	1	When introducing various kinds of automation systems including robots into a new work environment, it is necessary to design and analyze from the viewpoint of socio-technical systems, which is the interaction system of people, technology and organization. In this lecture, specific problems and solutions are described.(T. Sawaragi: Dept. of Mechanical Engineering and Science)	
Computational Chemistry and computer science	1	Remarkable progress in the computer science has been revolutionizing scientific research and technological development for decade. This trend will further accelerate in the future. This lecture reviews the impact of state of the art computer science or molecular chemistry as an example. (R. Fukuda: Dept. of Molecular Engineering)	
Photofunctional Single-Walled Carbon Nanotubes	1	Basic chemical properties of single-walled carbon nanotubes are introduced, and then applications of them as photofunctional molecular platform and charge transport pathway are presented. (T. Umeyama: Dept. of Molecular Engineering)	
Renewable energies and rechargeable batteries	1	For the effective use of renewable energies, rechargeable batteries have been focused. Basic chemistry of batteries and how the rechargeable batteries are utilized for the storage of the energies will be given by the first lecture. (T. Abe: Energy and Hydrocarbon Chemistry)	
Renewable energies and hydrogen production	1	Fuel cells using hydrogen are clean energy sources. The second lecture is about the hydrogen production based on the renewable energies.(T. Abe: Energy and Hydrocarbon Chemistry)	
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)	
Optical clocks -measurement of time at the 18th decimal place	1	Time or frequency is the most precisely measurable quantity. Clocks referenced to atomic resonances, called atomic clocks, hav extremely small uncertainies. They realize the definition of second and are applied to the global positioning system (GPS). This lecture introduces atomic clocks based on lasers, which improve the uncertainty to be the 18th decimal place.(K. Sugiyama: Dep of Electronic Science and Engineering)	
Mechanism of particle electrification	1	The basic concepts and theories of charge transfer between solid surfaces are summarized and particle electrification caused by repeated impacts on a wall is formulated.(S. Matsusaka: Dept. of Chemical Engineering)	
Control of electrostatic charge on particles	1	On the basis of the concepts and formulation on particle electrification, new methods for the control of electrostatic charge on particles are presented.(S. Matsusaka: Dept. of Chemical Engineering)	

【Textbook】None

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students who take Autumn term should register Lecture code 10H006.

Design of Complex Mechanical Systems

複雑系機械システムのデザイン

[Code] 10X411 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	2	
	2	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10X402

Theory for Designing Artifacts

アーティファクトデザイン論

[Code] 10X402 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 5th [Location] C3-Lecture Room 4a [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Tetsuo Sawaragi, Kumiyo Nakakoji

[Course Description] The activity of design is fundamentally similar across a wide variety of domains. I use artifact in a broad and atypical sense to describe any product of intentional creation, including physical goods, services, information systems, buildings, landscapes, organizations, and societies. The central theme of this lecture is that a unifying framework informs the human activity of design across all domains. Especially, understanding user needs is a key element of problem definition, and that understanding is usually best developed with interactive and immersive methods. In this lecture, a variety of methodologies for participatory systems approach and an idea of user-experience are provided, and its contributions to the design process are discussed.

[Grading] Students will be evaluated based on the following criteria, in the order listed. (1) Exercises assigned in class: approx. 20% (2) Final exam: approx. 60% (3) Contributions to classwork (e.g., asking good questions): approx. 20%

[Course Goals] This course is aimed at developing the ability to apply methods for identifying problems and interactively analyzing/evaluating systems, based on understanding of the principles of artifact design and on systematic thinking.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	We will shed light on the concept of artifacts as something to be put on equal footing with natural objects and examine the history of artifacts in terms of how they were viewed in different ages?namely, artifacts as modes of representation in the ancient world, artifacts as necessities for survival in the middle ages, artifacts as forms of convenience in modern times, and artifacts as a means of perpetuation in the current era.
Artifact function and purpose	3	The effects that artifacts have on the outside world?i.e., other things?are "functions." Function is the concept of questioning the existence of an artifact, and design is the formulation of functions for achieving an intended purpose. We will discuss the categorization of artifacts in terms of how the "purpose" of artifacts relates to the context in which they are used, and look at the origins of artifacts from the perspective of semiosis.
Artifact design principles	2	To understand an artifact is to know how its internal structure acts on the outside world to realize its function. Today, cybernetics?which has explored the interaction between the physical world and the world of information?is expanding into a concept that encompasses society as well (second-order cybernetics), and concepts have been put forward for actively rethinking how human cognition and decision-making interact with the outside world (ecological approaches, socially distributed cognition, naturalistic decision-making). We will examine artifact design principles based on theories related human activity at the boundary of these externalities.
Artifact design representation and evaluation	3	Design must fulfill its role of enhancing the quality of life through the creation of not only individual artifacts, but also environments and social systems that encompass groups of artifacts and natural objects. We will discuss the path toward expanding the scope of design from physical objects to environments and social systems that include intangible services, including with regard to problem development/representation methods, how to set purposes of design, how to eliminate the ambiguities and conflicts among various goals, searching for alternative design strategies, design evaluation, and principles and methods of consensus-forming among different stakeholders.
User-centered artifact design	2	The quality of designs is something to be evaluated by the user, and hence there must be collaboration between users and designers/producers. Moreover, complex design challenges cannot be resolved by experts of only one discipline; they must be tackled by pooling the design-related knowledge of different domains. We will discuss the concept of user-centered design, design rationale, and international standards of design processes for achieving design that is grounded in the user 's needs/perspective.
Participatory systems approach	2	In order to deal with the design of large-scale, complex artifacts, one must take the approach of systemically structuring problems and basing design on diverse perspectives. We will broadly examine: interactive processes among system designers, users, and computers; methods of structurally modeling problems through repeated dialogue between experts in relative disciplines and computers; and ways of supporting the perceptions, interpretations, and decision-making of designers and users. We will also consider the utility of the participatory systems approach in smooth, effective implementation of system design.
Exercise in participatory systems approach	2	Students will apply the participatory systems approach to a real-world artifact design challenge, and report the results of this exercise.

[Textbook] Lecture notes used in class will be distributed as needed. Refer to "Textbook (supplemental)" below.

【Textbook(supplemental)】1. 吉川弘之 [2007] 人工物観,横幹,1(2),59-65 2. Suh, N.P. [1990] The Principles of Design, Oxford University Press (邦訳:スー(翻訳:畑村 洋太郎)「設計の原理?創造的機械設計論」,朝倉書店,1992.) 3. 吉川弘之 [1979] 一般設計学序説,精密機械 45 (8) 20?26, 1979. 4. Vladimir Hubka and W. Ernst Eder [1995] Design Science, Springer 5. Simon,H.[1996] The Sciences of the Artificial Third edition 秋葉元吉、吉原英樹訳 [1999]『システムの科学』パーソナルメディア 6. H・ A・サイモン [1979] 稲葉元吉・倉井武夫訳,『意思決定の科学』,産業能率大学出版部7. Hutchins, Edwin [1995] Cognition in the Wild. MIT Press 8. Klein, G., Orasanu, J., Calderwood, R., and Zsambok, C.E. [1993] Decision Making in Action: Models and Methods. Ablex Publishing Co., Norwood, NJ. 9. D・ノーマン [1986] The Design of Everyday Things, 野島久雄訳『誰のためのデザイン?:認知科学者のデザイン原論』、新曜社 10. 椹木、河村 [1981]:参加型システムズ・アプローチ 手法と応用、日 刊工業新聞社ほか

门工未初间江西刀

[Prerequisite(s)]
[Independent Study Outside of Class]

[Web Sites]

web Siles 1

[Additional Information] Office hours will be held for one hour before and after each class period (preferably 5th period on Tuesdays, but also 3rd period on Wednesdays). Appointments for other times can be requested by e-mail.

Advanced Exercise in Micro Engineering A

マイクロエンジニアリング特別演習 A

[Code] 10V210 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V211

Advanced Exercise in Micro Engineering B

マイクロエンジニアリング特別演習 B

[Code] 10V211 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Micro Engineering C

マイクロエンジニアリング特別演習C

[Code] 10V212 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V213

Advanced Exercise in Micro Engineering D

マイクロエンジニアリング特別演習D

[Code] 10V213 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercise in Micro Engineering E

マイクロエンジニアリング特別演習 E

[Code] 10V214 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V215

Advanced Exercise in Micro Engineering F

マイクロエンジニアリング特別演習 F

[Code] 10V215 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Micro/Nano Scale Material Engineering

マイクロ・ナノスケール材料工学

[Code] 10Z101 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] 11, 12, 13, 14 September [Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] TABATA,HIRAKATA,HOJO,ADACHI,TSUCHIYA,YOKOKAWA,SUMIGAWA,INOUE,NAKAMURA,KAME,(Aichi Institute of Technology) NAMAZU, (Seoul National University) KIM

[Course Description] This class lectures specific mechanical properties and behavior of micro to nano scale materials, underlying mechanism of those properties and behavior and characterization method. Furthermore, techniques of measurements, analysis and structural design of biomaterial such as protein and DNA which are expected to be utilized as micro nano scale materials are lectured.

[Grading] The evaluation will be based on the reports given in each lecture. (All reports submission is mandatory.)

[Course Goals] Educate engineers and researchers with fundamental knowledge on specific mechanical properties and behavior of micro to nano scale materials. They can promote industrial application of micro and nano materials based on the deep understanding about how specific mechanical properties and behavior of micro to nano scale materials dominate performance, reliability and lifetime of MEMS (Micro Electromechanical Systems), microsystems and micro scale components.

Theme	Class number of times	Description	
Outline	1	In this lecture, application examples of micro and nano scale material on devices and importance of mechanical properties and its behavior on device characteristics are described. (Tabata)	
Fracture and fatigue mechanism of materials in the micro- and nano- meter scale	4	We explain fundamentals on the fracture and fatigue mechanism of materials in the micro- and nano-meter scale. At first, the characteristic properties of deformation and fracture in small components such as thin films, wires, dots etc. are discussed in terms of the solid mechanics. Focus is put on the interface strength of dissimilar materials as well including the effect of fatigue, creep and environment. Then, we explain the characteristics and mechanisms of "size effects" on the strength of micro- and nano-materials. As a representative example of materials with microscale structures, properties of composite materials are lectured. Characterization of microscopic components such as fibers and matrices are explained from the view points of the difference from bulk materials. Testing methods and properties of fiber/matrix interface are described. The relationship between the deformation and fracture of microscopic components and those of macroscopic composite materials are explained including the underlying mechanism. Explanation is also made to anisotropy of elastic properties and strength. (Hirakata, Sumigawa, Hojo)	
Mechanical properties of Silicon	1	Silicon, one of the most widely used materials in micro/nano devices, is used not only a semiconductor material but also a mechanical material because of its sperior mechanical properties. In this lecture, the properties of silicon, such as physical, electrical, mechanical, electro-mechanical properties, will be presented in the view point of a mechanical structural material. Especially the lecture will focus on the elastic properties, piezoresistive effect, and fracture/fatigue properties of silicon, indespensable for designing micro/nano-devices. (Tsuchiya)	
Characterization of micro nano material	1	In this class, first I will lecture the evaluation method for the mechanical properties of micro and nano-scale materials used for MEMS and semiconductor devices. Several representative experimental techniques for micro and nano mechanical testing will be presented and explained. Then I will lecture representative functional materials, such as shape memory alloy films and self-propagating exothermic foils, and lecture regarding the possibility of their application to MEMS. (Namazu)	
Piezoresistive effect of micro and nano material	2	In this theme, we will study the fundamental concepts of electronic-state theory and band structures to represent behavior of electrons in materials, and will discuss the electromechanical properties of materials based on the electronic-state theory. In particular, the principle and features of the piezoresistive effect, the change in the electrical resistivity due to mechanical stresses and strains, will be derived from the band structures of materials. The mechanisms of scale dependence of piezoresistivity in nanoscale materials such as silicon, carbon nanotube, and graphene will be also discussed. (Nakamura)	
Bio/Nano material (1)	2	In tissue adaptation, regeneration and stem cell differentiation in tissue morphogenesis, cellular functional activities such as cell migration and division are regulated by complex mechano-chemical couplings at molecular level. To understand such a hierarchical dynamics from nanoscopic molecular events to microscopic cellular dynamics, we will discuss analysis of the molecular and cellular mechanical behaviors as bio-nano materials by integrating experiments, mathematical modeling and computer simulations. (Adachi, Inoue)	
Bio/Nano material (2)	1	Cells are well regulated their fates and functions by extracellular microenvironments, consisted with chemical/physical cues and cell-cell interaction at a nano/micro-meter scale. This lecture provides an insight of design methods of biomaterials and their applications to recapitulate extracellular microenvironments. (Kamei)	
Bio/Nano material (3)	1	Motor proteins are nano-scale actuators in vivo. Their active functions can be reconstructed in vitro to be utilized as a driving source of micro/nano systems. This lecture introduces fundamentals of their mechanical properties and molecular design methods. (Yokokawa)	
Bio/Nano material (4)	1	This lecture describes DNA nanotechnology to construct nanoscale structures using DNA as a structural material. Fundamental knowledge, design methodology and application of DNA origami technique are focused. (Kim)	
Feedback	1		

[Textbook]

[Textbook(supplemental)] Biomaterial: Bionano material: Mechanics of Motor Proteins & the Cytoskeleton, Jonathon Howard, Sinauer Associates (January 2001)

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This lecture is provided as a part of NIP (Nanotech Innovation Professional) course of the Nanotech Career-up Alliance (Nanotech CUPAL) project.

10G049

Internship M

インターンシップ M (機械工学群)

[Code] 10G049 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese

【Instructor】Tabata, Hasuo

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Internship		
Presentation	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Internship DS

インターンシップ DS(機械工学群)

[Code] 10V019 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor] Tabata, Hasuo [Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Internship		
Presentation	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V020

Internship DL

インターンシップ DL (機械工学群)

[Code] 10V020 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 6 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor] Tabata, Hasuo [Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Internship		
Presentation	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar of Complex Mechanical Engineering,A

複雑系機械工学セミナーA

[Code] 10V025 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

(Course Description **)** This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,B

複雑系機械工学セミナー B

[Code] 10V027 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

(Course Description **)** This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,C

複雑系機械工学セミナーC

[Code] 10V029 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

(Course Description **)** This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,D

複雑系機械工学セミナー D

[Code] 10V031 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda,

(Course Description **)** This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,E

複雑系機械工学セミナーE

[Code] 10V033 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

(Course Description **)** This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

10V035

Seminar of Complex Mechanical Engineering,F

複雑系機械工学セミナーF

[Code] 10V035 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] Engineering Science Depts Bldg.-215 [Credits] 1 [Restriction] [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda,

[Course Description] This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Experiments on Micro Engineering, Adv. I

マイクロエンジニアリング特別実験及び演習第一

[Code] 10G226 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	9	
	10	
	10	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Experiments on Micro Engineering, Adv. II

マイクロエンジニアリング特別実験及び演習第二

[Code] 10G228 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	9	
	10	
	10	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Applied Numerical Methods

応用数値計算法

[Code] 10G001 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Toshiyuki Tsuchiya,

[Course Description] Numerical techniques, such as the finite element method and numerical control method, are indispensable in mechanical engineering. In this lecture, basics of numerical techniques which are required to study advanced methods for graduated students will be explained. The lecture will cover the error evaluation, linear system solution (Ax=b), eigenvalue analysis, interpolation approximation method, solutions of ordinary differential equation and partial differential equation. The programing exercise is included in this lecture.

[Grading] Home works (four home works will be assigned) and examination.

[Course Goals] Understandings of mathematical theories and programing implementations of the numerical methods.

[Course Topics]

Theme	Class number of times	Description		
		Introduction of this class		
Introduction	1	Numerical representations and errors		
		Macro programing using spread sheet applications		
		Matrix		
Linear system	1	Norms		
		Singular value decomposition		
Linear simultaneous	2	Solution of simultaneous linear equations		
equation 1	2	direct method, iteration method		
Eigenvalue analysis	2	Eigenvalue problems		
Interpolation	2	Interpolation and its errors		
Numerical integra 1	2	Numerical integration methods		
Normal differential		explicit method, implicit method		
equation and	1	initial value problem, boundary value problem		
numerical integral		initial value problem, boundary value problem		
Partial differential equation		Differential expression of partial differential		
	3	Diffusion equation, wave equation		
		Poisson equation, Laplace equation		
Examination	1	Feedback for homework and examination		

[Textbook] Lecture note will be distributed through the course website.

[Textbook(supplemental)] Golub, G. H. and Loan, C. F. V., Matrix Computations, John Hopkins University Press

R.D.Richtmyer and K.W.Morton, Difference Methods for Initial-Value Problems, Second Edition, John Wiley & Sons 1967

[Prerequisite(s)] Basic mathematics for undergraduates

Basic macro programing

[Independent Study Outside of Class] Problems are based on macro on Microsoft Excel or LibreOffice (OpenOffice).

[Web Sites] Lecture notes, home works, and other info will be distributed through PandA:

https://panda.ecs.kyoto-u.ac.jp

[Additional Information] Have a PC with Microsoft Excel with VBA or LibreOffice (https://ja.libreoffice.org/). Apache OpenOffice(http://www.openoffice.org/ja/) wil be also ok.

Solid Mechanics, Adv.

固体力学特論

[Code] 10G003 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] H. Hirakata

[Course Description] This course provides fundamental concepts of solid mechanics such as stress, strain, and constitutive laws, and methods for analyzing stress/strain fields and deformation of solids and structures on the basis of the concepts. In particular, the course lectures theories of nonlinear problems such as plasticity and creep, and their numerical solutions, or finite element methods, which are important for design and development of mechanical structures.

[Grading] Grading is based on the examination, possibly with considerations of the homework reports.

[Course Goals] Students will be able to:

understand solid mechanics deeply and acquire basic knowledge to design mechanical structures.

analyze problems of plasticity and creep by finite element methods.

Class number of times	Description	
1	Overview of solid mechanics	
1	Cauchy stress tensor, Equilibrium equation, Invariants	
	Material description and spatial description, Displacement, Deformation gradient,	
2	Lagrange-Green strain and Euler-Almansi strain, Infinitesimal strain, Material time	
	derivative	
1	L'in an electic state static menerator II electro d'e leur	
1	Linear elastic stress-strain response, Hooke 's law	
	Principle of virtual work, Principle of minimum potential energy	
1		
2	Basis of finite element method, Finite element equilibrium equations, Elements,	
5	Numerical integration	
	Plasticity theory (uniaxial and multiaxial problems, yield criteria, flow rule,	
3	hardening rule, constitutive equations), Finite element method for elasto-plastic	
	problems	
2	Creep theory (uniaxial and multiaxial constitutive equations), Finite element	
Z	method for creep problems	
1	Discussions and reports	
	times 1 1 2 1 1 3 3 2 1 1 1 1 1 1 1 1 1 1 1 1	

[Course Topics]

[Textbook] Lecture materials are distributed in the classroom.

[Textbook(supplemental)] T. Kyoya, Continuum Mechanics, Morikita (2008) (in Japanese)

Y. Tomita, "Foundation and Application of Elastoplasticity" Morikita (1995) (in Japanese)

E. Neto et al., " Computational Methods for Plasticity, " John Wiley & Sons (2008).

[Prerequisite(s)] This course requires basic knowledge of mechanics of materials and solid mechanics.

【Independent Study Outside of Class】

[Web Sites]

[Code] 10G005 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] H. Yoshida & M. Matsumoto

[Course Description] Several topics in advanced thermal physics are discussed. From microscopic view points, basics of stochastic process and related topics are given. From macroscopic ones, after the concept of entropy is revisited, applications in global environments and hydrogen energy are described.

[Grading] Reports, essays, and/or written examinations.

[Course Goals] Microscopic Viewpoints: Ability of multi-scale modelling

Macroscopic Viewpoints: Ability of global environment modelling

[Course Topics]

Theme	Class number of times	Description
(M) Brownian	1	
motion	1	
(M) Transport		
phenomena and	1	
correlation functions		
(M) Spectral analysis	2	
and fractal analysis	2	
(M) Stochastic		
process and its	3	
applications		
(Y) Entropy and free	1	
energy: revisit	1	
(Y) Science of		
atmosphere and	3	
ocean		
(Y) Hydrogen energy	3	
Check and feedback	1	

【Textbook】Not specified.

【Textbook(supplemental)】

[Prerequisite(s)] Elementary thermodynamics, Statistical physics, Heat transfer engineering, Numerical analysis etc.

【Independent Study Outside of Class】

[Web Sites]

【Additional Information】(2017) Matsumoto: April 10 ~ May 29

Yoshida: June 5 ~ July 10

Introduction to Advanced Fluid Dynamics 基盤流体力学

[Code] 10G007 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	4	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Condensed Matter Physics

量子物性物理学

[Code] 10G009 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	4	
	1	
	1	
	1	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Design and Manufacturing Engineering 設計生産論

[Code] 10G011 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	2	
	3	
	2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

動的システム制御論

[Code] 10G013 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] C3-Lecture Room 1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	4	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Engineering Ethics and Management of Technology 技術者倫理と技術経営

[Code] 10G057 [Course Year] Master 1st [Term] 1st term [Class day & Period] Thu 3rd

[Location]Butsurikei-Kousya [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lectures and Exercise

[Language] Japanese [Instructor] Sawaragi, Nishiwaki, Tomita, M. Komori, Tsuchiya, Noda, Sato, Iseda,

(Course Description **)** Basic knowledge of Engineering Ethics and Management of Technology needed for future project leaders in companies and society is taught. Students have to make group work after-class hours as well as presentations of wrapping-up the discussions. Engineering ethics is the field of applied ethics and system of moral principles that apply to the practice of engineering. The field examines and sets the obligations by engineers to society, to their clients, and to the profession. Management of Technology is a set of management disciplines that allows organizations to manage their technological fundamentals to create competitive advantage. This course consists of lectures, exercises, discussions and oral presentations under supervision of professional faculties and extramural lecturers.

[Grading] Submission of reports and presentations

[Course Goals] To cultivate a spirit of self-sufficiency needed for engineers

[Course Topics]

Theme	Class number of times	Description
		1. Introduction to Engineering Ethics (EE)
		2.Medical Engineering Ethics
		3.EE by Institution of Professional Engineers, Japan and abroad
		4. Product Safety and Product Liability
Engineering Ethics	9	5.Comprehensive Manufacturing and EE (1)
		6.Comprehensive Manufacturing and EE (2)
		7.Group Discussions
		8. History and Philosophy of EE
		9.Presentation on exercise of EE
	5	1. Product Portfolio, Strategy for Competition
Managament of		2. Bussiness Domain and MOT for Marketing
Management of Technology		3. Organizational Strategy for Corporates' R & D
		4. Management Theory for R & D
		5.Presentation on exercise of MOT
Summary	1	

[Textbook] No textbook

【Textbook(supplemental)】 Nothing

[Prerequisite(s)] Nothing particular

【Independent Study Outside of Class】

[Web Sites] No Web Site

【Additional Information】 Nothing particular

Jet Engine Engineering

ジェットエンジン工学

[Code] 10G401 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 1st

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)]

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	3-4	
	3-4	
	2-3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Propulsion Engineering, Adv.

推進工学特論

[Code] 10G405 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	4	
	2	
	2	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Gas Dynamics, Adv.

気体力学特論

[Code] 10G406 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 1st

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	4	
	3	
	2	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Aerospace Systems and Control

航空宇宙システム制御工学

[Code] 10G409 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	4	
	4	
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Fluid Dynamics for Aeronautics and Astronautics

航空宇宙流体力学

[Code] 10G411 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	3	
	3	
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10C430

Advanced Flight Dynamics of Aerospace Vehicle 航空宇宙機力学特論

[Code] 10C430 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Kei Senda, Sinya Aoi

[Course Description] Flight Dynamics and Control of Aerospace Vehicles including Analytical Mechanics, Attitude Dynamics of Vehicles, Orbital Mechanics, etc.

[Grading] Evaluation depends on marks of examination (80%) and exercises (20%). Both marks should be 60% or better.

[Course Goals] To understand analytical mechanics through flight dynamics of aerospace vehicles: Basic items of Analytical Mechanics, Attitude Dynamics of Vehicles, Orbital Mechanics, etc.

[Course Topics]

Theme	Class number of times	Description
Analytical	7	1. Newton equations, 2. Lagrange equations, 3. Hamilton equations
Mechanics	/	1. Newton equations, 2. Lagrange equations, 3. Hamilton equations
Orbital Mechamics	4	1. Motions in central force field, 2. Conservation law, 3. Orbit transition
Attitude Dynamics	4	1. Kinematics of rotation, 2. Attitude mechanics, 3. Stability analysis of
and Control	4	equilibrium points, 4. Attitude Control

【Textbook】

[Textbook(supplemental)] L. D. Landau and E. M. Lifshitz: Mechanics, Volume 1 (Course of Theoretical Physics

Herbert Goldstein: Classical Mechanics

Toda and Nakajima: Introductory course of physics #1, #2, #10, etc. (Iwnami Shoten)

[Prerequisite(s)] Foundation of mechanics and mathematics, Flight Dynamics of Aerospace Vehicle (Undergraduate)

【Independent Study Outside of Class】

[Web Sites]

Dynamics of Solids and Structures 動的固体力学

[Code] 10G230 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd [Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] S. Biwa and T. Hayashi

[Course Description] Fundamental principles for dynamic deformations of solids and structures are examined. In particular, basic characteristics of elastic wave motion in solid media are emphasized. Responses of materials and structures to impact loading are also considered.

[Grading] Grading is based on the attendance, homework reports and the final examination (possibly replaced by reports).

[Course Goals] This course aims to establish the understanding of basic characteristics of dynamic deformations and elastic waves in solid media, as well as to learn about technological applications of ultrasound in a variety of fields extending from micro- to macro-scales. Particular emphasis is put on the mathematical aspects of the physical phenomena involved.

Theme	Class number of times	Description
Fundamentals of	1	Expressions of stress and strain; Conservation laws; Hooke's law; Principle of
elastodynamics	1	virtual work; Hamilton's principle and its applications
Deries of more		One-dimensional wave equation; D'Alembert's solution; Harmonic waves;
Basics of wave	2	Spectral analysis; Waves in structural members; Dispersive waves; Phase and
propagation		group velocities
Stress ways in a har	1	Reflection and transmission at bi-material connection; Reflection at a free end;
Stress waves in a bar	1	Stress wave by tensile loading at a bar end; Plastic wave
Waves in isotropic	1	Navier's equations; Longitudinal and transverse waves; Plane elastic waves in
elastic media		isotropic solids
Waves in anisotropic	1	Voigt representation; Plane elastic waves in anisotropic solids; Christoffel's
elastic media	1	equation; Propagation and polarization directions; Slowness surfaces
Reflection and	2	Reflection and transmission of normal incident waves; Snell's law; Mode
transmission	Z	conversion; Reflection and refraction of oblique incident waves.
Guided elastic waves	3	Bulk waves and guided waves; Rayleigh wave; Love wave; Lamb wave.
Numerical analysis	2	Finite difference method, Finite element method, Roundary element method
of elastic waves	2	Finite difference method; Finite element method; Boundary element method
Measurements of	2	Comparison of various measurement techniques; Analogue and digital data
vibration and waves	2	analysis

[Course Topics]

[Textbook] No textbooks are assigned. Print-outs are handed in when needed.

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge of mechanics of materials (solid mechanics, continuum mechanics) is expected.

[Independent Study Outside of Class] Enrolling students are expected to work on the lecture materials and the homework problems.

[Web Sites]

[Additional Information] The time units and weights for each item on the above list are subject to possible changes.

Transport Phenomena in Reactive Flows

Transport Phenomena in Reactive Flows

[Code] 10G423 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 1st

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] English [Instructor] YOSHIDA Hideo,IWAI Hiroshi,

[Course Description] This lecture is designed for the students who want to gain their knowledge and understanding on transport phenomena associated mainly with convective flows with chemical reactions. It starts with a brief review of undergraduate level subjects followed by more advanced discussion on heat and mass transfer with reactions. The reactions of interest in the lecture include combustion (oxidation), reforming and electrochemical reactions. As the reactions may proceed on catalysts, the discussion covers the catalytic surface reactions, reactions in porous media as well as gas phase reactions. The students are expected to have learned fundamentals of Fluid dynamics, Thermodynamics and Heat transfer during their undergraduate courses.

[Grading] Grade evaluation is based on attendance, short reports and one's term paper submitted at the end of the semester.

[Course Goals] Starting from the basic heat and mass transfer, the lecture aims to expand the students ' comprehensive understanding on transport phenomena in physicochemical processes including thermochemical and electrochemical reactions.

[Course Topics]

Theme	Class number of times	Description
Transport		Transport phonomone in convective flows with chamical reactions including
phenomena in	14	Transport phenomena in convective flows with chemical reactions including
reactive flows		combustion (oxidation), reforming and electrochemical reactions.
Achievement	1	A abievement Confirmation
Confirmation		Achievement Confirmation

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)] Fluid dynamics, Thermodynamics, Heat transfer

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This course will not be opened in 2015.

Advanced Finite Element Methods

有限要素法特論

[Code] 10G041 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd [Location]C3-Lecture Room 2 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture and Practice [Language] English [Instructor] Kotera and Nishiwaki,

[Course Description] This course presents the basic concept and mathematical theory of the Finite Element Method (FEM), and explains how the FEM is applied in engineering problems. We also address important topics such as the physical meaning of geometrical non-linearity, material non-linearity, and non-linearity of boundary conditions, and we explore numerical methods to deal with these nonlinearities. Also, we guide students in class in the use of software to solve several numerical problems, to develop practical skill in applying the FEM to engineering problems.

[Grading] Grading is based the quality of two or three reports and the final exam.

[Course Goals] The course goals are for students to understand the mathematical theory of the FEM and the numerical methods for analyzing non-linear problems based on the FEM.

Course	Topics]
---------------	----------

Theme	Class number of times	Description
Basic knowledge of the FEM	3	What is the FEM? The history of the FEM, classifications of partial differential equations, linear problems and non-linear problems, mathematical descriptions of structural problems (stress and strain, strong form and weak form, the
		principle of energy).
Mathematical background of the FEM	2	Variational calculus and the norm space, the convergence of the solutions.
FEM formulations	3	FEM approximations for linear problems, formulations of iso-parametric elements, numerical instability problems such as shear locking, formulations of reduced integration elements, non-conforming elements, the mixed approach, and assumed-stress elements.
Classifications of nonlinearities and their formulations	4	Classifications of nonlinearities and numerical methods to deal with these nonlinearities.
Numerical practice	2	Numerical practice using COMSOL.
Evaluation of student achievements	1	

[Textbook]

【Textbook(supplemental)】Bath, K.-J., Finite Element Procedures, Prentice Hall

Belytschko, T., Liu, W. K., and Moran, B., Nonlinear Finite Elements for Continua and Structures, Wiley

[Prerequisite(s)] Solid Mechanics

[Independent Study Outside of Class]

[Web Sites]

10V401

Seminar on Engineering Science of Ionized Gases

電離気体工学セミナー

[Code] 10V401 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Mon 3rd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Gas Dynamics

気体力学セミナー

[Code] 10V412 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Tue 3rd

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V405

Seminar on Fluid Dynamics for Aeronautics and Astronutics

航空宇宙流体力学セミナー

[Code] 10V405 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Wed 5th

 $\label{eq:construction} \label{eq:construction} \lab$

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	14	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Aerospace systems

航空宇宙機システムセミナー

[Code] 10R410 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Mon 4th

[Location] C3-Lecture Room 2 [Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese

[Instructor],

[Course Description]

[Grading] Evaluation depends on marks of presentation, report, and so on.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Aerospace Systems	15	1. Reading textbooks
	15	2. Reviewing journal papers

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R419

Seminar on Systems and Control

システム制御工学セミナー

[Code] 10R419 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Tue 4th

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Optimum System Design Engineering

最適システム設計工学セミナー

[Code] 10V407 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location]C3-Lecture Room 2 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Seminar and Exercise

[Language] Japanese [Instructor],,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	8	
	7	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V409

Thermal Engineering Seminar

熱工学セミナー

[Code] 10V409 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese

[Instructor] Yoshida, Iwai

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Mechanics of Functional Solids and Structures 機能構造力学セミナー

[Code] 10V413 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Wed 4th

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] Japanese [Instructor] S. Biwa and T. Hayashi

[Course Description] This Seminar is to review advanced topics related to materials and structural systems involved in aeronautics and astronautics, as well as to nurture the presentation and discussion skills. Specific topics include the numerical methods for dynamic behavior of thin-walled structures and composite/functional materials, and advanced experimental techniques for structural health monitoring.

[Grading] Grading is based on the literature survey, presentation, discussion and the final report.

[Course Goals] The goal is to nurture the skills to survey and discuss advanced topics in the mechanics of functional materials and structures as well as structural health monitoring, and to utilize them in carrying out the research project.

[Course Topics]

Theme	Class number of times	Description
Subject setting	2	Literature survey is to be carried out for advanced topics in the mechanics of
Subject setting	3	functional materials and structures as well as structural health monitoring.
Presentation and	11	The results of literature survey are presented and discussed with the critical
discussion	11	evaluations for them.
Assessment	1	The achievement is assessed by the final report.

[Textbook] No textbooks are assigned.

【Textbook(supplemental)】

[Prerequisite(s)] Enrolling students are expected to have the fundamental knowledge of solid mechanics and to be willing to work on advanced topics in the mechanics of solids/structures.

[Independent Study Outside of Class] Enrolling students are expected to carry out the literature survey and to prepare the presentation.

[Web Sites]

[Additional Information] The time units of each stage are subject to change depending on each year's conditions and due to the discussion by Instructors/students.

10X411

Design of Complex Mechanical Systems

複雑系機械システムのデザイン

[Code] 10X411 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd

[Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	2	
	2	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

先端機械システム学通論

[Code] 10K013 [Course Year] Master and Doctor Course [Term] 2nd term

[Class day & Period] Tue 5th and Thu 4th [Location] C3-Lecture Room 5 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] Faculty members from several fields

[Course Description] Lectures on recent topics in various fields of mechanical engineering will be given in English. This is mainly for foreing students (MC/DC), but Japanese students are also welcome.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Mechanics	2	Detailed schedule will be annouced later.
Materials	2	
Thermodynamics	2	
Fluid dynamics	2	
Control	2	
Design	2	
Microengineering	2	
Examination/Feedback	к 1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This class will be given every two years; Not given in 2017.

693431

Dynamical Systems, Advanced

力学系理論特論

[Code] 693431 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 4th

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	2	
	2	
	2	
	2	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Mathematical Analysis,Advanced 数理解析特論

[Code] 693410 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 3rd

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	

[Textbook]

Textbook(supplemental)

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

693320

Topics in Nonlinear Dynamics A

非線形力学特論 A

[Code] 693320 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 4th

[Location] Integrated Research Bldg.-111 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
	1-3		
	1-3		
	1-3		
	1-3		
	1-3		
	1-3		
	1-3		
	1-3		
	1-3		
	1-3		

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

非線形力学特論 B

[Code]693321 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period] [Location]

[Credits] [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of	Description
Theme	times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10M226

Meteorology I 気象学

[Code] 10M226 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 2nd [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2 ~ 4	
	2 ~ 4	
	2 ~ 4	
	2 ~ 4	
	2 ~ 4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Meteorology II 気象学

[Code] 10M227 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3 ~ 4	
	3 ~ 4	
	3 ~ 4	
	3 ~ 4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V019

Internship DS

インターンシップ DS(機械工学群)

[Code] 10V019 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor] Tabata, Hasuo [Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Internship		
Presentation	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Internship DL

インターンシップ DL (機械工学群)

[Code] 10V020 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 6 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor] Tabata, Hasuo [Course Description]

_

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Internship		
Presentation	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10V025

Seminar of Complex Mechanical Engineering,A

複雑系機械工学セミナーA

[Code] 10V025 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

(Course Description **)** This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity	10-12	in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,B

複雑系機械工学セミナー B

[Code] 10V027 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

(Course Description **)** This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity	10.12	Each group chooses an activity theme, and pursue the goal through discussion
	10-12	in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

10V029

Seminar of Complex Mechanical Engineering,C

複雑系機械工学セミナーC

[Code] 10V029 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

[Course Description] This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity	10-12	in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,D

複雑系機械工学セミナーD

[Code] 10V031 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda,

[Course Description] This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Group activity		Each group chooses an activity theme, and pursue the goal through discussion
	10-12	in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

10V033

Seminar of Complex Mechanical Engineering,E

複雑系機械工学セミナーE

[Code] 10V033 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] C3-Lecture Room 2 [Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki,

[Course Description] This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10.12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity	10-12	in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

Registration is required by the deadline. Contact at

Seminar of Complex Mechanical Engineering,F

複雑系機械工学セミナー F

[Code] 10V035 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Thu 1st

[Location] Engineering Science Depts Bldg.-215 [Credits] 1 [Restriction] [Lecture Form(s)] Seminar

[Language] English [Instructor] Matsuno, Ide, Matsumoto, Takata, Suzuki, Ikeda,

[Course Description] This seminar provides doctor-course students an opportunity of face-to-face group discussions to exchange ideas and information with those from other research fields. It is also emphasized in this seminar to give the attendees a chance to boost up the presentation skills necessary to broaden their own expertise across multi-disciplinary research fields. The primal aim is to offer these significant experiences of leadership as a young scientist with broad perspective in the global community.

[Grading] Based on Group Activity Reports and Personal Report

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Self introduction	1-2	
Organizing groups	1	
Crown activity	10-12	Each group chooses an activity theme, and pursue the goal through discussion
Group activity		in the group. Weekly reports on the activity are required.
Final presentation	1-2	Each group gives presentation of its final resutls.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] All activities should be done in English.

10G418

Experiments and Exercises in Aeronautics and Astronautics I 航空宇宙工学特別実験及び演習第一

[Code] 10G418 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Experiment and Exercise [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Experiments and Exercises in Aeronautics and Astronautics II

航空宇宙工学特別実験及び演習第二

[Code] 10G420 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Experiment and Exercise [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	5	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Introduction to Quantum Science 基礎量子科学

[Code] 10C070 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	9	
	2	
	3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Introduction to Advanced Nuclear Engineering

基礎量子エネルギー工学

[Code] 10C072 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Field Theory 場の量子論

[Code] 10C004 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Takayuki Miyadera, Kenzo Ogure

[Course Description] An introduction to quantum field theory is presented with an emphasis on its mathematical difficulties.

[Grading] exam

[Course Goals] Our aim is to understand the difficulty of relativistic quantum field theory caused by the Poincare covariance and the infinite degrees of freedom.

[Course Topics]

Theme	Class number of times	Description
Erros field	0	Poincare group, Wigner's theorem, Fock space, Wightman function, Weyl
Free field	8	algebra, microlocal analysis and Wick product
Interacting field	6	Perturbative expansion (phi-4 model), Wick's theorem, Feynman diagram,
		divergences, renormalization, axiomatic quantum field theroy
Confirmation of	1	
achievement in study	1	

[Textbook]

【Textbook(supplemental)】None

[Prerequisite(s)] Analysis, linear algebra, quantum mechanics

【Independent Study Outside of Class】

[Web Sites]

Quantum Science 量子科学

[Code] 10C074 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 1st

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

(Course Description **)** This course involves fundamental interactions of electrons, ions and photons to atoms, molecules and condensed matters, and practical applications for nanotechnology. Great emphases are on fundamental mechanisms of beam-solid interactions, characterization techniques, material synthesis and processing for quantum devices with quantum beam. Recent progress of related area of quantum beam will be also introduced in this course.

[Grading] Coursework will be evaluated with attendance and report on subjects.

[Course Goals] To provide students to understand fundamental interactions in quantum science.

[Course Topics]

Theme	Class number of times	Description
Interactions between quantum beams and solids	7	Interactions between quantum beams and solids are described with various formulas. Collisions with nucleus, electronic excitation, defect formation and energy loss will be discussed and related scientific topics, such as discovery of electron will be introduced.
Applications of quantum beams	electron will be introduced. The interactions of quantum beam are widely used for various applic Material processing and analysis with quantum beams are essential in nanotechnology and quantum beams are also important for diagnostic diseases and cancer therapy in medical field. Practical applications w presented with recent progress and challenges.	
Final examination and report	1	Evaluation will be given by the contents of the reports and quizzes of the subjects leaned in this course.

【Textbook】Ion-Solid Interactions: Fundamentals and Applications (Cambridge Solid State Science Series) M. Nastasi, J. Mayer, J. Hirvonen

【Textbook(supplemental)】

[Prerequisite(s)] Solid state physics, Quantum mechanics(beginner 's), Electromagnetism

【Independent Study Outside of Class】

[Web Sites]

Nuclear Materials 核材料工学

[Code] 10C013 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 1st

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

【Language】Japanese 【Instructor】Takagi Ikuji

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Fission Reactor	5	
Materials	J	
Fusion Reactor	Λ	
Materials	4	
Recent Topics	5	
Feedback	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Nuclear Fuel Cycle 1

核燃料サイクル工学 1

[Code] 10C014 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 1st

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

【Language】 Japanese 【Instructor】 Takayuki SASAKI, Taishi KOBAYASHI

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Nuclear fuel	3	
Actinide chemistry	3	
Disposal	4	
management		
Decomissioning	1	
Recent topics	2	
Support	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Radiation Physics and Engineering 放射線物理工学

[Code] 10C017 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 3rd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	5	
	2	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Neutron Science

中性子科学

[Code] 10C018 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	6	
	2	
	3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Manipulation Technology 量子制御工学

[Code] 10C031 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 1st

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	14	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Fundamentals of Magnetohydrodynamics 基礎電磁流体力学

[Code] 10C076 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd [Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] English Lecture [Language] English [Instructor] Tomoaki Kunugi, Sadayoshi Murakami,

(Course Description **)** This course provides fundamentals of magnetohydrodynamics which describes the dynamics of electrically conducting fluids, such as plasmas and liquid metals. The course covers the fundamental equations in magnetohydrodynamics, dynamics and heat transfer of magnetofluid in a magnetic field, equilibrium and stability of magnetized plasmas, as well as illustrative examples.

[Grading] Attendance and two reports

[Course Goals] The students can understand fundamentals of magnetohydrodynamics which describes the dynamics of electrically conducting fluids, such as plasmas and liquid metals. Moreover, the students will figure out the applications of magnetohydrodynamics to the various science and engineering fields.

[Course Topics]

Theme	Class number of times	Description	
		1. Introduction and Overview of Magnetohydrodynamics	
		2. Governing Equations of Electrodynamics and Fluid Dynamics	
		3. Turbulence and Its Modeling	
Liquid Metal MHD	7	4. Dynamics at Low Magnetic Reynolds Numbers	
		5. Glimpse at MHD Turbulence & Natural Convection under B field	
		6. Boundary Layers of MHD Duct Flows	
		7. MHD Turbulence at Low and High Magnetic Reynolds Numbers	
	8	1. Introduction to Plasma MHD	
		2. Basic Equation of Plasma MHD	
		3. MHD Equilibrium	
Plasma MHD		4. Axisymmetric MHD Equilibrium	
		5. Ideal MHD Instabilities	
		6. Resistive MHD Instabilities	
		7. MHD Waves in Plasmas	
		8. Student Assessment	

[Textbook] Handout of the presentation will be provided at the lecture

[Textbook(supplemental)] P. A. Davidson, "An Introduction to Magnetohydrodynamics," Cambridge texts in applied mathematics, Cambridge University Press, 2001

[Prerequisite(s)] Fundamental fluid dynamics and electromagnetics should be learned prior to attend this lecture.

[Independent Study Outside of Class]

[Web Sites]

Nuclear Energy Conversion and Reactor Engineering 核エネルギー変換工学

[Code] 10C034 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] KAWARA, KUNUGI, YOKOMINE,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	3	
	2	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Course Topics]

Multiphase Flow Engineering and Its Application 混相流工学

[Code]10C037 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period]Wed 2nd [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] KUNUGI, Tomoaki, YOKOMINE, Takehiko,

(Course Description **)** Reviewing of the fundamental definition and characteristics of multiphase flows, and to learn the governmental equations and some modelings of the constitutive equations and the current status of the multiphase flows. Moreover, to review and learn the fundamental definition and characteristics of particle flows, and to learn the numerical methods to track the particle laden flows and the particle measurement method.

[Grading] Present a summary of some papers regarding multiphase flows research by using a power point, and then answer several questions made by lecturers. The quality of your presentation and how deep understand your subject are the grading point.

[Course Goals] As for the multiphase flows, to learn its fluid dynamics behaviors, governing equations and numerical methods, and finally to discuss its applications to many engineering fields.

Theme	Class number of times	Description	
What's the multiphase	1	To review the definitions and fundamental characteristics of multiphase flows.	
flows?	1	To review the definitions and fundamental characteristics of multipliase nows.	
Governing equation of			
gas-liquid two phase	2	To learn the governing equation of gas-liquid two phase flows	
flows			
Modeling of			
gas-liquid two phase	2	To learn modeling of gas-liquid two phase flows and its constitutive equations	
flows			
Numerical methods	3	To learn the numerical methods to solve the single-phase and two-phase flows	
Examples of			
gas-liquid two phase	1	To show some examples of gas-liquid two phase flow analysis	
flow analysis			
Characteristics of	1	Paviaw characteristics of particle flows	
particle flows	1	Review characteristics of particle flows	
		Explain variables and parameters subjected to interaction between particle and	
Fundamental aspect of	1	particle and/or particle and flow. Moreover, momentum and heat exchange	
particle flows	1	between phases, i.e., to explain One-way, Two-way and Four-way coupling	
		numerical methods.	
		Explain numerical method for thermofluid including static particles like a packed	
Particle methods	2	bed. Moreover, numerical methods for macroscopic and microscopic particles such	
		as Discrete Element Method.	
Measurements of	2	Review several measuring methods of particle characteristics and thermofluid	
particle characteristics	Z	behaviors	

[Textbook] Handouts of the presentation will be provided in the lecture.

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Physics of Fusion Plasma

核融合プラズマ工学

[Code] 10C038 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 3rd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	1	
	1	
	3	
	1	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Hybrid Advanced Accelerator Engineering

複合加速器工学

[Code] 10C078 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 3rd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Yoshihiro Ishi

[Course Description] Particle accelerator is essential for proceeding nuclear and particle physics but also becomes a very important tool for future nuclear sciences and engineering. In this lecture, a basics theory of accelerator physics including beam optics and dynamics of the circular accelerators is given, and also various applications of the accelerators are also presented.

[Grading] Reports on practical issues and subjects.

[Course Goals] This lecture aims to learn a basic accelerator theory and to attain abilities to make a primitive design of circular accelerator.

[Course Topics]

Theme	Class number of times	Description
Hisitory and outline		
of particle	1	
accelerator		
Basic theory of beam		
dynamics in circular	1	
accelerator		
Major components of	1	
accelerators	1	
Orbit theories of the	3	
beam	3	
Theory of radio		
frequency	2	
acceleration		
Practice of	2	
accelerator designing	2	
Non linear beam	4	
dynamics and others	4	
Summary and check	1	
the accomplishment	1	

[Textbook]

[Textbook(supplemental)] S.Y.Lee, Accelerator Physics, World Scientific (1999), J.J.Livingood, Cyclic Particle Accelerator, Van Nostland, New York (1961).E.D. Courant and H.S.Snyder, Ann. Physics, 3,1(1958).

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Nuclear Reactor Safety Engineering 原子炉安全工学

[Code] 10C080 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese

【Instructor】 Ken NAKAJIMA, professor,Research Reactor Institute Toshihiro YAMAMOTO, associate professor, Research Reactor Institute Jun-ichi HORI, associate professor, Research Reactor Institute

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	3	
	5	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Applied Neutron Engineering

応用中性子工学

[Code] 10C082 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 3rd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	4	
	3	
	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Radiation Medical Physics

放射線医学物理学

[Code] 10C047 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 3rd [Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Yoshinori Sakurai, Hiroki Tanaka, Takushi Takata

【Course Description】 Medical physics is the general term for the physics and technology which are supporting radiation diagnosis and therapy, and particle therapy. As it covers many different fields, the important subjects are "promotion for the advance of radiation therapy " and " quality assurance for radiation therapy ". The scope of this course is to learn the fundamental knowledge for radiation medical physics. Especially, the focus is put on the understanding for (1) the bases of physics, biology and so on for radiation, (2) the physics for the radiations applied to diagnosis, (3) the characteristics of radiations and particle beams applied to therapy, and (4) the quality assurance and so on for radiation diagnosis and therapy.

[Grading] Attendance and reports

[Course Goals] To learn the fundamental knowledge of medical physics, mainly for radiation physics in diagnosis and therapy

Theme	Class number of times	Description
Introduction to		
medical physics for	1	
radiation		
Fundamental	1	
bilology for radiation	1	
Radiation		
measurement and	2	
evaluation		
Physics in radiation		
diagnosis	4	
Physics in radiation	5	
therapy	5	
Quality assurance		
and standard	1	
dosimetry		
Achievement	1	
Assessment	1	

[Course Topics]

[Textbook] Not specified. Handouts will be given for each topic.

【Textbook(supplemental)】F.M.Khan, "The Physics of Radiation Therapy: Mechanisms, Diagnosis, and Management" (Lippincott Williams & Wilkins, Baltimore, 2003)

[Prerequisite(s)] It is recommended to attend the course, "Radiation Measurement for Medicine", concurrently.

[Independent Study Outside of Class]

[Web Sites]

Nuclear Engineering, Adv.

原子核工学最前線

[Code] 10C084 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 4th

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	11	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Nuclear Engineering Application Experiments 原子力工学応用実験

[Code] 10C068 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] Research Reactor Institute [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	10	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Beam Science, Adv.

量子ビーム科学特論

[Code] 10R001 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Fri 4th

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	6	
	4	
	2	
	2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R004

Quantum Physics, Adv. 量子物理学特論

[Code] 10R004 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] C3-Seminar Room d1 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] T. Miyadera,

[Course Description] We study advanced quantum theories and their applications to technologies including quantum optics and quantum information. Keywords: Foundations of quantum theory, quantum information theory.

[Grading] Presentations and discussions

[Course Goals] We introduce recent progresses of techonogies based on quantum dynamics.

[Course Topics]

Theme	Class number of times	Description
Quantum theories	14	We study a relevant taythook and related tonics
and their applications	14	We study a relevant textbook and related topics.
Confirmation of	1	
achievement in study	1	

[Textbook] A relevant textbook is instructed at the beginning of the class every year.

【Textbook(supplemental)】

[Prerequisite(s)] quantum physics

【Independent Study Outside of Class】

[Web Sites]

Nonlinear Physics in Fusion Plasmas

非線形プラズマ工学

[Code] 10R013 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Tue 3rd

[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] English [Instructor] Atsushi Fukuyama,

[Course Description] This course provides a comprehensive introduction to computational modeling and simulation of magnetically confined fusion plasmas. Topics include elements of nonlinear plasma physics, modeling of various phenomena in fusion plasmas, computational methods in plasma physics, and integrated simulation of fusion plasmas

[Grading] Report in English

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
Nonlinear			
Phenomena in	1	Review of nonlinear phenomena in plasmas; modeling of plasmas	
Plasma Physics			
Nonlinear Waves in	2	Nonlinear ion acoustic waves; Korteweg de Vries equation; Soliton; Nonlinear	
Plasmas	2	Schrodinger equation	
Wave-Particle		Linear wave particle resonant interaction; Landau damping; Trapping in a	
Interaction in	2	single wave: Nonlinear interaction with waves; Stochastic particle motion;	
Plasmas		Quasi-linear interaction	
Wave-Wave			
Interaction in	2	Parametric instability; Three-wave interaction	
Plasmas			
Numerical Analysis		Design of automatical simulations: Ondiners: differential equation: Destial	
of Differential	4	Basics of numerical simulations; Ordinary differential equation; Partial	
Equations		differential equation; Matrix solver	
Numerical		Numerical simulation of fusion plasmas aquilibrium transport basting and	
Simulation of Fusion	3	Numerical simulation of fusion plasmas: equilibrium, transport, heating and	
Plasmas		current drive, stability, energetic particles, integrated modeling	
Assessment of	1		
Achievement	1	Assessment of Achievement	

【Textbook】None

【Textbook(supplemental)】

[Prerequisite(s)] Plasma Physics, Fundamental Magnetohydrodynamics, Fusion Plasma Physics, or equivalents

【Independent Study Outside of Class】

[Web Sites]

Introduction to Nucelar Engineering 1 原子核工学序論 1

[Code] 10C086 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-101 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	7	
	7	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Introduction to Nucelar Engineering 2

原子核工学序論 2

[Code] 10C087 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-101 [Credits] 2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	9	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Radiation Measurement for Medicine

医学放射線計測学

[Code] 10W620 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd
[Location] C3-Lecture Room 5 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture
[Language] Japanese [Instructor] Hidetsugu Tsuchida, Yoshinori Sakurai,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Fundamentals for		
Physical Effects of	2	
Radiation	2	
Interactions		
Fundamentals for		
Chemical Effects of		
Radiation	1	
Interactions		
Fundamental		
Quantities and Units	2	
for Radiation		
Radiation		
Measurements in	3	
Medical Physics		
Radiation Dosimetry	2	
Estimation for Dose	2	
Distribution	2	
Techniques for		
Radiation Control		
and Measurement in	1	
Medical Radiation		
Field		
Laws and Ordinances		
for Radiation	1	
Therapy		
Check of Study	1	
Achievement	1	
【Textbook】 【Textbook(supplement	al)]	

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction

[Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryuichi Ashida

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called high technologies, and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Requirements and a number of credits are different with the academic system students choose, the modified academic quarter system or the academic semester system. Students who choose the academic semester system must meet the requirements for the first 11 lectures and the latter 4 lectures separately.

When the students who choose the modified quarter system are graded, the average score of the best four reports is employed. When the students who choose the academic semester system are graded, the average score of the best five reports is employed.

Please go to KULASIS Web site for more information.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Materials Processing Using External Fields for Microstructure Control	1	Properties of materials are not simply determined by crystal structure and chemical composition. Microstructure (i.e. crystal grain size, crystallographic orientation) can significantly influence the properties. Materials processing for the microstructure control, using external fields will be demonstrated in this class. (H. Yasuda: Dept. of Materials Science and Engineering)
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials. (Y. Nakao: Dept. of Material Chemistry)
Synthesis and Functions of Mixed Anion Compounds	1	As we entered the 21st century, mixed anion compounds, which contain several different anions, began to draw attention as new types of inorganic material. My lecture will show synthetic and functional aspects in this class of materials. (H. Kageyama: Dept. of Energy and Hydrocarbon Chemistry)
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced. (T. Asano: Dept. of Electronic Science and Engineering)
Introduction to Nuclear Materials	1	Nuclear materials are designed for irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked. (I. Takagi: Dept. of Nuclear Engineering)
Application of Polymer Nanoparticles to Bio-Imaging	1	Polymers are widely used in various delivery/localization events as drug carriers, stabilizers of clinical protein and nucleic acid medications, and lesion targeters. An obvious merit of polymers with an appropriate (>10 nm) size is that they escape from facile renal excretion. The size has another significance in case of tumor targeting. Tumor tissues usually have defective endothelial cells with a wide opening and undeveloped lymphatic vessel, so that polymer nanoparticles of the size range of 10 - 100 nm can permeate into the tumor and are retained therein. This is the so-called enhanced permeability and retention (EPR) effect, which shows high performance in terms of selectivity and efficiency in bio-imaging. (T. Kondo: Dept, of Energy and Hydrocarbon Chemistry)
Radiation Induced Reactions towards 1 -Dimensional Nanomaterials	1	Whether can we produce nano-material by the reactions induced by a "ray" (ionizing radiation)? The answer is yes. With an use of an atomic particle accelerated up to MeV orders, the one particle provides a nanowire along its trajectory via condensed and efficient chemical reactions in organic media. Single particle Nanofabrication Technique (SPNT) or Single Particle Triggered Linear Polymerization (STLiP), referred as, are demonstrated as versatile methods to give low dimensional nanomaterials based on a variety of organic molecular systems in this lecture. (S. Seki: Dept. of Molecular Engineering)
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry. (K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Hyperthermophiles and their Thermostable Biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids. (H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Designing Polymer Membrane Materials to Capture Green House Gases	1	We will discuss the overall obstacles involved in capturing green house gases such as CO2 or Methane, and the specific challenges to generating polymer membranes that can achieve it. Then we will consider how to design polymer materials that can overcome such obstacles. (E. Sivaniahi: Dept. of Molecular Engineering)
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides. (K. Tanaka: Dept. of Material Chemistry)
Force Acting on Colloidal Particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed. (R. Yamamoto: Dept. of Chemical Engineering)
Electrodeposition and Electroless Deposition for Materials Processing	1	(1) Fundamentals chemistry, electrochemistry, and thermodynamics , and (2) applications of electrodeposition and electroless deposition for materials processing. (K. Murase: Dept. of Materials Science and Engineering)

[Textbook] None

[Textbook(supplemental)]

[Prerequisite(s)]

. .

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

Ryosuke

10K005

Matsumoto

Advanced Modern Science and Technology (English lecture) 現代科学技術特論(英語科目)

[Code]10K005 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period]Thu 5th [Location]A2-306 [Credits]2(Semester system) [Restriction]No Restriction [Lecture Form(s)] Relay Lecture [Language] English

 [Instructor]
 GL
 Edu.
 Center,
 J.
 Assoc.
 Prof.,

 Related professors

 <

[Course Description] Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system.

Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement. [Course Goals]

[Course Topics]

Theme	Class number of times	Description
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)
Functional Organic Molecular Materials for Molecular Scale Nanoscience	1	This lecture explains functional organic molecular materials with functions like photochromism or molecular conductance, which are expected to play an active role in molecular scale nanoscience.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)
Role of Nanoparticles Aiming at Theranostic Agents for Solid Cancers – Sustainable Universe Health Care in the Aged Society	1	Malignancy takes the first position for the cause of mortality in Japan. Realization of a "society of health and longevity" therefore requires a general method for diagnosis and therapy for cancers in the early stage. Nanoparticles are currently highly expected to this type of medicinal treatment, because nanoparticles can avoid expensive therapy, which would bankrupt our universal health care system.(S. Kimura: Dept. of Material Chemistry)
What are polymers?	1	What is a polymer? Also, what is the difference between polymers and other molecules? The characteristics of polymers and polymerizations are explained with some examples on practical applications of polymers.(M. Ouchi: Dept. of Polymer Chemistry)
Precision Polymerization and Functional Materials by Macromolecular Design	1	The methodology to synthesize polymers precisely and their features are described. In addition, some examples on functional materials using polymers whose molecular design is important are introduced.(M. Ouchi: Dept. of Polymer Chemistry)
Analysis and Design of Socio-Technical Systems	1	When introducing various kinds of automation systems including robots into a new work environment, it is necessary to design and analyze from the viewpoint of socio-technical systems, which is the interaction system of people, technology and organization. In this lecture, specific problems and solutions are described.(T. Sawaragi: Dept. of Mechanical Engineering and Science)
Computational Chemistry and computer science	1	Remarkable progress in the computer science has been revolutionizing scientific research and technological development for this decade. This trend will further accelerate in the future. This lecture reviews the impact of state of the art computer science on the molecular chemistry as an example.(R. Fukuda: Dept. of Molecular Engineering)
Photofunctional Single-Walled Carbon Nanotubes	1	Basic chemical properties of single-walled carbon nanotubes are introduced, and then applications of them as photofunctional molecular platform and charge transport pathway are presented. (T. Umeyama: Dept. of Molecular Engineering)
Renewable energies and rechargeable batteries	1	For the effective use of renewable energies, rechargeable batteries have been focused. Basic chemistry of batteries and how the rechargeable batteries are utilized for the storage of the energies will be given by the first lecture.(T. Abe: Energy and Hydrocarbon Chemistry)
Renewable energies and hydrogen production	1	Fuel cells using hydrogen are clean energy sources. The second lecture is about the hydrogen production based on the renewable energies.(T. Abe: Energy and Hydrocarbon Chemistry)
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Optical clocks -measurement of time at the 18th decimal place	1	Time or frequency is the most precisely measurable quantity. Clocks referenced to atomic resonances, called atomic clocks, have extremely small uncertainies. They realize the definition of second and are applied to the global positioning system (GPS). This lecture introduces atomic clocks based on lasers, which improve the uncertainty to be the 18th decimal place.(K. Sugiyama: Dept. of Electronic Science and Engineering)
Mechanism of particle electrification	1	The basic concepts and theories of charge transfer between solid surfaces are summarized and particle electrification caused by repeated impacts on a wall is formulated.(S. Matsusaka: Dept. of Chemical Engineering)
Control of electrostatic charge on particles	1	On the basis of the concepts and formulation on particle electrification, new methods for the control of electrostatic charge on particles are presented.(S. Matsusaka: Dept. of Chemical Engineering)

【Textbook】None

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students who take Autumn term should register Lecture code 10H006.

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Wed 5th [Location] Funai Hall [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] GL center: J.Assoc. Tanaka, Mizuno, Takatori, Matsumoto, Ashida and Related professors

[Course Description] This course provides lectures and panel discussions by lecturers inside and outside the campus who have a remarkable achievement in engineering and are active as international leaders.

[Grading] Refer material about grading this course which is provided in 1st and 2nd lectures.

[Course Goals] This course cultivates the ability to develop familiar problem consciousness into a big concept through utilizing the materials of advanced fields in each field. This course also shows how leaders have improved their response to problems. Through this course, students learn fundamental culture, and the importance of human growth.

[Course Topics]

Theme	Class number of times	Description
Construction of solar		
updraft power generation	1	Prof. Kunimasa Sugiura (Civil and Earth Resources Engineering) Apr. 12
(SUPG) system on the ocean		
Record and protection of		
world cultural heritage by	1	Prof. Ari Ide (Mechanical Engineering and Science) Apr. 19
advanced image processing		
Mysterious characteristics of		
smell: from development of	1	Dr. Jun-ichi Kita (Shimadzu Corporation) Apr. 26
smell identification device		
Science and engineering of		
metals and potential of	1	Prof. Nobuhiro Tsuji (Materials Science and Engineering) May 10
metals		
My days with radiation ray	1	Dr. Katsumi Hayashi (Hitachi, Corporation) May 17
Material synthesis		
considering feeling of	1	Prof. Yasujiro Murata (Energy and Hydrocarbon Chemistry) May 24
molecules		
Practical Marketing not on		Dr. Fuminori Takaoka (Edge, Ltd.) May 31
books	1	
Direct visualization of		
atoms and molecules	1	Prof. Hirofumi Yamada (Electronic Science and Engineering) Jun. 7
Encouragement for serial	1	
innovator	1	Prof. Mitsuaki Oshima (Panasonic Corporation) Jun. 14
Idle time and idle space	1	Prof. Kiyoshi Takeyama (Architecture and Architectural Engineering) Jun. 21
Research of cancer therapy	4	
by heavy ion beams	1	Dr. Koji Noda (National Institutes for Quantum and Radiological Science and Technology) Jun. 28
Seven Wonders of powders	1	Prof. Shuji Matsusaka (Chemical Engineering) Jul. 5
Strong company		
organizations in Japan, USA	1	Dr. Masahiko Mori (DMG MORI Co., Ltd.) Jul. 12
and Germany		
Development of		
construction techniques:		
from development of	1	Dr. Ichiro Nagashima (Taisei Corporation) Jul. 19
advanced technique to big		
projects		
Manufacturing by advanced	1	Prof Vivotaka Miura (Matarial Chamistry) Jul 26
optical machining	1	Prof. Kiyotaka Miura (Material Chemistry) Jul. 26

[Prerequisite(s)]

[Independent Study Outside of Class] [Web Sites] [Additional Information]

10i045

Exercise in Practical Scientific English 実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 4th or 5th [Location] A2-304

[Credits] 1 [Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] English (Japanese)

[Instructor] M. Nishikawa, Y. Tanaka, T. Mizuno, A. Takatori, R. Matsumoto, R. Ashida

[Course Description] This course is open to all master and doctoral engineering students. It is designed to help students understand how to write a research paper step by step. In this course, the students will write a short research paper (i.e. Extended Research Abstract for Proceeding. approx. 1000 -1500 words) on a topic drawn from assigned readings.

[Grading] Evaluation based on 10% participation, 60% reports, 30% final paper *More than twice unexcused absence can result in course failure

[Course Goals] The primary goal of this course is to deepen an understanding of the main features of each part of a scientific paper (IMRaD). Throughout the course, students will develop the core competencies required for language, grammar, and style to produce a research manuscript in English.

[Course Topics]

Theme	Class number of times	Description	
Unit 1: Course Overview	1	Course Overview: Introduction to writing scientific research articles	
Unit 2: Introduction	1	Raising awareness of the register of science research articles (genre, audience, purpose)	
Unit 3: Preparing to Write	1	Writing a proposal for a research paper, using corpus-based approach (Exercise: Creating own Corpus)	
Unit 4: Preparing to Write	1	Paraphrasing ideas from source texts, using citations and references in formal writing	
Unit 5: Writing Processes	1	Identifying the "moves" for an Abstract section by hint expressions	
Unit 6: Writing Processes	1	Writing an Abstract (Title) & peer feedback	
Unit 7: Writing Processes	1	Identifying the "moves" for an Introduction section by hint expressions	
Unit 8: Writing Processes	1	Writing an Introduction section & peer feedback	
Unit 9: Writing Processes	1	Writing a Method section & peer feedback	
Unit 10: Writing Processes	1	Writing a Result section & peer feedback	
Unit 11: Writing Processes	1	Writing a Discussion and a Conclusion section	
Unit 12: Writing Processes	1	Writing a cover letter to reviewers and how to respond to reviewers	
Unit 13: Monitoring and	1	Online feedback	
Revising	1	Onnie reedback	
Unit 14: Monitoring and	1	Revising a paper based on peer feedback	
Revising	1	Kevising a paper based on peer reedback	
Unit 15: Submission	1	Final Paper Due, August 6.	

[Textbook] Handout materials will be supplied by the instructor.

【Textbook(supplemental)】ALESS (2012). Active English for Science- 英語で科学する - レポート、論文、プレゼンテーション . The University of Tokyo Press. Cargill, M., & O'Connor, P. (2013). Writing scientific research articles: Strategy and steps. John Wiley & Sons. Cowell, R., & She, L. (2015). Mastering the Basics of Technical English『技術英語の基礎』 . 2nd Ed., Corona Publishing. 野口ジュディー・深山晶子・岡本真由美.(2007). 『理系英語のライティング』. アルク

[Prerequisite(s)] Students who intend to join this course must attend the first class.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] We may restrict the class size to enhance students ' learning. Students who intend to join the course are required to attend the first-day guidance. Office Hours: (by appointment) nishikawa.mikako7w@kyoto-u.ac.jp (Ext. 2052)

Internship M

インターンシップM(原子核)

[Code] 10C050 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese

【Instructor】Hidetsugu Tsuchida,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
-------	--------------------------	-------------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Experiments and Exercises on Nuclear Engineering, Adv. I 原子核工学特別実験及び演習第一

[Code] 10C063 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] Mon 1st and 2nd

[Location] [Credits] 4 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	6	
	10	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Experiments and Exercises on Nuclear Engineering, Adv. II 原子核工学特別実験及び演習第二

[Code] 10C064 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	6	
	10	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Nuclear Engineering A

原子核工学セミナー A

[Code] 10C089 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	10	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Nuclear Engineering B

原子核工学セミナー B

[Code] 10C090 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	10	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R017

Engineering Internship D

インターンシップD(原子核)

[Code] 10R017 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits]2 [Restriction] No Restriction [Lecture Form(s)] Exercise [Language] [Instructor] Manabu Saito

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of	Description
	times	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Nuclear Engineering, Adv. A

原子核工学特別セミナーA

[Code] 10R019 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	10	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R021

Seminar on Nuclear Engineering, Adv. B

原子核工学特別セミナー B

[Code] 10R021 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	10	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Nuclear Engineering, Adv. C

原子核工学特別セミナーC

[Code] 10R023 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	10	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R025

Seminar on Nuclear Engineering, Adv. D

原子核工学特別セミナーD

[Code] 10R025 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	10	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Nuclear Engineering, Adv. E

原子核工学特別セミナー E

[Code] 10R027 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	10	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R029

Seminar on Nuclear Engineering, Adv. F

原子核工学特別セミナー F

[Code] 10R029 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	10	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Non-ferrous extractive metallurgy, Adv. 非鉄製錬学特論

[Code] 10C209 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

 $\label{eq:lecture form(s)} \ensuremath{\mathsf{Lecture \ [Language]\ Japanese \ [Instructor]\ ,,}}$

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
	3		
	1		
	1		
	2		
	1		
	1		
	2		
	1		
	2		
	1		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Material and Chemical Information Analysis 物質情報工学

[Code] 10C210[Course Year] Master and Doctor Course[Term] 2nd term[Class day & Period] Tue 2nd[Location] Engineering Science Depts Bldg.-112[Credits] 2[Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Jun Kawai

[Course Description] 1. Lectures on data processing methods such as Fourier transform and smoothing of measured data, ISO standards for chemical analysis, detection limits, standard deviation of measured data.

2. Lectures on basic concept of group, ring, field and vector space in abstract algebra and their applications to materials science, based on materials information obtained by measurements and/or theoretical calculations.

[Grading] By reports

[Course Goals] 1. To get skills to extract information from data measured by the students by themselves during the research in graduate school.

2. Understandings of basic concepts of abstract algebra and of how they are practically used to treat variety of problems in materials science.

Theme	Class number of times	Description
F f	2	Fourier transform, uniformly random numbers, the central limit theorem,
Fourier transform	2	convolution and deconvolution. Report #1.
The method of least squares	1	Least square method, Savitzky-Golay smoothing, and peak separation.
T. f	1	Submission of Report #1 and examples of the answer for Report #1. Akaike's
Information	1	information criteria, spline function, and Tsallis entropy. Report #2.
		Gaussian distribution, deviation, detection limit, the error of the first kind,
Detection limit and		second kind, ISO standards in chemical analysis, IUPAC definition of
spectrometer	3	detection limit.
resolution		Submission of Report #2 and examples of the answer for Report #2.
		Resolution of spectrometer, Fractal dimension of measured data.
		Basic concepts of group, ring, field and vector space including binary
		operation, map, isomorphism, ideal, direct sum, basis, dual space, function
Basics and		space, metric, bilinear form and tensor product. Deeper understandings of the
applications of	7	concepts with evolution in dynamical system, Fourier transform, statistical
abstract algebra to	1	thermodynamics and quantum mechanics.
materials science		Their applications to generalized Ising model for representation of physical
		property in crystalline solids, and extracting characteristic structure using
		homology group. Submission of reports during the lectures.
Feedback	1	Comments on the reports.

[Course Topics]

[Textbook] not used.

[Textbook(supplemental)] Y. Gohshi (ed.) Instrumentation Chemistry, Shoukoudo (1997).

[Prerequisite(s)] not needed.

【Independent Study Outside of Class】

[Web Sites] www.process.mtl.kyoto-u.ac.jp

Microstructure, solidification and crystal growth

凝固・結晶成長学

[Code] 10C214 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hideyuki Yasuda, Yoshitaro Nose

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	6-7	
	6-7	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Ceramic Materials Science

セラミックス材料学

[Code] 10C267 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] I. Tanaka and A. Seko

[Course Description] This lecture covers the mechanical, optical, and electronic properties of ceramics, their microscopic mechanisms, and fundamental knowledge required for the design of ceramics. Applications of advanced experimental and theoretical approaches to ceramic research are also discussed.

[Grading] Evaluations are made based on the examination or reports.

[Course Goals] Systematic understanding of the properties of ceramics on macroscopic and microscopic scales and learning approaches to the issues in ceramic research.

[Course Topics]

Theme	Class number of times	Description
Introduction to ceramics	2	Overview of the history and commercial applications of ceramics.
Fundamentals of ceramics	4	Fundamentals of ceramics such as crystal structure, electronic structure, and thermodynamical properties. The atomic and electronic structure of point defects, surfaces, grain boundaries, and their impacts on the properties of ceramics.
Structural ceramics	2	Mechanical properties of ceramics.
Energy ceramics	2	Ceramics for energy applications and their understanding from the viewpoint of the atomic and electronic structure.
Optical and electronic ceramics	4	Optical and electronic properties of ceramics for laser and electronic device applications and their understanding from the viewpoint of the atomic and electronic structure.
Assessment of mastery of the course content	1	The mastery of the course content is assessed.

【Textbook】

[Textbook(supplemental)] Yet-Ming Chiang et al., Physical Ceramics (John Wiley & Sons)

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Physical Properties of Crystals Adv. 結晶物性学特論

[Code] 10C263 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

 $\label{eq:lecture form(s)} \ensuremath{\mathsf{Lecture \ [Language]\ Japanese \ [Instructor]\ ,,}}$

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number of times	Description
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
2	
1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Magnetism and magnetic materials 磁性物理

[Code] 10C271 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

times	Description
1	
1	
4	
2	
3	
1	
1	
1	
1	
	L

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Atomic-molecular scale engineering 原子分子工学特論

[Code] 10C286 [Course Year] Master Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	5	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Microstructure theory and structure evaluation 材料組織・構造評価学

[Code] 10C288 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	3	
	3	
	2	
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Structural Metallic Materials 先進構造材料特論

[Code] 10C289 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] Engineering Science Depts Bldg.-101 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Akinobu Shibata, Nobuhiro Tsuji

[Course Description] Structural metallic materials, in particular steels, achieve their various mechanical properties based on microstructural control in micro and nano scales. This lecture treats mainly steels, and explains the mechanism of microstructure formation by solid state reactions (phase transformation / precipitation / recrystallization), and relationship between microstructure and mechanical properties. Moreover, the lecture introduces the new metallurgy for developing microstructural control methodology.

[Grading] Evaluations are made based on attendance and report

[Course Goals] Understanding the microstructure formation mechanism by phase transformation / precipitation / recrystallization, and acquiring the knowledge for improvement of mechanical properties through microstructural control in micro and nano scales.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Overview of the lecture
Formation		1. Iron and Steel, 2. Phase diagram of steel, 3. Diffusional phase
mechanism of	8	transformation, 4. Diffusionless phase transformation (martensitic
microstructure		transformation), 5. Precipitation, 6. Recrystallization
Microstructural	E	1. Relationship between microstructure and mechanical properties, 2.
control methodology	5	Thermomechanical processing, 3. New metallurgy for microstructural control
	1	

[Textbook] Materials will be distributed.

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Electrochemistry for Materials Processing, 材料電気化学特論

[Code] 10C290 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Kuniaki MURASE, Kazuhiro FUKAMI,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Modern	4	
electroplating	4	
Thermodynamics of	2	
electrodeposition	2	
Corrosion		
engineering and	4	
anodization		
Semiconductor	2	
electrochemistry	2	
Advanced materials	2	
electrochemistry	2	
Self-assessment of	1	
achievement	1	

[Textbook] No textbook is required for this course.

【Textbook(supplemental)】

[Prerequisite(s)] Knowledge of fundamental electrochemistry and chemical thermodynamics are required.

【Independent Study Outside of Class】

[Web Sites] Not available

【Additional Information】 Not available

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction

[Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryuichi Ashida

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called high technologies, and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Requirements and a number of credits are different with the academic system students choose, the modified academic quarter system or the academic semester system. Students who choose the academic semester system must meet the requirements for the first 11 lectures and the latter 4 lectures separately.

When the students who choose the modified quarter system are graded, the average score of the best four reports is employed. When the students who choose the academic semester system are graded, the average score of the best five reports is employed.

Please go to KULASIS Web site for more information.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Materials Processing Using External Fields for Microstructure Control	1	Properties of materials are not simply determined by crystal structure and chemical composition. Microstructure (i.e. crystal grain size, crystallographic orientation) can significantly influence the properties. Materials processing for the microstructure control, using external fields will be demonstrated in this class. (H. Yasuda: Dept. of Materials Science and Engineering)
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials. (Y. Nakao: Dept. of Material Chemistry)
Synthesis and Functions of Mixed Anion Compounds	1	As we entered the 21st century, mixed anion compounds, which contain several different anions, began to draw attention as new types of inorganic material. My lecture will show synthetic and functional aspects in this class of materials. (H. Kageyama: Dept. of Energy and Hydrocarbon Chemistry)
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced. (T. Asano: Dept. of Electronic Science and Engineering)
Introduction to Nuclear Materials	1	Nuclear materials are designed for irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked. (I. Takagi: Dept. of Nuclear Engineering)
Application of Polymer Nanoparticles to Bio-Imaging	1	Polymers are widely used in various delivery/localization events as drug carriers, stabilizers of clinical protein and nucleic acid medications, and lesion targeters. An obvious merit of polymers with an appropriate (>10 nm) size is that they escape from facile renal excretion. The size has another significance in case of tumor targeting. Tumor tissues usually have defective endothelial cells with a wide opening and undeveloped lymphatic vessel, so that polymer nanoparticles of the size range of 10 - 100 nm can permeate into the tumor and are retained therein. This is the so-called enhanced permeability and retention (EPR) effect, which shows high performance in terms of selectivity and efficiency in bio-imaging, (T. Kondo: Dept, of Energy and Hydrocarbon Chemistry)
Radiation Induced Reactions towards 1 -Dimensional Nanomaterials	1	Whether can we produce nano-material by the reactions induced by a "ray" (ionizing radiation)? The answer is yes. With an use of an atomic particle accelerated up to MeV orders, the one particle provides a nanowire along its trajectory via condensed and efficient chemical reactions in organic media. Single particle Nanofabrication Technique (SPNT) or Single Particle Triggered Linear Polymerization (STLiP), referred as, are demonstrated as versatile methods to give low dimensional nanomaterials based on a variety of organic molecular systems in this lecture. (S. Seki: Dept. of Molecular Engineering)
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry. (K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Hyperthermophiles and their Thermostable Biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids. (H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Designing Polymer Membrane Materials to Capture Green House Gases	1	We will discuss the overall obstacles involved in capturing green house gases such as CO2 or Methane, and the specific challenges to generating polymer membranes that can achieve it. Then we will consider how to design polymer materials that can overcome such obstacles. (E. Sivaniahi: Dept. of Molecular Engineering)
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides. (K. Tanaka: Dept. of Material Chemistry)
Force Acting on Colloidal Particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed. (R. Yamamoto: Dept. of Chemical Engineering)
Electrodeposition and Electroless Deposition for Materials Processing	1	(1) Fundamentals chemistry, electrochemistry, and thermodynamics , and (2) applications of electrodeposition and electroless deposition for materials processing. (K. Murase: Dept. of Materials Science and Engineering)

[Textbook] None

[Textbook(supplemental)]

[Prerequisite(s)]

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

Social Core Advanced Materials I 社会基盤材料特論

[Code] 10C273 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 4th

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

 $\label{eq:lecture Form(s)} \ensuremath{\mathsf{Lecture \ Form(s)}\)} \ensuremath{\mathsf{Lecture \ Form(s)}\)} \ensuremath{\mathsf{Lecture \ Form(s)}\)} \ensuremath{\mathsf{Instructor\ }}\),$

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number of times	Description
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Social Core Advanced Materials I I 社会基盤材料特論

[Code] 10C275 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 4th

[Location] Engineering Science Depts Bldg.-112 [Credits] 2 [Restriction] No Restriction

 $\label{eq:lecture Form(s)} \ensuremath{\mathsf{Lecture \ Form(s)}\)} \ensuremath{\mathsf{Lecture \ Form(s)}\)} \ensuremath{\mathsf{Lecture \ Form(s)}\)} \ensuremath{\mathsf{Instructor}\)} \ensuremath{\mathsf{Instructor}\)},$

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Internship M for Materials Science & Engineering

インターンシップM(材料工学)

[Code] 10C277 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	13	
	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Materials Science and Engineering A

材料工学セミナーA

[Code] 10C251 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 4th [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	12	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Materials Science and Engineering B

材料工学セミナー B

[Code] 10C253 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 4th [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	12	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Laboratory & Seminar in Materials Science and Engineering, Adv.

材料工学特別実験及演習第一

[Code] 10C240 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] Tue and Thu, 3ed

[Location] [Credits] 4 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	10	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Laboratory & Seminar in Materials Science and Engineering, Adv.II 材料工学特別実験及演習第二

[Code] 10C241 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	10	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Materials Science and Engineering, Adv. B

材料工学特別セミナーA

[Code] 10R241 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	12	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R242

Seminar on Materials Science and Engineering, Adv. B

材料工学特別セミナー B

[Code] 10R242 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	12	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Materials Science and Engineering, Adv. C

材料工学特別セミナーC

[Code] 10R243 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	12	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R244

Seminar on Materials Science and Engineering, Adv. D

材料工学特別セミナーD

[Code] 10R244 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	12	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Materials Science and Engineering, Adv. E

材料工学特別セミナー E

[Code] 10R245 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	12	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R247

Seminar on Materials Science and Engineering, Adv. A ~ F

材料工学特別セミナー F

[Code] 10R247 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	12	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Nano Materials Science

ナノマテリアルサイエンス

[Code] 10W410 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D051

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Wed 5th [Location] Funai Hall [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] GL center: J.Assoc. Tanaka, Mizuno, Takatori, Matsumoto, Ashida and Related professors

[Course Description] This course provides lectures and panel discussions by lecturers inside and outside the campus who have a remarkable achievement in engineering and are active as international leaders.

[Grading] Refer material about grading this course which is provided in 1st and 2nd lectures.

[Course Goals] This course cultivates the ability to develop familiar problem consciousness into a big concept through utilizing the materials of advanced fields in each field. This course also shows how leaders have improved their response to problems. Through this course, students learn fundamental culture, and the importance of human growth.

[Course Topics]

Theme	Class number of times	Description
Construction of solar		
updraft power generation	1	Prof. Kunimasa Sugiura (Civil and Earth Resources Engineering) Apr. 12
(SUPG) system on the ocean		
Record and protection of		
world cultural heritage by	1	Prof. Ari Ide (Mechanical Engineering and Science) Apr. 19
advanced image processing		
Mysterious characteristics of		
smell: from development of	1	Dr. Jun-ichi Kita (Shimadzu Corporation) Apr. 26
smell identification device		
Science and engineering of		
metals and potential of	1	Prof. Nobuhiro Tsuji (Materials Science and Engineering) May 10
metals		
My days with radiation ray	1	Dr. Katsumi Hayashi (Hitachi, Corporation) May 17
Material synthesis		· • •
considering feeling of	1	Prof. Yasujiro Murata (Energy and Hydrocarbon Chemistry) May 24
molecules		
Practical Marketing not on		Dr. Fuminori Takaoka (Edge, Ltd.) May 31
books	1	
Direct visualization of		
atoms and molecules	1	Prof. Hirofumi Yamada (Electronic Science and Engineering) Jun. 7
Encouragement for serial		
innovator	1	Prof. Mitsuaki Oshima (Panasonic Corporation) Jun. 14
Idle time and idle space	1	Prof. Kiyoshi Takeyama (Architecture and Architectural Engineering) Jun. 21
Research of cancer therapy		
by heavy ion beams	1	Dr. Koji Noda (National Institutes for Quantum and Radiological Science and Technology) Jun. 28
Seven Wonders of powders	1	Prof. Shuji Matsusaka (Chemical Engineering) Jul. 5
Strong company		
organizations in Japan, USA	1	Dr. Masahiko Mori (DMG MORI Co.,Ltd.) Jul. 12
and Germany		
Development of		
construction techniques:		
from development of	1	Dr. Ichiro Nagashima (Taisei Corporation) Jul. 19
advanced technique to big		
projects		
Manufacturing by advanced	1	Prof. Vinesola Mines (Material Chamister) Int 20
optical machining	1	Prof. Kiyotaka Miura (Material Chemistry) Jul. 26

[Prerequisite(s)]

[Independent Study Outside of Class] [Web Sites] [Additional Information]

International Standards

国際標準と国際規格

[Code] 10C292 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 3rd

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Jun Kawai, Professor, Department of Materials Science and Engineering

【Course Description】 See the Japanese page.

[Grading]

[Course Goals]

[Course Topics]

1 1 1 1 1 1 1	
1 1 1 1 1	
1 1 1 1	
<u> </u>	
1	
1	
3	
1	
4	
1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10i010

International Internship in Engineering 1

工学研究科国際インターンシップ1

[Code] 10i010 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period]Intensive course [Location] [Credits]1 [Restriction]Defined by each internship program

[Lecture Form(s)] Exercise [Language] English

[Instructor] Faculty members in charge of educational affairs of the Global Leadership Engineering Education Center and of the department the registrant belongs to.

[Course Description] Acquisition of international skills with the training of foreign language through the internship programs hosted by the University, the Graduate School of Engineering, or The Department the registrant belongs to.

[Grading] Merit rating is performed based on the presentation or the report(s) after the participation in each internship program. Each department is responsible to identify the number of credits to be granted to the student of the department, if the credits are included in the mandatory ones. The Global Leadership Engineering Education Center takes the role to evaluate the credits if the department the student belongs to deals the credits as optional ones. The number of credits to be earned is 1 and 2, respectively to the subjects International Internship in Engineering 1 and 2 depending on the period and the contents of the internship program the students has participated in.

[Course Goals] Acquisition of international skills with the training of foreign language.

[Course Topics]

Theme	Class number of times	Description
Overseas Internship	1	The contents to be acquired should be described in the brochure of each
		internship program.
Final Presentation	1	A presentation by the student is required followed by discussion among
		participants.

【Textbook】 Not Applicable

【Textbook(supplemental)】 Not Applicable

[Prerequisite(s)] Described in the application booklet for each internship program. The registrant is requested to have enough language skills for the participation.

[Independent Study Outside of Class] Not Applicable

[Web Sites] Not Applicable

[Additional Information] It is required for students to check if the internship program to participate in could be evaluated as part of mandatory credits or not and could earn how many credits before the participation to the department or educational program the student in enrolled. If the credit could not be treated as mandatory ones, get in touch with the Global Leadership Engineering Education Center.

International Internship in Engineering 2

工学研究科国際インターンシップ2

[Code] 10i011 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Intensive course [Location] [Credits]2 [Restriction] Defined by each internship program

[Lecture Form(s)] Exercise [Language] English

[Instructor] Faculty members in charge of educational affairs of the Global Leadership Engineering Education Center and of the department the registrant belongs to.

[Course Description] Acquisition of international skills with the training of foreign language through the internship programs hosted by the University, the Graduate School of Engineering, or The Department the registrant belongs to.

[Grading] Merit rating is performed based on the presentation or the report(s) after the participation in each internship program. Each department is responsible to identify the number of credits to be granted to the student of the department, if the credits are included in the mandatory ones. The Global Leadership Engineering Education Center takes the role to evaluate the credits if the department the student belongs to deals the credits as optional ones. The number of credits to be earned is 1 and 2, respectively to the subjects International Internship in Engineering 1 and 2 depending on the period and the contents of the internship program the students has participated in.

[Course Goals] Acquisition of international skills with the training of foreign language. Detailed objectives should be described in each program.

Course Topic	cs 】
--------------	------

Theme	Class number of times	Description
Overseas Internship	1	The contents to be acquired should be described in the brochure of each
overseas internsinp	internship program.	
Final Presentation	1	A presentation by the student is required followed by discussion among
Final Presentation	I	participants.

【Textbook】 Not Applicable.

【Textbook(supplemental)】 Not Applicable.

[Prerequisite(s)] Described in the application booklet for each internship program. The registrant is requested to have enough language skills for the participation.

[Independent Study Outside of Class] Not Applicable.

[Web Sites] Not Applicable.

[Additional Information] It is required for students to check if the internship program to participate in could be evaluated as part of mandatory credits or not and could earn how many credits before the participation to the department or educational program the student in enrolled. If the credit could not be treated as mandatory ones, get in touch with the Global Leadership Engineering Education Center.

10i049

Project Management in Engineering

エンジニアリングプロジェクトマネジメント

[Code] 10i049 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 4th [Location] A2-308 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto, Ashida

Assoc.Prof. Lintuluoto

[Course Description] This course provides a basic knowledge required for the project management in various engineering fields such as process design, plant design, construction, and R&D projects. Also, visiting lecturers from industry and public works provide management insights of actual engineering projects. [Grading] Evaluated by assignments (project report exercise) and class contribution

[Course Goals] This course will help students gain a fundamental knowledge of what project management in engineering is. Throughout the course, students will learn various tools applied in project management. Students will also understand the importance of costs and money, risks, leadership, and environmental assessment in managing engineering projects. This course is followed with the course "Seminar on Project Management in Engineering." in the second semester. [Course Topics]

Theme	Class number of	Description
	times	4/14/A-L:J-V
Guidance	1	4/14 (Ashida) Course guidance
Guidance	1	
Introduction to project		4/21 (Takatori)
management & Project phases	1	Introduction to project management
		Project phases
		4/28 (Lintuluoto)
Tools for project management,	1	Tools
cost, and cash flows I	1	Work breakdown structure
		Gantt charts
Project scheduling I	1	5/12 (Ashida)
	1	Project scheduling I
Project scheduling II	1	5/19 (Ashida)
	1	Project scheduling II
Tools for project management,	1	5/26 (Lintuluoto)
cost, and cash flows II	1	Cost
Tools for project management,	1	6/2 (Lintuluoto)
cost, and cash flows III	1	Cash flow
TBA	1	6/9
	I	To be announced
Leadership I	1	6/16 (Tanaka)
	1	Leadership I
Leadership II	1	6/23 (Tanaka)
	1	Leadership II
Risk I	1	6/30 (Matsumoto)
	1	Risk I
Risk II	1	7/7 (Matsumoto)
	1	Risk II
Environmental Impact	1	7/14 (Mizuno)
Assessment I	1	Environmental Impact Assessment I
Environmental Impact	1	7/21 (Mizuno)
Assessment II	Environmental Impact Assessment II	
Special lecture		
Project management ~Tender	1	7/28 @ A2-306 (Cluster A, Katsura Campus)
process of Panama Canal	1	Lecturer: Taizo SHIMOMURA, Dr. (TAISEI CORPORATION)
expansion project~		

【Textbook】 Course materials will be provided.

[Textbook(supplemental)] 1. Lock, Dennis. Project Management. 10th edition. Gower Publishing Ltd.

2 . Cleland, David L., and Lewis R. Ireland. Project Management. 5th edition. McGraw-Hill Professional

3. Roger Miller and Donald R. Lessard. The strategic management of large engineering projects, Shaping Institutions, Risks, and Governance, The MIT Press

[Prerequisite(s)] No pre-requisite

【Independent Study Outside of Class】

 $\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\right]}\xspace{\,\operatorname{The}}\xspace{\,\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{$

Exercise on Project Management in Engineering

エンジニアリングプロジェクトマネジメント演習

[Code] 10i050 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] B-Cluster 2F Seminar Room [Credits] 1 [Restriction] Student number will be limited.

[Lecture Form(s)] Seminar [Language] English

[Instructor] GL center: J.Assoc.Prof. Mizuno, Tanaka, Matumoto, Ashida, Maeda Assoc.Prof. Lintuluoto

(Course Description **)** In this course, students will apply the engineering know-how and the skills of management, and group leadership which they learned in the course of Project Management in Engineering to build and carry out a virtual inter-engineering project. This course provides a forum where students ' team-plan based on ideas and theories, decision making, and leadership should produce realistic engineering project outcomes. The course consists of intensive group work, presentations, and a few intermediate discussions. A written report will be required.

[Grading] Report, class activity, presentation

[Course Goals] This course prepares engineering students to work with other engineers within a large international engineering project. In particular this course will focus on leadership and management of projects along with applied engineering skills where the students learn various compromises, co-operation, responsibility, and ethics.

Theme	Class number of times	Description
		10/6
California	1	Introduction to Exercise on Project Management in Engineering
Guidance	1	Lecture on tools for the Project management in engineering
		Practice
	7	Each project team may freely schedule the group works within given time
Teamwork	/	frame. The course instructors are available if any need is required.
		Some lectures will be provided, such as Leadership structuring, Risk
Lecture & Teamwork	e & Teamwork 2	Management, and Environmental Impact Assessment, depending on projects
		you propose.
Presentation	1	Each project team will have a presentation based on its proposed project.

[Course Topics]

[Textbook] Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] Fundamental skills about group leading and communication, scientific presentation.

【Independent Study Outside of Class】

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] The number of students may be restricted. Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department.

Advanced Experiments and Exercises in Electrical Engineering , 電気工学特別実験及演習 1

[Code] 10C643 [Course Year] Master 1st [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	30	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Experiments and Exercises in Electrical Engineering II

電気工学特別実験及演習 2

[Code] 10C646 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	30	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R610

Advanced Electrical Engineering Seminar

電気工学特別セミナー

[Code] 10R610 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	30	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

State Space Theory of Dynamical Systems 状態方程式論

[Code] 10C628 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese or English

【Instructor】T. Hagiwara, Y. Ebihara

[Course Description] The course deals with the dynamical system theory based on linear time-invariant state equations. It covers such topics as state equations, controllability and observability, mode decomposition and its relevance to controllability/observability, stability of dynamical systems, and the Kalman canonical decomposition.

[Grading] The grading will be based on the exam.

[Course Goals] To acquire the knowledge on the basic theory for linear system analysis by means of state equations.

[Course Topics]

Theme	Class number of times	Description
feedback systems	3?4	fundamentals of state equations, their relationship to transfer functions and
and state equations	3?4	block diagram representations
responses of linear	596	state transition matrices, equivalence transformation of systems, mode
systems	5?6	decomposition and Lyapunov stability
		controllability and observability, mode decomposition and its relevance to
controllability and	596	controllability/observability, controllable subspace and unobservable subspace,
observability	5?6	and the Kalman canonical decomposition; Checking degrees of understanding
		of all the lecture topics closes the class.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] classical control theory (in terms of transfer functions), linear algebra and calculus

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Handouts will be given at the class.

Applied Systems Theory 応用システム理論

[Code] 10C604 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Tue 1st

[Location]A1-001 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor] E. Furutani

【Course Description】 The course deals with mathematical methods of system optimization mainly for combinatorial optimization problems. It covers such topics as the integer optimization and its typical problems, exact solution methods including the dynamic programming and the branch and bound method, approximate solution methods including the greedy method, meta-heuristics including the genetic algorithms, the simulated annealing method, and the tabu search.

[Grading] In principle, the grading will be based on the absolute and comprehensive evaluation of the reports on the subjects given in the class.

[Course Goals] To acquire the knowledge on formulation of combinatorial optimization problems into integer programming problems, basic concepts, algorithms, characteristics, and application procedures of exact solution methods, approximate solution methods, and meta-heuristics.

Theme	Class number of times	Description
combinatorial		necessity and importance of combinatorial optimization, typical problems,
optimization	1.0	complexity, classes P and NP, complexity of combinatorial optimization
problems and	1-2	problems, limitation of exact solution methods, necessity of approximate
complexity		solution methods and meta-heuristics
exact solution	2	principle of optimality, dynamic programming, branch and bound method, and
methods	3	their applications
into con uno cuomaria c	2-3	formulation into integer programming problem, relaxation problem, and
integer programming	2-3	cutting plane algorithm
approximate solution	1-2	gready method relevation method partial enumeration method ato
methods		greedy method, relaxation method, partial enumeration method, etc.
meta-heuristics		local search, basic ideas of meta-heuristics, genetic algorithms, simulated
	5-6	annealing method, tabu search, etc. Checking degrees of understanding of all
		the lecture topics closes the class.

[Course Topics]

【Textbook】

【Textbook(supplemental)】 M. Fukushima: Introduction to Mathematical Programming (in Japanese), Asakura, 1996.

Y. Nishikawa, N. Sannomiya, and T. Ibaraki: Optimization (in Japanese), Iwanami, 1982.

M. Yagiura, and T. Ibaraki: Combinatorial Optimization ---With a Central Focus on Meta-heuristics--- (in Japanese), Asakura, 2001.

B. Korte, and J. Vygen: Combinatorial Optimization --- Theory and Algorithms, Third Edition, Springer, 2006.

[Prerequisite(s)] linear programming, nonlinear programming

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Handouts and exercises are given at the class.

Applied Mathematics for Electrical Engineering 電気数学特論

[Code] 10C601 [Course Year] Master Course [Term] 1st term [Class day & Period] Thu 1st

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language]

【Instructor】 S. Doi & T. Hikihara

[Course Description] In the class, fundamental mathematics is lectured for electrical engineering, electronics, system engineering, and material science. In particular, system theory, nonlinear dynamics, and particle dynamics in force field can be discussed with mathematical clear image.

[Grading] Students are requested to reply to report assignments. The grading is based on the evaluation of the reports.

[Course Goals] Professors expect students to model their system and analyze the models theoretically. Students will be requested to understand their system in principle mechanics and control them based on system theory.

[Course	Topics]
---------	----------

Theme	Class number of times	Description
		Several examples of linear operators encountered in electrical engineering, e.g.
Introduction 1	1	in quantum mechanics are explained. Then, Linear vector space is reviewed
		and linear dynamical system is introduced.
Fundamentals of	2.4	Direct sum decomposition, projection operator, and the structure of vector
linear vector space	2-4	spaces such as Jordan normal form are explained.
Linear dynamical	3-5	On the basis of the knowledge of the vector space, linear dynamical systems
system		theory is explained as a simple application of vector spaces.
Introduction 2	1	The introduction to nonlinear dynamics will be explained based on oscillation
Introduction 2	1	theory.
Hamiltonian	1.2	
mechanics	1-3	Hamiltonian mechanics is lectured on linear symplectic space.
Manifold and vector	2.4	Manifold is discussed in nonlinear system with relation to vector filed analysis
field	2-4	Manifold is discussed in nonlinear system with relation to vector filed analysis.

[Textbook]

[Textbook(supplemental)] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag.

[Prerequisite(s)] Linear algebra

【Independent Study Outside of Class】

[Web Sites] https://www.t.kyoto-u.ac.jp/lecturenotes/gse/kueeng/10C601/syllabus

[Additional Information] Appropriate references will be shown in classes. Thursday 1st class hour is due from April 13th.

Electrical and Electromagnetic Circuits 電気電磁回路論

[Code] 10C647 [Course Year] Master 1st [Term] 1st term [Class day & Period] Wed 2nd

[Location] A1-001 (Katsura) [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Osami Wada, Professor, Department of Electrical Engineering

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Guidance	1	
Circuit description		
including	2	
electromagnetic	2	
coupling effects		
Evaluation and		
description methods	2	
for high-frequency	2	
circuits		
Transmission line		
and its characteristics	2	
(1)		
Transmission line		
and its characteristics	2	
(2)		
Description of		
electromagnetic	2	
couplings		
E-system integrity		
design technology	3	
for electric and	3	
electronic systems		
Final exam and	1	
feedback	1	

[Textbook] Materials for this course will be distributed at the lectures.

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Electromagnetic Theory, Adv. 電磁気学特論

[Code] 10C610 [Course Year] Master 1st [Term] 2nd term [Class day & Period] Wed 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] T. Matsuo,

[Course Description] The first half: the special theory of relativity and the covariance of Maxwell's equations The latter half: the differential form in the electromagnetic field theory and its application to computational electromagnetics

[Grading] Submission of reports (twice)

[Course Goals] 1. Understanding of the basic concepts of special theory of relativity and the covariant formulation of Maxwell's equations

2. Understanding of the basics of differential form in electromagnetic field theory

[Course Topics]

Theme	Class number of times	Description
Introduction to special theory of relativity	2-3	 Galilean relativity and special relativity Lorentz transformation
Tensor representation and relativistic dynamics	2-3	Introduction to tensor representationRelativistic dynamics
Covariant formulation of Maxwell ' s equations	2-3	 Electromagnetic field tensor Lorentz covariance of Maxwell 's equations
Differential form in electromagnetic field theory	3-4	- Basics of differential form in electromagnetic field theory
Application to computational electromagnetics	3-4	- Application of integral form of Maxwell 's equations to computational electromagnetics

[Textbook]

[Textbook(supplemental)] Y. Kazama, Introductory Lectures on the Theory of Relativity (in Japanese), Baifukan,1997.

[Prerequisite(s)] Basic electromagnetic theory

[Independent Study Outside of Class]

[Web Sites]

Superconductivity Engineering 超伝導工学

[Code] 10C613 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 4th [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3 ~ 4	
	2 ~ 3	
	3 ~ 4	
	2 ~ 3	
	1 ~ 2	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

生体機能工学

[Code] 10C614 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 2nd

【Location】A1-001(桂1) 【Credits】2 【Restriction】No Restriction 【Lecture Form(s)】Lecture

[Language] Japanese [Instructor] Tetsuo Kobayashi, Shoji Hamada,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
Basics of nervous	2	Study about detail structure of the human brain to understand higher brain	
system	2	functions. In particular, learn about cortical structure and functional map.	
Neurones and glial cells	1	Study about detail structures and functions of neuron and glial cells.	
Neuroimaging	3	Study about measurement principles and analytical methods of representative	
techniques	3	non-invasive neuro-imaging techniques.	
Sensory functions	2	Study about organizations of sensory systems such as visual, auditory and somatosensory systems.	
Motor functions	1	Study about organizations and functions of primary motor, premotor and supplementary motor areas.	
Electromagnetic fields in biological body	2	Physical phenomena inside and outside biological body caused by external an internal electromagnetic fields and electric currents.	
Electromagnetic field analysis in biological body	2	Basics of electromagnetic field analysis in biological body. Characteristics of conductivity and permittivity of biological tissues.	
Electrical and magnetic stimulation	1	Transcranial magnetic stimulation and deep brain stimulation.	
Evaluation of understanding	1	We are going to check students' achievement by answering questions from students.	

[Textbook]

[Textbook(supplemental)] Tetsuo Kobayashi, Isamu Ozaki and Ken Nagata (eds.): Brain topography and multimodal imaging, (Kyoto Univ. Press, 2009)

[Prerequisite(s)] Electricity and magnetism, Fundamentals of biomedical engineering

【Independent Study Outside of Class】

[Web Sites]

Electrical Engineering

10C621

Applied Hybrid System Engineering

応用ハイブリッドシステム工学

[Code] 10C621 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location] A1-001

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language]

[Instructor] Takashi Hikihara, Shinji Doi, Yoshihiko Susuki, Syun'ichi Azuma,

(Course Description **)** Many engineering systems show hybrid dynamical structure, which is accompanied with discrete change of vector flow by control and regulate the trajectory to target dynamically. In the course, the fundamental characteristics and theorems are lectured. The framework of hybrid system, automaton model, and singular perturbation theorem are explain. Dynamic quantizer, power system, and network are picked up as examples.

[Grading] Exercise and repots are evaluated.

[Course Goals] Students are requested to understand the characteristics of hybrid system, approaching method, and control methods.

[Course Topics]

Theme	Class number of times	f Description	
Fundamentals of	4	As fundamentals, the definition of hybrid system and the method of modeling	
hybrid system	4	is explained.	
Singular perturbation		Singular perturbation theorema and asymptotic expansion are explained. For	
and asymptotic	3	the global oscillation of singular perturbed system, analytical and geometrical	
expansion		singular perturbation methods are introduced.	
Application of hybrid		The application to power system is explained. The outline of power system,	
system-1: power	3	then safety and examination, the stability analysis, and the modeling towards	
system		control are given.	
Application of hybrid		As an application dynamic quantizanic adapted. The cutling of the dynamic	
system-2: dynamic	2	As an application, dynamic quantizer is adopted. The outline of the dynamic	
quantizer		quantizer, the analysis, and the design of the system are given.	
Application of hybrid			
system-3:	3	As an application, the communication network is adopted. The internet	
networking		network is also explained as an example of modeling and control.	

[Textbook] Each professors prepare the prints of lectures.

【Textbook(supplemental)】 No textbook.

[Prerequisite(s)] Nothing.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This course is held every two years. The classes will be held on Wednesday or Thursday. Schedule is 4/13,20,27 [Hikihara], 5/11,18,25 [Azuma], 6/1,6/8 [Hikihara], 6/16,6/23,30, 7/7,14 (Thursday)[Doi], 7/21 [extra].

Theory of Electric Circuits, Adv. 電気回路特論

[Code] 10C625 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese and English [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Modeling by circuit	4	
Circuit equation	4	
Phenomena in circuit	3	
Property of circuit	2	
Achievement test	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Design of Control Systems 制御系設計理論

[Code] 10C631 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese or English

【Instructor】T. Hagiwara, Y. Ebihara

[Course Description] The course is based on State Space Theory of Dynamical Systems, and provides the applications of the concepts given therein to systematic control system design. The course covers such topics as state feedback and pole assignment, observers, synthesis of feedback control systems, servo conditions and feedforward, and optimal control under quadratic performance indices.

[Grading] In principle, the grading will be based on the absolute and comprehensive evaluation of the reports on the subjects given in the class. Should this change due to inadequate efforts on the submitted reports, an exam might be also imposed, in which case the details will be announced at the class at least two weeks before the exam term.

[Course Goals] To understand the basic ideas of control system design based on state space representations, and acquire fundamental knowledge and skills on practical control system design through simulated experiences with the report subjects.

[Course Topics]

Theme	Class number of times	Description
pole assignment by		state feedback, controllable canonical forms and pole assignment of
state feedback	4?5	scalar/multivariable systems, computation of the state feedback gains for pole
state reedback		assignment, transient responses, uncontrollable poles and stabilizability
observers	3?4	observable canonical forms and observability conditions, full-order observer,
observers		minimal-order observer, conditions for observers and observer-based feedback
synthesis of feedback	2?3	feedback systems with integral compensation, servo systems, internal model
systems	2:5	principle, synthesis of servo systems
optimal control under		optimal regulators and their closed-loop poles, Riccati equations and their
quadratic	3?4	solutions, relationship with the pole assignment problem; Checking degrees of
performance index		understanding of all the lecture topics closes the class.

[Textbook] Handouts will be given at the class.

【Textbook(supplemental)】

[Prerequisite(s)] The contents given in State Space Theory of Dynamical Systems, and linear algebra.

【Independent Study Outside of Class】

[Web Sites] (Info) http://www-lab22.kuee.kyoto-u.ac.jp/~hagiwara/ku/matlab-octave.html

Electric Power Transmission System

電力輸送システム

[Code] 10C616 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Computer Simulations of Electrodynamics

電磁界シミュレーション

[Code] 10C611 [Course Year] Master 1st [Term] 1st term [Class day & Period] Tue 5th [Location] A1-101/Electrical Engineering Bldg.-Lecture Room (M)/Uji Campus(Remote Lecture Room) [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor], [Course Description] [Grading] [Course Goals] [Course Topics] Class number of Theme Description times Variables and Classification of 1 Simulation Codes Finite Difference Methods 1 Difference Form of Maxwell's Equation and 1 Grid Assignment / Time Step Chart Courant Condition 1 Electromagnetic Radiation 1 from a Thin Current Buneman-Boris Method for Equation of Motion 1 (Relativistic Eqs.) Interporation of 1 Electromagnetic Field Computatin of Charge and Current Densities, 1 Self-force Cancellation Initilization of Particles 1 and Fields Renormalization and 1 Diagnostics Advection/Wave Equation for 1D Case (FTCS, Lax, 1 Upwind and Lax-Wendroff Methods) von Neumann Stability 1 Analysis Limiter Function 1 Advection/Wave Equation for Multi-Dimensional 1 Case Vlasov Equation 1

[Textbook]

[Textbook(supplemental)] (1) H. Matsumoto and Y. Omura, Computer Space Plasma Physics: Simulation Techniques and Softwares, Terra Scientific, Tokyo, 1993.

(2) H. Usui and Y. Omura, Advanced Methods for Space Simulations, Terra Pub, 2007.

[Prerequisite(s)] Electrodynamics, Vector Analysis, Computer Language

【Independent Study Outside of Class】

[Web Sites]

Space Radio Engineering

宇宙電波工学

[Code] 10C612 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] N1 lecture room in the Faculty of engineering building No. 3, A1-131 in Katsura campus, Uji

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language]

[Instructor] Hiroshi Yamakawa, Hirotsugu Kojima,

[Course Description] The present lecture provides the guideline how the technology on the electronics and propulsion system is used for the development of spacecraft and space systems. Furthermore, in order to understand the environment in space, we also give a lecture on the space plasma physics.

[Grading] attendance and final examination

[Course Goals] Mastery of the way how we can make use of the knowledges of the physics and technology to the space engineering.

[Course Topics]

Theme	Class number of times	Description
Space environment	2	The space environment in the view point of spacecraft desing such as thermal condition, plasmas, and charging.
Spacecraft system and its related technology	5	The spacecraft system and its technology related to power system, communication system, EMC, and payload desings.
Spacecraft dynamics	3	Spacecraft orbit design and its attitude control
System engineering of spacecraft	4	Spacecraft propulsion system including the advanced systems which make use of solar power, GPS navigation system, and space debris
Feedback	1	We will give a feedback lecture by answering to questions from students.

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)] Plasma physics, Electromagnetics. Radio engineering, Electronics

【Independent Study Outside of Class】

[Web Sites]

Applied Microwave Engineering マイクロ波応用工学

[Code] 10C617 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 4th

[Location] (Katsura)A1-131, (Yoshida)N1, (Uji)S-143H [Credits]2 [Restriction] [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] (RISH) Shinohara,(RISH) Mitani,

(Course Description **)** This lecture picks up microwave power transmission (MPT) technology, rectifying antenna (rectenna), antenna and propagation for the MPT, microwave transmitters, and some MPT applications like the Space Solar Power Satellite/Station. This lecture also picks up the other wireless power transmission technologies like resonnance coupling, energy harvesting, and applied microwave technologies of microwave processing, wireless communications, and radar.

[Grading] Reports

[Course Goals] Students learn about applied microwave engeering, mainly microwave power transmission.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The purpose and constitution of the lecture, and review of microwave
Introduction	1	engineering are explained.
Applications of		Space Solar Power Satellite/Station and Ubiquitous power source as
Wireless Power	3-4	applications of microwave power transmission, the resonance coupling and
Tramsmission		energy harvesting as the other battery-less technologies are explained.
rectifying antenna	1.0	matifying antenna (materna) for the MDT are evaluated
(rectenna)	1-2	rectifying antenna (rectenna) for the MPT are explained.
antenna and		Calculation of beam collection efficiency and beam propagation with FDTD
propagation for the	5-6	method are explained. Phased array technologies, beam targetting method, non
MPT		linear physics of microwave-plasma interation are overviwed.
Microwave	2	High officient comi conductor complifiers and microways types are cymbrided
transmitters	2	High efficient semi-conductor amplifiers and microwave tubes are explained.
microwave		
processing, wireless	2	Microwave processing, wireless communications, and radar texhnologies are
communications, and	2	explained.
radar		

【Textbook】 Naoki Shinohara, Solar Power Satellite (in Japanese), ISBN978-4-274-21233-8, Ohm-Sya

[Textbook(supplemental)] Naoki Shinohara and Kimiya Komurasaki, Wireless Power Transmission Technologies
Inductive Coupling, Resonance Coupling and Microwave Power Transmission - (in Japanese), ISBN978-4-904
-77402-1, Kagaku-Gijutsu-Syuppan

[Prerequisite(s)] Microwave engineering

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Number of the lectures may change.

Spacio-Temporal Media Analysis

時空間メディア解析特論

[Code] 10C714 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 3rd

【Location】工学部 3 号館 N1 教室・A1-131・宇治生存研講義室 【Credits】2 【Restriction】No Restriction

[Lecture Form(s)] Lecture [Language] Japanese or English [Instructor] Yuichi Nakamura, Kazuaki Kondo

[Course Description] Representation, feature extraction, recognition of media with two or higher dimensions, especially images and videos, are explained with comparing to human vision and biological systems.

[Grading] Evaluation is based on participation and reports.

[Course Goals] To learn the basic of representation, feature extraction, and pattern recognition of signals with two or higher dimension, and their applications.

[Course Topics]

Theme	Class number of times	Description	
Spatio-Temporal	1		
Media	1	What is spatio-temporal media. Some examples.	
Light and Colors	1-2	Intensity, colors, and spectrum in image media.	
Features and	2	Eastures such as also region at a far analysing image modia	
Segmentation	Z	Features such as edge, region, etc. for analysing image media.	
Filtering and	1.2	Introduction to filtering and Woyclet Transforms	
Wavelet Transform	1-2	Introduction to filtering and Wavelet Transform.	
Discrete Wavelet		Diante Wardet Transforment and analisetions and a since a sheet in the	
Transform and	1-2	Dicrete Wavelet Transform and applications such as image enhancement,	
Applications		image compression, etc.	
Geometry of Image	1.0	The mechanism and geometry of image capturing: projection of a 3D world	
Capturing	1-2	into 2D images.	
3D Measurements	2		
and Reconstruction	2	3D measurements and 3D world reconstrunction from a set of 2D images.	
Measurement of	1.0		
Motions	1-2	Motion detection and measurement, and oject tracking.	
Dattam Daga aniti	0-2	The basic idea of pattern recognition and usuful tools such as Support Vector	
Pattern Recognition		Machine.	

[Textbook] No specific textbooks. Handouts will be given when necessary.

[Textbook(supplemental)] Computer Vision: A Modern Approach, Forsyth and Ponce, Prentice Hall

[Prerequisite(s)] Fundamental knowledge of digital signal processing

[Independent Study Outside of Class]

[Web Sites] Please see PandA (https://panda.ecs.kyoto-u.ac.jp/portal).

【Additional Information】

10C714

Visualized Simulation Technology

可視化シミュレーション学

[Code] 10C716 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 4th [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2-3	
	1-2	
	1-2	
	2-3	
	2-3	
	1-2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Recent Advances in Electrical and Electronic Engineering 先端電気電子工学通論

[Code] 10K010 [Course Year] Master and Doctor Course [Term] 2nd term

[Class day & Period] Tuesday, 5 [Location] Laboratories [Credits] 2 [Restriction] Foreig students

[Lecture Form(s)] Seminar [Language] English [Instructor]

[Course Description] The class consists of a series of seminars at 3 laboratories related to Department of Electrical and Electronic Engineering (energy and electrical machinery, computers, control and systems, communications and radio engineering, and electronic devices and applied physics). Each seminar intends to give a brief introduction into a specific research field so that students can get a feel for the state-of-the-art in each topic and broaden their scope beyond their majors.

[Grading] The evaluation of a student 's work is given based on his/her attendance, reports and discussions, not on examinations.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	6	
	9	

【Textbook】None

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

693622

Digital Communication Engineering

ディジタル通信工学

[Code] 693622 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Class number of times	Description	
1		
1		
4		
2		
3		
4		
		Class number of times Description 1 1 4 2 3 4 4 2

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Information Network

情報ネットワーク

[Code] 693628 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Tue 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description] This course introduces architecture of information networks including communication protocol and layered structure. Various networks and their technologies, such as circuit switching network, IP network, photonic network, and mobile network, are explained.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	5	
	3	
	1	
	1	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] http://www.i.kyoto-u.ac.jp/curriculum/syllabus.html

10X001

Prospects of Interdisciplinary Photonics and Electronics 融合光・電子科学の展望

[Code] 10X001 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

times

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar in Electrical Engineering I

電気工学特別研修1(インターン)

[Code] 10C718 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	6	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar in Electrical Engineering II

電気工学特別研修2(インターン)

[Code] 10C720 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	6	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Research Internship(M)

研究インターンシップ M(電気)

[Code] 10C627 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Seminar and Exercise [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

|--|

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R630

Research Internship (D)

研究インターンシップD(電気)

[Code] 10R630 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercises on Electrical Engineering I, II

電気工学特別演習 1

[Code] 10R632 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R633

Advanced Exercises on Electrical Engineering I, II

電気工学特別演習 2

[Code] 10R633 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Wed 5th [Location] Funai Hall [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] GL center: J.Assoc. Tanaka, Mizuno, Takatori, Matsumoto, Ashida and Related professors

[Course Description] This course provides lectures and panel discussions by lecturers inside and outside the campus who have a remarkable achievement in engineering and are active as international leaders.

[Grading] Refer material about grading this course which is provided in 1st and 2nd lectures.

[Course Goals] This course cultivates the ability to develop familiar problem consciousness into a big concept through utilizing the materials of advanced fields in each field. This course also shows how leaders have improved their response to problems. Through this course, students learn fundamental culture, and the importance of human growth.

[Course Topics]

Theme	Class number of times	Description
Construction of solar		
updraft power generation	1	Prof. Kunimasa Sugiura (Civil and Earth Resources Engineering) Apr. 12
(SUPG) system on the ocean		
Record and protection of		
world cultural heritage by	1	Prof. Ari Ide (Mechanical Engineering and Science) Apr. 19
advanced image processing		
Mysterious characteristics of		
smell: from development of	1	Dr. Jun-ichi Kita (Shimadzu Corporation) Apr. 26
smell identification device		
Science and engineering of		
metals and potential of	1	Prof. Nobuhiro Tsuji (Materials Science and Engineering) May 10
metals		
My days with radiation ray	1	Dr. Katsumi Hayashi (Hitachi, Corporation) May 17
Material synthesis		
considering feeling of	1	Prof. Yasujiro Murata (Energy and Hydrocarbon Chemistry) May 24
molecules		
Practical Marketing not on		Dr. Fuminori Takaoka (Edge, Ltd.) May 31
books	1	
Direct visualization of		
atoms and molecules	1	Prof. Hirofumi Yamada (Electronic Science and Engineering) Jun. 7
Encouragement for serial	1	Deef Mitsushi Oshime (Democratic Osmoratica) Ing 14
innovator	1	Prof. Mitsuaki Oshima (Panasonic Corporation) Jun. 14
Idle time and idle space	1	Prof. Kiyoshi Takeyama (Architecture and Architectural Engineering) Jun. 21
Research of cancer therapy	1	Dr. Kaii Nada (National Institutes for Quantum and Dadislasical Science and Technology) Jun. 20
by heavy ion beams	1	Dr. Koji Noda (National Institutes for Quantum and Radiological Science and Technology) Jun. 28
Seven Wonders of powders	1	Prof. Shuji Matsusaka (Chemical Engineering) Jul. 5
Strong company		
organizations in Japan, USA	1	Dr. Masahiko Mori (DMG MORI Co., Ltd.) Jul. 12
and Germany		
Development of		
construction techniques:		
from development of	1	Dr. Ichiro Nagashima (Taisei Corporation) Jul. 19
advanced technique to big		
projects		
Manufacturing by advanced optical machining	1	Prof. Kiyotaka Miura (Material Chemistry) Jul. 26

[Prerequisite(s)]

[Independent Study Outside of Class] [Web Sites] [Additional Information]

10i045

Exercise in Practical Scientific English 実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 4th or 5th [Location] A2-304

[Credits] 1 [Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] English (Japanese)

[Instructor] M. Nishikawa, Y. Tanaka, T. Mizuno, A. Takatori, R. Matsumoto, R. Ashida

[Course Description] This course is open to all master and doctoral engineering students. It is designed to help students understand how to write a research paper step by step. In this course, the students will write a short research paper (i.e. Extended Research Abstract for Proceeding. approx. 1000 - 1500 words) on a topic drawn from assigned readings.

[Grading] Evaluation based on 10% participation, 60% reports, 30% final paper *More than twice unexcused absence can result in course failure

[Course Goals] The primary goal of this course is to deepen an understanding of the main features of each part of a scientific paper (IMRaD). Throughout the course, students will develop the core competencies required for language, grammar, and style to produce a research manuscript in English.

[Course Topics]

Theme	Class number of times	Description
Unit 1: Course Overview	1	Course Overview: Introduction to writing scientific research articles
Unit 2: Introduction	1	Raising awareness of the register of science research articles (genre, audience, purpose)
Unit 3: Preparing to Write	1	Writing a proposal for a research paper, using corpus-based approach (Exercise: Creating own Corpus)
Unit 4: Preparing to Write	1	Paraphrasing ideas from source texts, using citations and references in formal writing
Unit 5: Writing Processes	1	Identifying the "moves" for an Abstract section by hint expressions
Unit 6: Writing Processes	1	Writing an Abstract (Title) & peer feedback
Unit 7: Writing Processes	1	Identifying the "moves" for an Introduction section by hint expressions
Unit 8: Writing Processes	1	Writing an Introduction section & peer feedback
Unit 9: Writing Processes	1	Writing a Method section & peer feedback
Unit 10: Writing Processes	1	Writing a Result section & peer feedback
Unit 11: Writing Processes	1	Writing a Discussion and a Conclusion section
Unit 12: Writing Processes	1	Writing a cover letter to reviewers and how to respond to reviewers
Unit 13: Monitoring and Revising	1	Online feedback
Unit 14: Monitoring and Revising	1	Revising a paper based on peer feedback
Unit 15: Submission	1	Final Paper Due, August 6.

[Textbook] Handout materials will be supplied by the instructor.

【Textbook(supplemental)】ALESS (2012). Active English for Science- 英語で科学する - レポート、論文、プレゼンテーション . The University of Tokyo Press. Cargill, M., & O'Connor, P. (2013). Writing scientific research articles: Strategy and steps. John Wiley & Sons. Cowell, R., & She, L. (2015). Mastering the Basics of Technical English『技術英語の基礎』 . 2nd Ed., Corona Publishing. 野口ジュディー・深山晶子・岡本真由美.(2007). 『理系英語のライティング』. アルク

[Prerequisite(s)] Students who intend to join this course must attend the first class.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] We may restrict the class size to enhance students ' learning. Students who intend to join the course are required to attend the first-day guidance. Office Hours: (by appointment) nishikawa.mikako7w@kyoto-u.ac.jp (Ext. 2052)

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction

[Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryuichi Ashida

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called high technologies, and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Requirements and a number of credits are different with the academic system students choose, the modified academic quarter system or the academic semester system. Students who choose the academic semester system must meet the requirements for the first 11 lectures and the latter 4 lectures separately.

When the students who choose the modified quarter system are graded, the average score of the best four reports is employed. When the students who choose the academic semester system are graded, the average score of the best five reports is employed.

Please go to KULASIS Web site for more information.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Materials Processing Using External Fields for Microstructure Control	1	Properties of materials are not simply determined by crystal structure and chemical composition. Microstructure (i.e. crystal grain size, crystallographic orientation) can significantly influence the properties. Materials processing for the microstructure control, using external fields will be demonstrated in this class. (H. Yasuda: Dept. of Materials Science and Engineering)
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials. (Y. Nakao: Dept. of Material Chemistry)
Synthesis and Functions of Mixed Anion Compounds	1	As we entered the 21st century, mixed anion compounds, which contain several different anions, began to draw attention as new types of inorganic material. My lecture will show synthetic and functional aspects in this class of materials. (H. Kageyama: Dept. of Energy and Hydrocarbon Chemistry)
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced. (T. Asano: Dept. of Electronic Science and Engineering)
Introduction to Nuclear Materials	1	Nuclear materials are designed for irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked. (I. Takagi: Dept. of Nuclear Engineering)
Application of Polymer Nanoparticles to Bio-Imaging	1	Polymers are widely used in various delivery/localization events as drug carriers, stabilizers of clinical protein and nucleic acid medications, and lesion targeters. An obvious merit of polymers with an appropriate (>10 nm) size is that they escape from facile renal excretion. The size has another significance in case of tumor targeting. Tumor tissues usually have defective endothelial cells with a wide opening and undeveloped lymphatic vessel, so that polymer nanoparticles of the size range of 10 - 100 nm can permeate into the tumor and are retained therein. This is the so-called enhanced permeability and retention (EPR) effect, which shows high performance in terms of selectivity and efficiency in bio-imaging. (T. Kondo: Dept, of Energy and Hydrocarbon Chemistry)
Radiation Induced Reactions towards 1 -Dimensional Nanomaterials	1	Whether can we produce nano-material by the reactions induced by a "ray" (ionizing radiation)? The answer is yes. With an use of an atomic particle accelerated up to MeV orders, the one particle provides a nanowire along its trajectory via condensed and efficient chemical reactions in organic media. Single particle Nanofabrication Technique (SPNT) or Single Particle Triggered Linear Polymerization (STLiP), referred as, are demonstrated as versatile methods to give low dimensional nanomaterials based on a variety of organic molecular systems in this lecture. (S. Seki: Dept. of Molecular Engineering)
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry. (K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Hyperthermophiles and their Thermostable Biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids. (H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Designing Polymer Membrane Materials to Capture Green House Gases	1	We will discuss the overall obstacles involved in capturing green house gases such as CO2 or Methane, and the specific challenges to generating polymer membranes that can achieve it. Then we will consider how to design polymer materials that can overcome such obstacles. (E. Sivaniahi: Dept. of Molecular Engineering)
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides. (K. Tanaka: Dept. of Material Chemistry)
Force Acting on Colloidal Particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed. (R. Yamamoto: Dept. of Chemical Engineering)
Electrodeposition and Electroless Deposition for Materials Processing	1	(1) Fundamentals chemistry, electrochemistry, and thermodynamics , and (2) applications of electrodeposition and electroless deposition for materials processing. (K. Murase: Dept. of Materials Science and Engineering)

[Textbook] None

[Textbook(supplemental)]

[Prerequisite(s)]

. .

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

10K005

Advanced Modern Science and Technology (English lecture) 現代科学技術特論(英語科目)

[Code]10K005 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period]Thu 5th [Location]A2-306 [Credits]2(Semester system) [Restriction]No Restriction [Lecture Form(s)] Relay Lecture [Language] English

 [Instructor]
 GL
 Edu.
 Center,
 J.
 Assoc.
 Prof.,
 Ryosuke
 Matsumoto

 Related professors

[Course Description] Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system.

Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement. [Course Goals]

[Course Topics]

Theme	Class number of times	Description
Exploration of Radiation Belts by	unes	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma
Space Radio Engineering	1	environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)
Functional Organic Molecular Materials for Molecular Scale Nanoscience	1	This lecture explains functional organic molecular materials with functions like photochromism or molecular conductance, which are expected to play an active role in molecular scale nanoscience. (K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)
Role of Nanoparticles Aiming at Theranostic Agents for Solid Cancers – Sustainable Universe Health Care in the Aged Society	1	Malignancy takes the first position for the cause of mortality in Japan. Realization of a "society of health and longevity" therefore requires a general method for diagnosis and therapy for cancers in the early stage. Nanoparticles are currently highly expected to this type of medicinal treatment, because nanoparticles can avoid expensive therapy, which would bankrupt our universal health care system.(S. Kimura: Dept. of Material Chemistry)
What are polymers?	1	What is a polymer? Also, what is the difference between polymers and other molecules? The characteristics of polymers and polymerizations are explained with some examples on practical applications of polymers.(M. Ouchi: Dept. of Polymer Chemistry)
Precision Polymerization and Functional Materials by Macromolecular Design	1	The methodology to synthesize polymers precisely and their features are described. In addition, some examples on functional materials using polymers whose molecular design is important are introduced.(M. Ouchi: Dept. of Polymer Chemistry)
Analysis and Design of Socio-Technical Systems	1	When introducing various kinds of automation systems including robots into a new work environment, it is necessary to design and analyze from the viewpoint of socio-technical systems, which is the interaction system of people, technology and organization. In this lecture, specific problems and solutions are described.(T. Sawaragi: Dept. of Mechanical Engineering and Science)
Computational Chemistry and computer science	1	Remarkable progress in the computer science has been revolutionizing scientific research and technological development for this decade. This trend will further accelerate in the future. This lecture reviews the impact of state of the art computer science on the molecular chemistry as an example. (R. Fukuda: Dept. of Molecular Engineering)
Photofunctional Single-Walled Carbon Nanotubes	1	Basic chemical properties of single-walled carbon nanotubes are introduced, and then applications of them as photofunctional molecular platform and charge transport pathway are presented. (T. Umeyama: Dept. of Molecular Engineering)
Renewable energies and rechargeable batteries	1	For the effective use of renewable energies, rechargeable batteries have been focused. Basic chemistry of batteries and how the rechargeable batteries are utilized for the storage of the energies will be given by the first lecture. (T. Abe: Energy and Hydrocarbon Chemistry)
Renewable energies and hydrogen production	1	Fuel cells using hydrogen are clean energy sources. The second lecture is about the hydrogen production based on the renewable energies.(T. Abe: Energy and Hydrocarbon Chemistry)
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Optical clocks -measurement of time at the 18th decimal place	1	Time or frequency is the most precisely measurable quantity. Clocks referenced to atomic resonances, called atomic clocks, have extremely small uncertainies. They realize the definition of second and are applied to the global positioning system (GPS). This lecture introduces atomic clocks based on lasers, which improve the uncertainty to be the 18th decimal place.(K. Sugiyama: Dept. of Electronic Science and Engineering)
Mechanism of particle electrification	1	The basic concepts and theories of charge transfer between solid surfaces are summarized and particle electrification caused by repeated impacts on a wall is formulated.(S. Matsusaka: Dept. of Chemical Engineering)
Control of electrostatic charge on particles	1	On the basis of the concepts and formulation on particle electrification, new methods for the control of electrostatic charge on particles are presented.(S. Matsusaka: Dept. of Chemical Engineering)

【Textbook】None

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students who take Autumn term should register Lecture code 10H006.

Advanced Experiments and Exercises in Electronic Science and Engineering

電子工学特別実験及演習1

[Code] 10C710 [Course Year] Master 1st [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	30	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Experiments and Exercises in Electronic Science and Engineering

II

電子工学特別実験及演習2

[Code] 10C713 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	30	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar on Electronic Science and Engineering

電子工学特別セミナー

[Code] 10R701 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	30	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Mechanics for Electronics Engineering 量子論電子工学

[Code] 10C825 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	1	
	1	
	2	
	2	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Semiconductor Nanospintronics

半導体ナノスピントロニクス

[Code] 10C800 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 2nd [Location] A1-131
[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English or Japanese (depends on students)
[Instructor] Masashi Shiraishi

[Course Description] Spintronics is now attracting tremendous attention, and is recognized as one of the most potential candidates to overcome the limit of the Moore's law. Spintronics possesses attractive and profound basis physics and also a potential to practical applications towards MRAMs and spin FETs. In this lecture, I introduce some important and basic theories and experimental techniques in spintronics using semiconductors, metals, insulators, oxides and so on.

[Grading] Report submission

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
		Spin is a quantum quantity, and thus it is to induced by rotation of an electron (an
		electron is an elementary particle, i.e., it has no domain. Thus, rotation of an electron
Introduction	1	cannot be defined). Nevertheless, the spin degree of freedom can be coupled to spatial
		rotation because spin is a generator of infinitesimal rotation. I explain the essence of
		spin, its SU(2) algebra and so on.
		To understand spin manipulation and spin coherence in semiconductor, it is quite
		important what the spin-orbit interaction (SOI) is. The SOI is a manifestation of a
Deletistic success		relativistic effect, and the Dirac equation, the equation of motion in relativistic quantum
Relativistic quantum	5	physics, is derived to understand the SOI. Next, the SOI is explicitly derived be
physics and spin-orbit	5	expanding the Dirac equation. As a related important topic, electron motion in
interaction		graphene, which can be described as massless Dirac fermion, and the Berry phase (a
		geometric phase that plays an important role in spintronics) of electrons in graphene are
		discussed.
Electrical and		Pure spin current is a quite significant physical current in spintronics using
dynamical spin		semiconductors and so on. Pure spin current is a current of only a spin degree of
injection into	5-6	freedom without a net charge flow. I introduced some important papers and show how
condensed matters and	5-6	to derive essential equations describing generation and propagation of pure spin current.
generation of pure spin		(1) Spin drift-diffusion equation, (2) Hanle-type spin precession, (3) spin pumping
current		using magnetization dynamics, and (4) spin current circuit theory are discussed.
		Topological insulators and the Berry phase are important topics in modern spintronics.
Descut tonics in	2-3	To understand the essence of them, I show the derivation of the Kubo formula, and the
Recent topics in		calculation of the Hall conductivity based on the Kubo theory. The above mentioned
spintronics		topics are the main contents of this lecture, but I may add or omit some topics as
		requests from students.

【Textbook】None

[Textbook(supplemental)] For foreign students, I recommend the following review articles: 1. Spin Hall effect, J. Sinova et al., Rev. Mod. Phys. 87, 1213 (2015). 2. Spintronics: Fundamentals and applications, I. Zutic et al., Rev. Mod. Phys. 76, 1 (2004).
3. Nonlocal magnetization dynamics in ferromagnetic heterostructures, Y. Tserkovnyak et al., Rev. Mod. Phys. 77, 1375 (2005).

[Prerequisite(s)] Solid State Physics and Quantum Physics at the level of undergraduate school.

【Independent Study Outside of Class】

[Web Sites]

Charged Particle Beam Apparatus 電子装置特論

[Code] 10C801 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 4th

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Yasuhito Gotoh

(Course Description **)** Fundamental technologies of an ion beam system, such as ion sources, formation and evaluation of ion beams, transport of ion beams, and ion-solid interaction will be presented. Taking ion implantation as one of the example of the ion beam application, the relationship between the incident ion energy and implantation depth will be presented. Each element of a typical ion beam system is explained in detail.

[Grading] Evaluation will be made with the results of final examination. Achievements of exercises in the class are also taken into consideration.

[Course Goals] To understand the details of an ion beam apparatus: generation, transport and evaluation of an ion beam. Understanding of the entire ion beam apparatus as a system is also purpose of the class.

Theme	Class number of times	Description
Ion beam systems and their applications	1	Outline of the class is presented. Physical properties of ions in vacuum are given, and ion beam apparatuses and their application will be introduced with some typical examples.
Ion-solid interaction	3	Interaction between high energy ion and solid atoms are given. Major topics are: how the ions transfer their energy to the target atoms, i.e., how the ions are decelerated in the solid, and relationship between incident ion energy and implantation depth is given. Concept of sputtering phenomenon is also presented.
Nature of ion beam	2	Concept of the acceleration voltage is introduced to explain the principle of the ion beam systems. Nature of an ion beam is also presented.
Generation and transport of ion beam	3	Methods of ion generation for various elements are explained. Important equations of beam extraction and beam transport are given. Starting with the paraxial ray equation, concept of transfer matrix is given. Finally, some important physical parameters of ion beams are given.
Mass separators and energy analyzers	3	Details of magnetic sector as mass separator are given. Transfer matrix of the mass separator are presented and focusing effect is described. An important parameter of mass resolution is given. Some different kinds of energy analyzers are also introduced. Deflection and detection systems are also introduced.
Fundamentals of vacuum engineering	2	Fundamentals of vacuum engineering is given. Several pumps used for ion beam systems are also introduced.
Design of ion beam systems	1	Design of an ion beam system under a given condition will be presented. In the last class, achievment test will be performed.

[Course Topics]

[Textbook] Yasuhito Gotoh, Charged Particle Beam Appratus, 2016 version (to be sold at CO-OP shop in Katsura Campus)

[Textbook(supplemental)] Junzo Ishikawa, Charged Particle Engineering (Corona).

[Prerequisite(s)] Vacuum Electronic Engineering 1, 2 (undergraduate course)

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] We will have brief practice in each class. Bring your calculator and A4-size writing papers.

Quantum Information Science 量子情報科学

[Code] 10C803 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 3rd

[Location] A1-001 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] English or Japanese

[Instructor] Professor Shigeki Takeuchi Associate Professor Ryo Okamoto

[Course Description] An overview of the quantum information sciences will be given. The topics includes the basic picture of wave/particle duality, quantum key distribution, quantum computation, quantum communication, quantum measurements.

[Grading] the number of days one has attended, and the score of reports will be considered.

[Course Goals] To understand the basic concepts/mechanisms of quantum key distribution, quantum computers, and quantum metrology so that one can read and understand the scientific papers of the related area.

[Course Topics]

Theme	Class number of times	Description
Introduction	3	First, we outline the whole lecture and then explain basic concepts such as quantum bit, quantum gate, quantum entanglement etc.
Quantum Computer (Theory)	3	On quantum computation, various quantum algorithms are discussed.
Quantum Computer (Experiment)	3	Quantum information processing is being studied in various physical systems such as photon, ion trap, nuclear spin and the like. We will explain how to realize them.
Quantum Key distribution and Quantum metrology	4	Describe the basic concept of quantum cryptography and quantum measurements and their recent research trends.
Summary and Outlook	2	In addition to summarizing the whole, if time permits, discuss the problems of quantum information science and ethics.

【Textbook】 No text book will be used.

[Textbook(supplemental)] Nielsen & Chuang, Quantum Computation and Quantum Information, Cambridge

University Press

Shigeki Takeuchi, Quantum Computer, Kodansha (in Japanese)

[Prerequisite(s)] Basic understanding of quantum mechanics will be helpful.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] We welcome your positive questions and comments. We select the language (Japanese or English) used in the lectureb taking into account the situation and hope of the students taking this lecture.

Semiconductor Engineering Adv. 半導体工学特論

[Code] 10C810 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 3rd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description] This course explores the fundamentals of physics of semiconductors, which are essential to understand semiconductor materials and devices.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
		Electronic Band Structures are discussed. Nearly free electron and
David the arms	2.4	tight-binding approachs, k dot p theory, pseudopotential method are explained.
Band theory	3-4	Band structures of major semiconductors such as Si and GaAs are also
		discussed.
	3-4	
	3-4	
	3-4	

[Textbook]

[Textbook(supplemental)] S. M. Sze Physics of Semiconductor Devices (Wiley Interscience)

P.Y.Yu and M. Cardona Fundamentals of Semiconductors (Springer)

[Prerequisite(s)] Semiconductor engineering, quantum mechanics (undergraduate level)

【Independent Study Outside of Class】

[Web Sites]

Electronic Materials Adv. 電子材料学特論

[Code] 10C813 [Course Year] Master Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location]A1-001 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Semiconductors	6-7	
Superconductors	4-5	
		Semiconductor heterostructures are fabricated by using a crystal growth
Epitaxial growth	3-4	method called epitaxy. Fundamentals of epitaxial growth are discussed. One of
		epitaxial growth methods, molecular-beam epitaxy, is discussed in detail.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Electronics

分子エレクトロニクス

[Code] 10C816 [Course Year] Master Course [Term] 1st term [Class day & Period] Mon 5th

[Location]A1-001 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	4	
	3	
	3	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Surface Electronic Properties

表面電子物性工学

[Code] 10C819 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 5th [Location]

[Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language] [Instructor]Hirofumi Yamada,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	3	
	4	
	2	
	3	
	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Optical Properties and Engineering 光物性工学

[Code] 10C822 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 4th [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2-3 🛛	
	7-8 回	
	4-5 回	
	1回	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Optoelectronics Devices

光量子デバイス工学

[Code] 10C828 [Course Year] Master Course [Term] 2nd term [Class day & Period] Tue 4th [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	5	
	5	
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Optics 量子光学

[Code] 10C829 [Course Year] Master 1st [Term] 1st term [Class day & Period] Tue 2nd

[Location]A1-001 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number of times	Description
3	
3	
3	
3	
3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Measurement ■Zま+測工学

量子計測工学

[Code] 10C830 [Course Year] Master Course [Term] 2nd term [Class day & Period] Mon 4th [Location]A1-131 (Katsura #2 lecture room) [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language] Japanese, but there is a possibility of some lectures in English. [Instructor] Kazuhiko Sugiyama [Course Description] As an example of high precision measurements using quantum phenomena, frequency standards, which is realized with the smallest uncertainty in all measurement quantities at present, are discussed. The principle and evaluation of frequency standards are explained.

[Grading] Report(two times, at the first lecture and the after all lectures)

[Course Goals] The goal of this lecture is to understand that precision measurements are realized with combination of the best technologies and is based on physics.

Theme	Class number of times	Description
Introduction and		The minimum of the second s
principle of time	1	Two principles of time measurement: Reproducibility postulate and dynamic
measurement		model
Fundamentals of		A tamia states, its anarray shifts, high resolution spectroscopy and
atomic frequency	2.5	Atomic states, its energy shifts, high-resolution spectroscopy and
standards		high-sensitive detection
Cesium frequency		
standard and atom	2.5	Principle of Ramsey resonance and its interpretation as atom interferometer
interferometer		
Specification of		
frequency standards:	2	Fundamentals of evaluation of frequency stability with Allan variance, and
evaluation methods	2	theoretical limit of frequency stability
and theoritical limit		
Noise	2	Incoherent signals and shot noise
Relativistic theory	3	Impact of special and general relativistic theory on time measurement
and time	5	impact of special and general relativistic theory on time measurement
Others	1	If we have time, the frequency noises of masers and lasers, and other subjects
Oulers	1	will be lectured.
Evaluation of	1	
understanding	1	

[Course Topics]

[Textbook]

【Textbook(supplemental)】 C. Audoin and B. Guinot, The Measurement of Time, (Cambridge University Press, 2001). M. Kitano, Fundamentals of electronic circuits (Reimei publishing, 2009) in Japanese.

[Prerequisite(s)] Fundamentals of physics (quantum physics, in particular) and electric circuits including linear system.

The level which average graduate students of electric and electronic science and technology acquire is sufficient. [Independent Study Outside of Class]

[Web Sites] https://www.kogaku.kyoto-u.ac.jp/lecturenotes/(Unfortunately, this web page is discontinued from

2014. New pages would appear on PandA system.)

【Additional Information】 Office of instructor: A1-124

Electrical Conduction in Condensed Matter 電気伝導

[Code] 10C851 [Course Year] Master 1st [Term] 1st term [Class day & Period] Wed 2nd

[Location] Electrical Engineering Bldg.-Lecture Room (M) [Credits] 2 [Restriction] No Restriction

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	3	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

High Performance Thin Film Engineering 高機能薄膜工学

[Code] 10C834 [Course Year] Master 1st [Term] 1st term [Class day & Period] Tue 1st [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3-4	
	3-4	
	2-3	
	2-3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10K010

Recent Advances in Electrical and Electronic Engineering 先端電気電子工学通論

[Code] 10K010 [Course Year] Master and Doctor Course [Term] 2nd term

[Class day & Period] Tuesday, 5 [Location] Laboratories [Credits] 2 [Restriction] Foreig students

[Lecture Form(s)] Seminar [Language] English [Instructor]

[Course Description] The class consists of a series of seminars at 3 laboratories related to Department of Electrical and Electronic Engineering (energy and electrical machinery, computers, control and systems, communications and radio engineering, and electronic devices and applied physics). Each seminar intends to give a brief introduction into a specific research field so that students can get a feel for the state-of-the-art in each topic and broaden their scope beyond their majors.

[Grading] The evaluation of a student 's work is given based on his/her attendance, reports and discussions, not on examinations.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	6	
	9	

【Textbook】None

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Integrated Circuits Engineering, Advanced. 集積回路工学特論

[Code] 693631 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 4th
[Location] Electrical Engineering Bldg.-Lecture Room (M) etc. [Credits] 2 [Restriction] No Restriction
[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hidetoshi Onodera

[Course Description] An integrated circuit is a key device that enables functionality enhancement, performance increase, and cost reduction of an electronic system. Steady progress in fabrication technology leads to exponential increase in integration scale. This course focuses on the design methodology of a large-scale integrated circuit (LSI), with particular emphasis on logical and physical design process. Topics covered by the course include the current status and future directions regarding LSI design technology, CMOS process technology, CMOS layout design, CMOS device characteristics, CMOS static gates, CMOS dynamic gates, and LSI design methodology. [Grading] The level of achievement will be examined by several reports assigned during lectures. All reports are mandatory.

[Course Goals] The target of this lecture is to obtain basic knowledge on a design method of integrated circuits such that he/she can complete logic, circuit and layout design for a simple digital circuit.

[Course Topics]		
Theme	Class number of times	Description
1. Current status and		
future directions of	2	The current status of integrated circuit development will be explained. Brief
Integrated Circuit	2	history and future directions of integrated circuit technology will be covered.
Technology		
CMOS Process	2	Fabrication process of CMOS will be explained with particular emphasis on
Technology	2	photo-masks required for lithography.
		Structure and performance characteristics of MOSFET, capacitor and resister
MOS Devices	3	will be explained. Performance degradation of scaled interconnect will be
		discussed with possible solutions.
CMOS Logic Gates	3	CMOS complementary static gates and dynamic gates will be presented with
	5	performance analysis and design methods.
LSI Design		Synchronous design method will be explained. Timing analysis and clocking
C	3	techniques will be discussed. Low power design methodology will be
Methodology		explained.
FPGA	2	Field programmable gate array and its application will be explained.

[Textbook] N/A Hand-outs will be provided.

[Textbook(supplemental)] Neil H.E. Weste and David Harris, "CMOS VLSI Design, 4th Ed."

Addison-Wesley, 2011.

Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, "Digital Integrated Circuits, 2nd Ed." Prentice Hall, 2003.

[Prerequisite(s)] Basic knowledge on electronic circuits, digital circuits, logic circuits.

[Independent Study Outside of Class] Reports include design and analysis of small circuits. A simulation program (SPICE) is required for performance analysis. Instructions for obtaining SPICE are given and students need to install SPICE by themselves.

[Web Sites]

10X001

Prospects of Interdisciplinary Photonics and Electronics 融合光・電子科学の展望

[Code] 10X001 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 2nd [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number of times De	scription
--------------------------------	-----------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar in Electronic Science and Engineering I

電子工学特別研修1(インターン)

[Code] 10C846 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	6	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar in Electronic Science and Engineering II

電子工学特別研修2(インターン)

[Code] 10C848 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	6	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Research Internship(M)

研究インターンシップ M(電子)

[Code] 10C821 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Seminar and Exercise [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R823

Research Internship(D)

研究インターンシップD(電子)

[Code] 10R823 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number of times Description	Theme
---	-------

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Exercises on Electronic Science and Engineering I, II

電子工学特別演習1

[Code] 10R825 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10R827

Advanced Exercises on Electronic Science and Engineering I, II 電子工学特別演習 2

[Code] 10R827 [Course Year] Doctor Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Wed 5th [Location] Funai Hall [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] GL center: J.Assoc. Tanaka, Mizuno, Takatori, Matsumoto, Ashida and Related professors

[Course Description] This course provides lectures and panel discussions by lecturers inside and outside the campus who have a remarkable achievement in engineering and are active as international leaders.

[Grading] Refer material about grading this course which is provided in 1st and 2nd lectures.

[Course Goals] This course cultivates the ability to develop familiar problem consciousness into a big concept through utilizing the materials of advanced fields in each field. This course also shows how leaders have improved their response to problems. Through this course, students learn fundamental culture, and the importance of human growth.

[Course Topics]

Theme	Class number of Description			
Construction of solar				
updraft power generation	1	Prof. Kunimasa Sugiura (Civil and Earth Resources Engineering) Apr. 12		
(SUPG) system on the ocean				
Record and protection of				
world cultural heritage by	1	Prof. Ari Ide (Mechanical Engineering and Science) Apr. 19		
advanced image processing				
Mysterious characteristics of				
smell: from development of	1	Dr. Jun-ichi Kita (Shimadzu Corporation) Apr. 26		
smell identification device				
Science and engineering of				
metals and potential of	1	Prof. Nobuhiro Tsuji (Materials Science and Engineering) May 10		
metals				
My days with radiation ray	1	Dr. Katsumi Hayashi (Hitachi, Corporation) May 17		
Material synthesis				
considering feeling of	1	Prof. Yasujiro Murata (Energy and Hydrocarbon Chemistry) May 24		
molecules				
Practical Marketing not on				
books	1	Dr. Fuminori Takaoka (Edge, Ltd.) May 31		
Direct visualization of	1 Deef Hierford Warrach (Theoremic Science 17, 18, 18, 18, 18, 18, 18, 18, 18, 18, 18			
atoms and molecules	1	Prof. Hirofumi Yamada (Electronic Science and Engineering) Jun. 7		
Encouragement for serial				
innovator	1	Prof. Mitsuaki Oshima (Panasonic Corporation) Jun. 14		
Idle time and idle space	1	Prof. Kiyoshi Takeyama (Architecture and Architectural Engineering) Jun. 21		
Research of cancer therapy				
by heavy ion beams	1	Dr. Koji Noda (National Institutes for Quantum and Radiological Science and Technology) Jun. 28		
Seven Wonders of powders	1	Prof. Shuji Matsusaka (Chemical Engineering) Jul. 5		
Strong company				
organizations in Japan, USA	1	Dr. Masahiko Mori (DMG MORI Co.,Ltd.) Jul. 12		
and Germany				
Development of				
construction techniques:				
from development of	1	Dr. Ichiro Nagashima (Taisei Corporation) Jul. 19		
advanced technique to big				
projects				
Manufacturing by advanced	1	Prof. Kiyotaka Miura (Material Chemistry) Jul. 26		
optical machining	I	1 Ioi. Kiyotaka ivilula (iviatellal Chemisuly) Jul. 20		

[Prerequisite(s)]

[Independent Study Outside of Class] [Web Sites] [Additional Information]

10i045

Exercise in Practical Scientific English 実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 4th or 5th [Location] A2-304

[Credits] 1 [Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] English (Japanese)

[Instructor] M. Nishikawa, Y. Tanaka, T. Mizuno, A. Takatori, R. Matsumoto, R. Ashida

[Course Description] This course is open to all master and doctoral engineering students. It is designed to help students understand how to write a research paper step by step. In this course, the students will write a short research paper (i.e. Extended Research Abstract for Proceeding. approx. 1000 -1500 words) on a topic drawn from assigned readings.

[Grading] Evaluation based on 10% participation, 60% reports, 30% final paper *More than twice unexcused absence can result in course failure

[Course Goals] The primary goal of this course is to deepen an understanding of the main features of each part of a scientific paper (IMRaD). Throughout the course, students will develop the core competencies required for language, grammar, and style to produce a research manuscript in English.

[Course Topics]

Theme Class number of times		Description	
Unit 1: Course Overview	1	Course Overview: Introduction to writing scientific research articles	
Unit 2: Introduction	1	Raising awareness of the register of science research articles (genre, audience, purpose)	
Unit 3: Preparing to Write	Writing a proposal for a research paper, using corpus-based approach (Exercise: Creating Corpus)		
Unit 4: Preparing to Write	1	Paraphrasing ideas from source texts, using citations and references in formal writing	
Unit 5: Writing Processes	1	Identifying the "moves" for an Abstract section by hint expressions	
Unit 6: Writing Processes	1	Writing an Abstract (Title) & peer feedback	
Unit 7: Writing Processes	1	Identifying the "moves" for an Introduction section by hint expressions	
Unit 8: Writing Processes	1	Writing an Introduction section & peer feedback	
Unit 9: Writing Processes	1	Writing a Method section & peer feedback	
Unit 10: Writing Processes	1	Writing a Result section & peer feedback	
Unit 11: Writing Processes	1	Writing a Discussion and a Conclusion section	
Unit 12: Writing Processes	1	Writing a cover letter to reviewers and how to respond to reviewers	
Unit 13: Monitoring and	1	Online feedback	
Revising	1	Onnie reedback	
Unit 14: Monitoring and	1	Pavising a paper based on peer feedback	
Revising	1	Revising a paper based on peer feedback	
Unit 15: Submission	1	Final Paper Due, August 6.	

[Textbook] Handout materials will be supplied by the instructor.

【Textbook(supplemental)】ALESS (2012). Active English for Science- 英語で科学する - レポート、論文、プレゼンテーション . The University of Tokyo Press. Cargill, M., & O'Connor, P. (2013). Writing scientific research articles: Strategy and steps. John Wiley & Sons. Cowell, R., & She, L. (2015). Mastering the Basics of Technical English『技術英語の基礎』 . 2nd Ed., Corona Publishing. 野口ジュディー・深山晶子・岡本真由美.(2007). 『理系英語のライティング』. アルク

[Prerequisite(s)] Students who intend to join this course must attend the first class.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] We may restrict the class size to enhance students ' learning. Students who intend to join the course are required to attend the first-day guidance. Office Hours: (by appointment) nishikawa.mikako7w@kyoto-u.ac.jp (Ext. 2052)

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction

[Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryuichi Ashida

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called high technologies, and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Requirements and a number of credits are different with the academic system students choose, the modified academic quarter system or the academic semester system. Students who choose the academic semester system must meet the requirements for the first 11 lectures and the latter 4 lectures separately.

When the students who choose the modified quarter system are graded, the average score of the best four reports is employed. When the students who choose the academic semester system are graded, the average score of the best five reports is employed.

Please go to KULASIS Web site for more information.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description		
Materials Processing Using External Fields or Microstructure Control		Properties of materials are not simply determined by crystal structure and chemical composition. Microstructure (i.e. crystal grain size, crystallographic orientation) can significantly influence the properties. Materials processing for the microstructure control, using external fields will be demonstrated in this class. (H. Yasuda: Dept. of Materials Science and Engineering)		
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials. (Y. Nakao: Dept. of Material Chemistry)		
Synthesis and Functions of Mixed Anion Compounds	1	As we entered the 21st century, mixed anion compounds, which contain several different anions, began to draw attention as new types of inorganic material. My lecture will show synthetic and functional aspects in this class of materials. (H. Kageyama: Dept. of Energy and Hydrocarbon Chemistry)		
Rheology Control by Associating Hydrophobically modified water-soluble polymers (assoc Polymers 1 of solutions and dispersions are drastically changed by the		Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed. (T. Koga: Dept. of Polymer Chemistry)		
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed. (T. Koga: Dept. of Polymer Chemistry)		
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced. (T. Asano: Dept. of Electronic Science and Engineering)		
Introduction to Nuclear Materials	1	Nuclear materials are designed for irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked. (I. Takagi: Dept. of Nuclear Engineering)		
Application of Polymer Nanoparticles to Bio-Imaging	1	Polymers are widely used in various delivery/localization events as drug carriers, stabilizers of clinical protein and nucleic acid medications, and lesion targeters. An obvious merit of polymers with an appropriate (>10 nm) size is that they escape from facile renal excretion. The size has another significance in case of tumor targeting. Tumor tissues usually have defective endothelial cells with a wide opening and undeveloped lymphatic vessel, so that polymer nanoparticles of the size range of 10 - 100 nm can permeate into the tumor and are retained therein. This is the so-called enhanced permeability and retention (EPR) effect, which shows high performance in terms of selectivity and efficiency in bio-imaging. (T. Kondo: Dept. of Energy and Hydrocarbon Chemistry)		
Radiation Induced Reactions towards 1 accelerated up to MeV orders, the one particle provides a nanowire along its trajectory via condensed and efficient chemical Single particle Nanofabrication Technique (SPNT) or Single Particle Triggered Linear Polymerization (STLiP), referred as,		Whether can we produce nano-material by the reactions induced by a "ray" (ionizing radiation)? The answer is yes. With an use of an atomic particle accelerated up to MeV orders, the one particle provides a nanowire along its trajectory via condensed and efficient chemical reactions in organic media. Single particle Nanofabrication Technique (SPNT) or Single Particle Triggered Linear Polymerization (STLiP), referred as, are demonstrated as versatile methods to give low dimensional nanomaterials based on a variety of organic molecular systems in this lecture. (S. Seki: Dept. of Molecular Engineering)		
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry. (K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)		
Hyperthermophiles and their Thermostable Biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids. (H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)		
Designing Polymer Membrane Materials to Capture Green House Gases	1	We will discuss the overall obstacles involved in capturing green house gases such as CO2 or Methane, and the specific challenges to generating polymer membranes that can achieve it. Then we will consider how to design polymer materials that can overcome such obstacles. (E. Sivaniahi: Dept. of Molecular Engineering)		
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides. (K. Tanaka: Dept. of Material Chemistry)		
Force Acting on Colloidal Particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed. (R. Yamamoto: Dept. of Chemical Engineering)		
Electrodeposition and Electroless Deposition for Materials Processing	1	 (1) Fundamentals chemistry, electrochemistry, and thermodynamics , and (2) applications of electrodeposition and electroless deposition for mate processing. (K. Murase: Dept. of Materials Science and Engineering) 		

[Textbook] None

[Textbook(supplemental)]

[Prerequisite(s)]

. .

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

10K005

Advanced Modern Science and Technology (English lecture) 現代科学技術特論(英語科目)

[Code]10K005 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period]Thu 5th [Location]A2-306 [Credits]2(Semester system) [Restriction]No Restriction [Lecture Form(s)] Relay Lecture [Language] English

 [Instructor]
 GL
 Edu.
 Center,
 J.
 Assoc.
 Prof.,
 Ryosuke
 Matsumoto

 Related professors

[Course Description] Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system.

Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement. [Course Goals]

[Course Topics]

Theme	Class number of	Description
	times	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied
Exploration of Radiation Belts by		extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma
Space Radio Engineering	1	environment. We review historical development of space radio engineering and current understanding of radiation belt
		dynamics.(Y. Omura: Dept. of Electrical Engineering)
Functional Organic Molecular		This lecture explains functional organic molecular materials with functions like photochromism or molecular conductance, which
Materials for Molecular Scale	1	are expected to play an active role in molecular scale nanoscience.(K. Matsuda: Dept. of Synthetic Chemistry and Biological
Nanoscience		Chemistry)
Micro- and Nano-scale Separations		Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis,
in Analytical Chemistry	1	will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)
Role of Nanoparticles Aiming at		Malignancy takes the first position for the cause of mortality in Japan. Realization of a "society of health and longevity"
Theranostic Agents for Solid	1	therefore requires a general method for diagnosis and therapy for cancers in the early stage. Nanoparticles are currently highly
Cancers - Sustainable Universe	1	expected to this type of medicinal treatment, because nanoparticles can avoid expensive therapy, which would bankrupt our
Health Care in the Aged Society		universal health care system.(S. Kimura: Dept. of Material Chemistry)
What are polymers?	1	What is a polymer? Also, what is the difference between polymers and other molecules? The characteristics of polymers and
F,	-	polymerizations are explained with some examples on practical applications of polymers.(M. Ouchi: Dept. of Polymer Chemistry)
Precision Polymerization and		The methodology to synthesize polymers precisely and their features are described. In addition, some examples on functional
Functional Materials by	1	materials using polymers whose molecular design is important are introduced.(M. Ouchi: Dept. of Polymer Chemistry)
Macromolecular Design		
Analysis and Design of		When introducing various kinds of automation systems including robots into a new work environment, it is necessary to design and
Socio-Technical Systems	1	analyze from the viewpoint of socio-technical systems, which is the interaction system of people, technology and organization. In
		this lecture, specific problems and solutions are described.(T. Sawaragi: Dept. of Mechanical Engineering and Science)
Computational Chemistry and computer science		Remarkable progress in the computer science has been revolutionizing scientific research and technological development for this
	1	decade. This trend will further accelerate in the future. This lecture reviews the impact of state of the art computer science on the
		molecular chemistry as an example.(R. Fukuda: Dept. of Molecular Engineering)
Photofunctional Single-Walled Carbon Nanotubes	1	Basic chemical properties of single-walled carbon nanotubes are introduced, and then applications of them as photofunctional molecular platform and charge transport pathway are presented. (T. Umeyama: Dept. of Molecular Engineering)
Renewable energies and	1	For the effective use of renewable energies, rechargeable batteries have been focused. Basic chemistry of batteries and how the rechargeable batteries are utilized for the storage of the energies will be given by the first lecture. (T. Abe: Energy and Hydrocarbon
rechargeable batteries	1	Chemistry)
Renewable energies and hydrogen		Fuel cells using hydrogen are clean energy sources. The second lecture is about the hydrogen production based on the renewable
production	1	energies.(T. Abe: Energy and Hydrocarbon Chemistry)
<u> </u>		Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of
Genome sequences, what do they	1	organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further
say and how can we use them?		increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
		Time or frequency is the most precisely measurable quantity. Clocks referenced to atomic resonances, called atomic clocks, have
Optical clocks -measurement of		extremely small uncertainies. They realize the definition of second and are applied to the global positioning system (GPS). This
time at the 18th decimal place	1	lecture introduces atomic clocks based on lasers, which improve the uncertainty to be the 18th decimal place.(K. Sugiyama: Dept.
		of Electronic Science and Engineering)
Mechanism of particle	1	The basic concepts and theories of charge transfer between solid surfaces are summarized and particle electrification caused by
electrification	1	repeated impacts on a wall is formulated.(S. Matsusaka: Dept. of Chemical Engineering)
Control of electrostatic charge on	1	On the basis of the concepts and formulation on particle electrification, new methods for the control of electrostatic charge on
particles	1	particles are presented.(S. Matsusaka: Dept. of Chemical Engineering)

【Textbook】None

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students who take Autumn term should register Lecture code 10H006.

Chemistry of Inorganic Materials 無機材料化学

[Code] 10H001 [Course Year] Master Course [Term] [Class day & Period] Mon 2nd [Location] A2-306

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】Tanaka, Hirao, Miura,

[Course Description] Structure, characterization, synthesis, and properties of inorganic materials are described on the basis of solid-state chemistry of inorganic matters.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	4	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H004

Chemistry of Organic Materials 有機材料化学

[Code] 10H004 [Course Year] Master Course [Term] [Class day & Period] Fri 1st [Location] A2-302

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Matsubara, Shimizu,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	3	
	1	
	1	
	3	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemistry of Polymer Materials

高分子材料化学

[Code] 10H007 [Course Year] Master Course [Term] [Class day & Period] Fri 2nd [Location] A2-302

 $\label{eq:credits} \label{eq:credits} \label{eq:credits} \label{eq:credits} \label{eq:credits} \label{eq:credits} \label{eq:credits} \label{eq:credits} \label{eq:credit} \l$

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
physical properties of	3	physical properties of polymers
polymers structure and physics		
of high-performance	3	structure and physics of high-performance polymers
polymers		
molecular design and		
function of	6	molecular design and function of functional polymers
functional polymers		

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H010

Chemistry of Functional Materials 機能材料化学

[Code] 10H010 [Course Year] Master Course [Term] [Class day & Period] Wed 1st [Location] A2-302

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

1 1 1 1 1 1 1 1 1 1 1	Theme
1 1 1 1 1 1 1 1 1	
1 1 1 1 1 1	
1 1 1 1	
1 1 1	
1	
1	
1	
1	
1	
1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemistry and Structure of Inorganic Compounds 無機構造化学

[Code] 10H013 [Course Year] Master Course [Term] [Class day & Period] Fri 2nd [Location] A2-302

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	3	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthetic Chemistry of Inorganic Solids 固体合成化学

[Code]10H016 [Course Year]Master Course [Term](not held; biennially) [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description] Methods to synthesize various inorganic solids and the structure and properties of the resultant materials are described.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	2	
	4	
	2	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthesis of Organic Materials

有機材料合成化学

[Code] 10H019 [Course Year] Master Course [Term] (not held; biennially) [Class day & Period] Fri 2nd

[Location] A2-302 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number times	of Description
2	
3	
3	
3	
4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H022

Chemistry of Organic Natural Products 有機天然物化学

[Code] 10H022 [Course Year] Master Course [Term] [Class day & Period] Thu 1st [Location] A2-302

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Shimizu, Nakao,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	3	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Analysis and Characterization of Materials 材料解析化学

[Code] 10H025 [Course Year] Master Course [Term] (not held; biennially) [Class day & Period] Wed 1st

[Location] A2-302 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],,,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	3	
	3	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H029

Polymer Physics and Function

高分子機能物性

[Code]10H029 [Course Year]Master Course [Term](not held; biennially) [Class day & Period] [Location]

[Credits] [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	1	
	2	
	2	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemistry of Biomaterials

生体材料化学

[Code] 10H031 [Course Year] Master Course [Term] [Class day & Period] Tue 2nd [Location] A2-302

[Credits] [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
biological functions		
in light of	6	
biomaterials		
cross-talk of		
polysaccharide with	6	
living systems		

[Textbook]

Textbook(supplemental)
Textbook(supplemental)

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Analysis and Characterization of Materials 材料解析化学

[Code] 10H034 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] A2-302 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],,,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	3	
	3	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Laboratory and Exercise in Material Chemistry

材料化学特別実験及演習

[Code] 10D037 [Course Year] Master 2nd [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 8 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	60	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10K001

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction

[Lecture Form(s)] Relay Lecture [Language] English

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryuichi Ashida

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called high technologies, and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Requirements and a number of credits are different with the academic system students choose, the modified academic quarter system or the academic semester system. Students who choose the academic semester system must meet the requirements for the first 11 lectures and the latter 4 lectures separately.

When the students who choose the modified quarter system are graded, the average score of the best four reports is employed. When the students who choose the academic semester system are graded, the average score of the best five reports is employed.

Please go to KULASIS Web site for more information.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Materials Processing Using External Fields for Microstructure Control	1	Properties of materials are not simply determined by crystal structure and chemical composition. Microstructure (i.e. crystal grain size, crystallographic orientation) can significantly influence the properties. Materials processing for the microstructure control, using external fields will be demonstrated in this class. (H. Yasuda: Dept. of Materials Science and Engineering)
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials. (Y. Nakao: Dept. of Material Chemistry)
Synthesis and Functions of Mixed Anion Compounds	1	As we entered the 21st century, mixed anion compounds, which contain several different anions, began to draw attention as new types of inorganic material. My lecture will show synthetic and functional aspects in this class of materials. (H. Kageyama: Dept. of Energy and Hydrocarbon Chemistry)
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced. (T. Asano: Dept. of Electronic Science and Engineering)
Introduction to Nuclear Materials	1	Nuclear materials are designed for irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked. (I. Takagi: Dept. of Nuclear Engineering)
Application of Polymer Nanoparticles to Bio-Imaging	1	Polymers are widely used in various delivery/localization events as drug carriers, stabilizers of clinical protein and nucleic acid medications, and lesion targeters. An obvious merit of polymers with an appropriate (>10 nm) size is that they escape from facile renal excretion. The size has another significance in case of tumor targeting. Tumor tissues usually have defective endothelial cells with a wide opening and undeveloped lymphatic vessel, so that polymer nanoparticles of the size range of 10 - 100 nm can permeate into the tumor and are retained therein. This is the so-called enhanced permeability and retention (EPR) effect, which shows high performance in terms of selectivity and efficiency in bio-imaging. (T. Kondo: Dept. of Energy and Hydrocarbon Chemistry)
Radiation Induced Reactions towards 1 -Dimensional Nanomaterials	1	Whether can we produce nano-material by the reactions induced by a "ray" (ionizing radiation)? The answer is yes. With an use of an atomic particle accelerated up to MeV orders, the one particle provides a nanowire along its trajectory via condensed and efficient chemical reactions in organic media. Single particle Nanofabrication Technique (SPNT) or Single Particle Triggered Linear Polymerization (STLiP), referred as, are demonstrated as versatile methods to give low dimensional nanomaterials based on a variety of organic molecular systems in this lecture. (S. Seki: Dept. of Molecular Engineering)
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry. (K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Hyperthermophiles and their Thermostable Biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids. (H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Designing Polymer Membrane Materials to Capture Green House Gases	1	We will discuss the overall obstacles involved in capturing green house gases such as CO2 or Methane, and the specific challenges to generating polymer membranes that can achieve it. Then we will consider how to design polymer materials that can overcome such obstacles. (E. Sivaniahi: Dept. of Molecular Engineering)
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides. (K. Tanaka: Dept. of Material Chemistry)
Force Acting on Colloidal Particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed. (R. Yamamoto: Dept. of Chemical Engineering)
Electrodeposition and Electroless Deposition for Materials Processing	1	(1) Fundamentals chemistry, electrochemistry, and thermodynamics , and (2) applications of electrodeposition and electroless deposition for materials processing. (K. Murase: Dept. of Materials Science and Engineering)

[Textbook] None

[Textbook(supplemental)]

[Prerequisite(s)]

• • • •

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

Advanced Modern Science and Technology (English lecture) 現代科学技術特論(英語科目)

[Code]10K005 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period]Thu 5th [Location]A2-306 [Credits]2(Semester system) [Restriction]No Restriction [Lecture Form(s)] Relay Lecture [Language] English

[Instructor]	GL	Edu.	Center,	J.	Assoc.	Prof.,	Ryosuke	Matsumoto
Related professors	\$							

[Course Description] Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system.

Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement. 【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)
Functional Organic Molecular Materials for Molecular Scale Nanoscience	1	This lecture explains functional organic molecular materials with functions like photochromism or molecular conductance, which are expected to play an active role in molecular scale nanoscience.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)
Role of Nanoparticles Aiming at Theranostic Agents for Solid Cancers – Sustainable Universe Health Care in the Aged Society	1	Malignancy takes the first position for the cause of mortality in Japan. Realization of a "society of health and longevity" therefore requires a general method for diagnosis and therapy for cancers in the early stage. Nanoparticles are currently highly expected to this type of medicinal treatment, because nanoparticles can avoid expensive therapy, which would bankrupt our universal health care system.(S. Kimura: Dept. of Material Chemistry)
What are polymers?	1	What is a polymer? Also, what is the difference between polymers and other molecules? The characteristics of polymers and polymerizations are explained with some examples on practical applications of polymers.(M. Ouchi: Dept. of Polymer Chemistry)
Precision Polymerization and Functional Materials by Macromolecular Design	1	The methodology to synthesize polymers precisely and their features are described. In addition, some examples on functional materials using polymers whose molecular design is important are introduced.(M. Ouchi: Dept. of Polymer Chemistry)
Analysis and Design of Socio-Technical Systems	1	When introducing various kinds of automation systems including robots into a new work environment, it is necessary to design and analyze from the viewpoint of socio-technical systems, which is the interaction system of people, technology and organization. In this lecture, specific problems and solutions are described.(T. Sawaragi: Dept. of Mechanical Engineering and Science)
Computational Chemistry and computer science	1	Remarkable progress in the computer science has been revolutionizing scientific research and technological development for this decade. This trend will further accelerate in the future. This lecture reviews the impact of state of the art computer science on the molecular chemistry as an example. (R. Fukuda: Dept. of Molecular Engineering)
Photofunctional Single-Walled Carbon Nanotubes	1	Basic chemical properties of single-walled carbon nanotubes are introduced, and then applications of them as photofunctional molecular platform and charge transport pathway are presented. (T. Umeyama: Dept. of Molecular Engineering)
Renewable energies and rechargeable batteries	1	For the effective use of renewable energies, rechargeable batteries have been focused. Basic chemistry of batteries and how the rechargeable batteries are utilized for the storage of the energies will be given by the first lecture. (T. Abe: Energy and Hydrocarbon Chemistry)
Renewable energies and hydrogen production	1	Fuel cells using hydrogen are clean energy sources. The second lecture is about the hydrogen production based on the renewable energies.(T. Abe: Energy and Hydrocarbon Chemistry)
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Optical clocks -measurement of time at the 18th decimal place	1	Time or frequency is the most precisely measurable quantity. Clocks referenced to atomic resonances, called atomic clocks, have extremely small uncertainies. They realize the definition of second and are applied to the global positioning system (GPS). This lecture introduces atomic clocks based on lasers, which improve the uncertainty to be the 18th decimal place.(K. Sugiyama: Dept. of Electronic Science and Engineering)
Mechanism of particle electrification	1	The basic concepts and theories of charge transfer between solid surfaces are summarized and particle electrification caused by repeated impacts on a wall is formulated.(S. Matsusaka: Dept. of Chemical Engineering)
Control of electrostatic charge on particles	1	On the basis of the concepts and formulation on particle electrification, new methods for the control of electrostatic charge on particles are presented.(S. Matsusaka: Dept. of Chemical Engineering)

[Textbook] None

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students who take Autumn term should register Lecture code 10H006.

10i045

Exercise in Practical Scientific English 実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 4th or 5th [Location] A2-304

[Credits] 1 [Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] English (Japanese)

[Instructor] M. Nishikawa, Y. Tanaka, T. Mizuno, A. Takatori, R. Matsumoto, R. Ashida

[Course Description] This course is open to all master and doctoral engineering students. It is designed to help students understand how to write a research paper step by step. In this course, the students will write a short research paper (i.e. Extended Research Abstract for Proceeding. approx. 1000 -1500 words) on a topic drawn from assigned readings.

[Grading] Evaluation based on 10% participation, 60% reports, 30% final paper *More than twice unexcused absence can result in course failure

[Course Goals] The primary goal of this course is to deepen an understanding of the main features of each part of a scientific paper (IMRaD). Throughout the course, students will develop the core competencies required for language, grammar, and style to produce a research manuscript in English.

[Course Topics]

Theme	Class number of times	Description
Unit 1: Course Overview	1	Course Overview: Introduction to writing scientific research articles
Unit 2: Introduction	1	Raising awareness of the register of science research articles (genre, audience, purpose)
Unit 3: Preparing to Write	1	Writing a proposal for a research paper, using corpus-based approach (Exercise: Creating own Corpus)
Unit 4: Preparing to Write	1	Paraphrasing ideas from source texts, using citations and references in formal writing
Unit 5: Writing Processes	1	Identifying the "moves" for an Abstract section by hint expressions
Unit 6: Writing Processes	1	Writing an Abstract (Title) & peer feedback
Unit 7: Writing Processes	1	Identifying the "moves" for an Introduction section by hint expressions
Unit 8: Writing Processes	1	Writing an Introduction section & peer feedback
Unit 9: Writing Processes	1	Writing a Method section & peer feedback
Unit 10: Writing Processes	1	Writing a Result section & peer feedback
Unit 11: Writing Processes	1	Writing a Discussion and a Conclusion section
Unit 12: Writing Processes	1	Writing a cover letter to reviewers and how to respond to reviewers
Unit 13: Monitoring and	1	Online feedback
Revising	1	Onnie reedback
Unit 14: Monitoring and	1	Pavising a paper based on peer feedback
Revising	1	Revising a paper based on peer feedback
Unit 15: Submission	1	Final Paper Due, August 6.

[Textbook] Handout materials will be supplied by the instructor.

【Textbook(supplemental)】ALESS (2012). Active English for Science- 英語で科学する - レポート、論文、プレゼンテーション . The University of Tokyo Press. Cargill, M., & O'Connor, P. (2013). Writing scientific research articles: Strategy and steps. John Wiley & Sons. Cowell, R., & She, L. (2015). Mastering the Basics of Technical English『技術英語の基礎』 . 2nd Ed., Corona Publishing. 野口ジュディー・深山晶子・岡本真由美.(2007). 『理系英語のライティング』. アルク

[Prerequisite(s)] Students who intend to join this course must attend the first class.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] We may restrict the class size to enhance students ' learning. Students who intend to join the course are required to attend the first-day guidance. Office Hours: (by appointment) nishikawa.mikako7w@kyoto-u.ac.jp (Ext. 2052)

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Wed 5th [Location] Funai Hall [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] GL center: J.Assoc. Tanaka, Mizuno, Takatori, Matsumoto, Ashida and Related professors

[Course Description] This course provides lectures and panel discussions by lecturers inside and outside the campus who have a remarkable achievement in engineering and are active as international leaders.

[Grading] Refer material about grading this course which is provided in 1st and 2nd lectures.

[Course Goals] This course cultivates the ability to develop familiar problem consciousness into a big concept through utilizing the materials of advanced fields in each field. This course also shows how leaders have improved their response to problems. Through this course, students learn fundamental culture, and the importance of human growth.

[Course Topics]

Theme	Class number of times	Description			
Construction of solar					
updraft power generation	1	Prof. Kunimasa Sugiura (Civil and Earth Resources Engineering) Apr. 12			
(SUPG) system on the ocean					
Record and protection of					
world cultural heritage by	1	Prof. Ari Ide (Mechanical Engineering and Science) Apr. 19			
advanced image processing					
Mysterious characteristics of					
smell: from development of	1	Dr. Jun-ichi Kita (Shimadzu Corporation) Apr. 26			
smell identification device					
Science and engineering of					
metals and potential of	1	Prof. Nobuhiro Tsuji (Materials Science and Engineering) May 10			
metals					
My days with radiation ray	1	Dr. Katsumi Hayashi (Hitachi, Corporation) May 17			
Material synthesis					
considering feeling of	1	Prof. Yasujiro Murata (Energy and Hydrocarbon Chemistry) May 24			
molecules					
Practical Marketing not on					
books	1	Dr. Fuminori Takaoka (Edge, Ltd.) May 31			
Direct visualization of					
atoms and molecules	1	Prof. Hirofumi Yamada (Electronic Science and Engineering) Jun. 7			
Encouragement for serial	1	Deef Mitsushi Oshime (Democratic Osmoratica) Ing 14			
innovator	1	Prof. Mitsuaki Oshima (Panasonic Corporation) Jun. 14			
Idle time and idle space	1	Prof. Kiyoshi Takeyama (Architecture and Architectural Engineering) Jun. 21			
Research of cancer therapy	1	Dr. Kaii Nada (National Institutes for Quantum and Dadislasical Science and Technology) Jun. 20			
by heavy ion beams	1	Dr. Koji Noda (National Institutes for Quantum and Radiological Science and Technology) Jun. 28			
Seven Wonders of powders	1	Prof. Shuji Matsusaka (Chemical Engineering) Jul. 5			
Strong company					
organizations in Japan, USA	1	Dr. Masahiko Mori (DMG MORI Co., Ltd.) Jul. 12			
and Germany					
Development of					
construction techniques:					
from development of	1	Dr. Ichiro Nagashima (Taisei Corporation) Jul. 19			
advanced technique to big					
projects					
Manufacturing by advanced optical machining	1	Prof. Kiyotaka Miura (Material Chemistry) Jul. 26			

[Prerequisite(s)]

[Independent Study Outside of Class] [Web Sites] [Additional Information]

10D043

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	2	
	2	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H041

Organotransition Metal Chemistry 1 有機金属化学 1

[Code] 10H041 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location]A2-306 [Credits]1.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

 $\label{eq:constructor} \label{eq:constructor} \label{constructor} \label{eq:constructor} \label{eq:constructor}$

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
Organomagnesium	1	Synthesis, structure, and reaction of organomagnesium compounds	
compounds	1	Synthesis, structure, and reaction of organomagnesium compounds	
Organolithium	1	Synthesis, structure, and reaction of organolithium compounds	
compounds	1	Synthesis, structure, and reaction of organonunum compounds	
Organozinc	1	Synthesis, structure, and reaction of organozinc compounds	
compounds	1	Synthesis, structure, and reaction of organozine compounds	
Organoboron	1	Synthesis, structure, and reaction of organoboron compounds	
compounds	1	Synthesis, structure, and reaction of organoboron compounds	
Organosilicon	1	Synthesis, structure, and reaction of organosilicon compounds	
compounds	1	Synthesis, structure, and reaction of organosineon compounds	
Organocopper	1	Synthesis, structure, and reaction of organocopper compounds	
compounds	1	Synthesis, structure, and reaction of organocopper compounds	
Rare earth metals	1	Synthesis, structure, and reaction of rare earth metals	
Other		Synthesis, structure, and reaction of other transition-metal compounds such as	
transition-metal	1	Ti, Zr, Cr, and Fe	
compounds			
Basic reaction of		Ligand substitution reaction, oxidative addition, oxidative cyclization,	
organotransition-metal	1	reductive elimination, transmetallation, carbonyl insertion	
compounds			
Catalytic		Enantioselective hydrogenation, enantioselective oxidation (Sharpless	
enantioselective	1	reactions), enantioselective C-C bond formation	
reaction		reactions), chantiosciective C-C bond formation	
Coupling reaction	1	C-C Bond forming reactions (cross coupling reactions)	

【Textbook】 none

【Textbook(supplemental)】 J. F. Hartwig, Organotransition metal chemistry. From bonding to catalysis., University Science Books, Mill Valley, CA, 2010.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organotransition Metal Chemistry 2 有機金属化学 2

[Code] 10H042 [Course Year] Master Course [Term] [Class day & Period] Fri 1st [Location] A2-306

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Ozawa, Murakami, Kondo, Nakao, Ohuchi, Kurahashi, Miki

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	2	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P055

Material Chemistry Adv. I

材料化学特論第一

[Code]10P055 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

 $\label{eq:credits} \ensuremath{\car{Credits}}\ensuremath{\car{Credit$

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Material Chemistry Adv. II

材料化学特論第二

[Code]10P056 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] Intensive Lecture [Language] [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P057

Material Chemistry Adv.

材料化学特論第三

[Code]10P057 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] Intensive Lecture [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Material Chemistry Adv.

材料化学特論第四

[Code]10P058 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] Intensive Lecture [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Design of Functional Materials 機能材料設計学

[Code] 10S001 [Course Year] Master Course [Term] 2nd term [Class day & Period] Wed 1st

[Location]A2-302 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Design of Functional Materials, Advanced

機能材料設計学特論

[Code] 10S002 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Thu 3rd

[Location] A2-122 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	8	
	7	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S003

Inorganic Structural Chemistry,Advanced 無機構造化学特論

[Code] 10S003 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Mon 4th

[Location] A2-302 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	10	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Industrial Solid-State Chemistry, Advanced

応用固体化学特論

[Code] 10S006 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Mon 5th

[Location] A2-302 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	8	
	7	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organic Reaction Chemistry, Advanced

有機反応化学特論

[Code] 10S010 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Wed 5th

[Location]A2-302 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Seminar [Language]Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1 5	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organic Chemistry of Natural Products, Advanced

天然物有機化学特論

[Code] 10S013 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Wed 5th

[Location] A2-302 [Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese

[Instructor] Nakao

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S016

Analytical Chemistry of Materials, Advanced 材料解析化学特論

[Code] 10S016 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Wed 4th

[Location] A2-122 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Physical Properties of Polymer Materials, Advanced

高分子材料物性特論

[Code] 10S019 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Tue 5th

[Location]A2-302 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Seminar [Language]Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S022

Synthesis of Polymer Materials,Advanced 高分子材料合成特論

[Code] 10S022 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location]A2-302 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Seminar [Language]Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Professional Scientific Presentation Exercises (English lecture)

科学技術者のためのプレゼンテーション演習(英語科目)

[Code] 10i041 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Thu 5th
[Location] B-Cluster 2F Seminar Room [Credits] 1

[Restriction] The number of students might be limited if too many students will get enrolled.

[Lecture Form(s)] Semina r [Language] English

[Instructor] Juha Lintuluoto, Associate Professor, Department of Synthetic Chemistry and Biological Chemistry [Course Description] It is imperative for future engineers to be able to communicate and deliver effectively scientific information to large variety of audiences. This skill enables engineers to share and absorb information to more extended audiences, and facilitates success in selling ideas and products, publishing and team working. The purpose of this course is to teach the basic rules needed for successful professional scientific presentation, both orally and written. The course also prepares students to deliver scientific information presentations to wide audiences. The course is consisted of excessive exercises, of which the student should complete seven (7) tasks. The course holds 3-4 tasks for oral presentation exercises, and 3-4 tasks for professional scientific writing exercises. The exact number of both exercises is adjusted for each student ' s needs. The course is aimed for doctor course (DC) students, both Japanese and Foreign nationals

[Grading] Reports, class activity, presentation

[Course Goals] This course is aimed to foster engineering students ' scientific presentation skills. The successfully course completed students will be able to express and present complicated and specific scientific information at more generally understandable level. The students will also be able to pose relevant questions and effectively answer to the wide variety of questions.

[Course Topics]

Theme	Class number of times	Description
	1	Guidance and Professional presentation rules and etiquette
	3	Oral presentations & questioning I, Written report I
	3	Oral presentations & questioning I, Written report I
	3	Oral presentations & questioning II, Written report II
	3	Oral presentations & questioning II, Written report II
	2	Oral presentations & questioning III, Written report III
		Oral presentations & questioning III, Written report III
		Oral presentations & questioning IV, Written report IV
		Oral presentations & questioning IV, Written report IV I
		Course summary and discussion

【Textbook】 Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] -Fundamental skills about scientific presentation

-Advanced English skills

-Sufficient personal research results

【Independent Study Outside of Class】

[Web Sites] The web-site is listed in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credit of this course is counted as the unit for graduation requirement at department level. Course starts at April 13th, and the 1st lesson is repeated on April 20th. The course schedule is irregular. Most classes are biweekly, the detailed schedule is provided at the 1st lecture.

10i042

Advanced Engineering and Economy (English lecture) 工学と経済(上級)(英語科目)

[Code] 10i042 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 5th [Location] B-Cluster 2F Seminar Room [Credits] 2 [Restriction] The number of students might be limited if too many students will get enrolled. [Lecture Form(s)] Lectures, Group works&tasks [Language] English [Instructor] Juha Lintuluoto, Associate Professor, Department of Synthetic Chemistry and Biological Chemistry

[Course Description] Engineering economics plays central role in any industrial engineering project. For an engineer, it is important to apply the engineering know-how with the economic analysis skills to obtain the best available materials, methods, devices, etc. in the most economical way. This course is aimed to teach engineering students the basic economic methods to manage economically an engineering project. In addition, the report writing on various engineering economic issues prepares to write reports in a professional form. The lab sessions are meant for the verbal skills improvement as well as improvement of analytical thinking. The topics are of current relevant topics Small-group brain-storming method is used. The exercise sessions cover the use of Ms-Excel for various quantitative economic analyses.

[Grading] Final test, reports, class activity

[Course Goals] This course is aimed to strengthen engineering students ' skills in economics. The course concept is to teach students selectively those subjects which serve as major tools to solve economic tasks in engineering environment. The reports and lab sessions provide students stimulating and analytical thinking requiring tasks, and presentation skills training is an important part of this course.

[Course Topics]

Theme	Class number of times	Description
Student orientation and		
Introduction to engineering economy	1	Course contents, goals
Cost concepts and design economics	1	Cost terminology and classification
Cost estimation techniques	1	WBS for cost estimation, estimation techniques (indexes, unit, factor, power-sizing, learning curve, CER, top down, bottom up), target costing
The time value of money	1	Simple interest, compound interest, economic equivalence concept, cash-flow diagrams, PW, FW, AW
Evaluating a single project	1	MARR, present wort method, bond value, capitalized worth, internal rate of return, external rate of return, payback method
Comparison and selection among alternatives	1	Investment and cost alternatives, study period, equal and unequal useful lives, rate-of-return method, imputed market value
Depreciation and income taxes	1	SL and DB depreciation methods, book value, after-tax MARR, marginal income tax rate, gain(loss) on asset disposal, after-tax economic analysis general procedure, EVA,
Price changes and exchange rates	1	Actual dollars, real dollars, inflation, fixed and responsive annuities, exchange rates, purchasing power
Replacement analysis	1	Determining economic life of challenger, determining economic life of defender, abandonment, after-tax replacement study
Evaluating projects with the benefit-cost ratio method	1	Benefits, costs, dis-benefits, self-liquidating projects, multi-purpose projects, interest rate vs. public project, conventional B-C ratio PW and AW method, modified B-C ratio PW and AW method
Breakeven and sensitivity analysis	1	Breakeven analysis, sensitivity analysis, spider plot
Probabilistic risk analysis	1	Sources of uncertainty, discrete and continuous variables, probability trees, Monte Carlo simulation example, decision trees, real options analysis
The capital budgeting process	1	Capital financing and allocation, equity capital and CAPM, WACC, WACC relation to MARR, opportunity cost
Decision making considering multiattributes	1	Non-compensatory models (dominance, satisficing, disjunctive resolution, lexicography), compensatory models (non-dimensional scaling, additive weight)
Final test	1	90 minutes, concept questions, calculation task (option of choice)
		Additionally, students will submit three reports during the course on given engineering economy subjects. Also, required are the five lab participations (ca.60 min/each) for each student. Additionally, three exercise sessions (ca.60 min/each), where use of Ms-Excel will be practiced for solving various engineering economy tasks,

should be completed

【Textbook】 Engineering Economy 15th ed. William G. Sullivan (2011)

[Textbook(supplemental)] Will be informed if necessary.

[Prerequisite(s)] -This course is highly recommended for those who attend "Project Management in Engineering" course , Small group working method [Independent Study Outside of Class]

[Web Sites] The web-site is listed in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credits of this course are counted as the units for graduation requirement at department level. The course starts on Oct.3rd.

Project Management in Engineering

エンジニアリングプロジェクトマネジメント

[Code] 10i049 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 4th [Location] A2-308 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto, Ashida

Assoc.Prof. Lintuluoto

[Course Description] This course provides a basic knowledge required for the project management in various engineering fields such as process design, plant design, construction, and R&D projects. Also, visiting lecturers from industry and public works provide management insights of actual engineering projects. [Grading] Evaluated by assignments (project report exercise) and class contribution

[Course Goals] This course will help students gain a fundamental knowledge of what project management in engineering is. Throughout the course, students will learn various tools applied in project management. Students will also understand the importance of costs and money, risks, leadership, and environmental assessment in managing engineering projects. This course is followed with the course "Seminar on Project Management in Engineering." in the second semester. [Course Topics]

Theme	Class number of	Description
	times	4(4.7.4.1')
Guidance	1	4/14 (Ashida) Course guidance
Guidance	1	Course guidance
		4/21 (Takatori)
Introduction to project	1	Introduction to project management
management & Project phases		Project phases
		4/28 (Lintuluoto)
Tools for project management,	1	Tools
cost, and cash flows I	1	Work breakdown structure
		Gantt charts
Project scheduling I	1	5/12 (Ashida)
	1	Project scheduling I
Project scheduling II	1	5/19 (Ashida)
	1	Project scheduling II
Tools for project management,	1	5/26 (Lintuluoto)
cost, and cash flows II	1	Cost
Tools for project management,	1	6/2 (Lintuluoto)
cost, and cash flows III	1	Cash flow
TBA	1	6/9
		To be announced
Leadership I	1	6/16 (Tanaka)
		Leadership I
Leadership II	1	6/23 (Tanaka)
		Leadership II
Risk I	1	6/30 (Matsumoto)
	•	Risk I
Risk II	1	7/7 (Matsumoto)
	-	Risk II
Environmental Impact	1	7/14 (Mizuno)
Assessment I	-	Environmental Impact Assessment I
Environmental Impact	1	7/21 (Mizuno)
Assessment II	-	Environmental Impact Assessment II
Special lecture		
Project management ~Tender	1	7/28 @ A2-306 (Cluster A, Katsura Campus)
process of Panama Canal		Lecturer: Taizo SHIMOMURA, Dr. (TAISEI CORPORATION)
expansion project~		

【Textbook】 Course materials will be provided.

[Textbook(supplemental)] 1. Lock, Dennis. Project Management. 10th edition. Gower Publishing Ltd.

2 . Cleland, David L., and Lewis R. Ireland. Project Management. 5th edition. McGraw-Hill Professional

3. Roger Miller and Donald R. Lessard. The strategic management of large engineering projects, Shaping Institutions, Risks, and Governance, The MIT Press

[Prerequisite(s)] No pre-requisite

【Independent Study Outside of Class】

 $\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\right]}\xspace{\,\operatorname{The}}\xspace{\,\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{$

10i050

Exercise on Project Management in Engineering

エンジニアリングプロジェクトマネジメント演習

[Code] 10i050 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] B-Cluster 2F Seminar Room [Credits] 1 [Restriction] Student number will be limited.

[Lecture Form(s)] Seminar [Language] English

[Instructor] GL center: J.Assoc.Prof. Mizuno, Tanaka, Matumoto, Ashida, Maeda Assoc.Prof. Lintuluoto

(Course Description **)** In this course, students will apply the engineering know-how and the skills of management, and group leadership which they learned in the course of Project Management in Engineering to build and carry out a virtual inter-engineering project. This course provides a forum where students ' team-plan based on ideas and theories, decision making, and leadership should produce realistic engineering project outcomes. The course consists of intensive group work, presentations, and a few intermediate discussions. A written report will be required.

[Grading] Report, class activity, presentation

[Course Goals] This course prepares engineering students to work with other engineers within a large international engineering project. In particular this course will focus on leadership and management of projects along with applied engineering skills where the students learn various compromises, co-operation, responsibility, and ethics.

Theme	Class number of times	Description
	1	10/6
California		Introduction to Exercise on Project Management in Engineering
Guidance		Lecture on tools for the Project management in engineering
		Practice
T 1	7	Each project team may freely schedule the group works within given time
Teamwork	/	frame. The course instructors are available if any need is required.
	2	Some lectures will be provided, such as Leadership structuring, Risk
Lecture & Teamwork		Management, and Environmental Impact Assessment, depending on projects
		you propose.
Presentation	1	Each project team will have a presentation based on its proposed project.

[Course Topics]

[Textbook] Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] Fundamental skills about group leading and communication, scientific presentation.

【Independent Study Outside of Class】

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] The number of students may be restricted. Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department.

Micro/Nano Scale Material Engineering

マイクロ・ナノスケール材料工学

[Code] 10Z101 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] 11, 12, 13, 14 September [Location] C3-Lecture Room 3 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] TABATA,HIRAKATA,HOJO,ADACHI,TSUCHIYA,YOKOKAWA,SUMIGAWA,INOUE,NAKAMURA,KAME,(Aichi Institute of Technology) NAMAZU, (Seoul National University) KIM

[Course Description] This class lectures specific mechanical properties and behavior of micro to nano scale materials, underlying mechanism of those properties and behavior and characterization method. Furthermore, techniques of measurements, analysis and structural design of biomaterial such as protein and DNA which are expected to be utilized as micro nano scale materials are lectured.

[Grading] The evaluation will be based on the reports given in each lecture. (All reports submission is mandatory.)

[Course Goals] Educate engineers and researchers with fundamental knowledge on specific mechanical properties and behavior of micro to nano scale materials. They can promote industrial application of micro and nano materials based on the deep understanding about how specific mechanical properties and behavior of micro to nano scale materials dominate performance, reliability and lifetime of MEMS (Micro Electromechanical Systems), microsystems and micro scale components.

Theme	Class number of times	Description
Outline	1	In this lecture, application examples of micro and nano scale material on devices and importance of mechanical properties and its behavior on device characteristics are described. (Tabata)
Fracture and fatigue mechanism of materials in the micro- and nano- meter scale	4	We explain fundamentals on the fracture and fatigue mechanism of materials in the micro- and nano-meter scale. At first, the characteristic properties of deformation and fracture in small components such as thin films, wires, dots etc. are discussed in terms of the solid mechanics. Focus is put on the interface strength of dissimilar materials as well including the effect of fatigue, creep and environment. Then, we explain the characteristics and mechanisms of " size effects " on the strength of micro- and nano-materials. As a representative example of materials with microscale structures, properties of composite materials are lectured. Characterization of microscopic components such as fibers and matrices are explained from the view points of the difference from bulk materials. Testing methods and properties of fiber/matrix interface are described. The relationship between the deformation and fracture of microscopic components and those of macroscopic composite materials are explained including the underlying mechanism. Explanation is also made to anisotropy of elastic properties and strength. (Hirakata, Sumigawa, Hojo)
Mechanical properties of Silicon	1	Silicon, one of the most widely used materials in micro/nano devices, is used not only a semiconductor material but also a mechanical material because of its sperior mechcanical properties. In this lecture, the properties of silicon, such as physical, electrical, mechanical, electro-mechanical properties, will be presented in the view point of a mechanical structural material. Especially the lecture will focus on the elastic properties, piezoresistive effect, and fracture/fatigue properties of silicon, indespensable for designing micro/nano-devices. (Tsuchiya)
Characterization of micro nano material	1	In this class, first I will lecture the evaluation method for the mechanical properties of micro and nano-scale materials used for MEMS and semiconductor devices. Several representative experimental techniques for micro and nano mechanical testing will be presented and explained. Then I will lecture representative functional materials, such as shape memory alloy films and self-propagating exothermic foils, and lecture regarding the possibility of their application to MEMS. (Namazu)
Piezoresistive effect of micro and nano material	2	In this theme, we will study the fundamental concepts of electronic-state theory and band structures to represent behavior of electrons in materials, and will discuss the electromechanical properties of materials based on the electronic-state theory. In particular, the principle and features of the piezoresistive effect, the change in the electrical resistivity due to mechanical stresses and strains, will be derived from the band structures of materials. The mechanisms of scale dependence of piezoresistivity in nanoscale materials such as silicon, carbon nanotube, and graphene will be also discussed. (Nakamura)
Bio/Nano material (1)	2	In tissue adaptation, regeneration and stem cell differentiation in tissue morphogenesis, cellular functional activities such as cell migration and division are regulated by complex mechano-chemical couplings at molecular level. To understand such a hierarchical dynamics from nanoscopic molecular events to microscopic cellular dynamics, we will discuss analysis of the molecular and cellular mechanical behaviors as bio-nano materials by integrating experiments, mathematical modeling and computer simulations. (Adachi, Inoue)
Bio/Nano material (2)	1	Cells are well regulated their fates and functions by extracellular microenvironments, consisted with chemical/physical cues and cell-cell interaction at a nano/micro-meter scale. This lecture provides an insight of design methods of biomaterials and their applications to recapitulate extracellular microenvironments. (Kamei)
Bio/Nano material (3)	1	Motor proteins are nano-scale actuators in vivo. Their active functions can be reconstructed in vitro to be utilized as a driving source of micro/nano systems. This lecture introduces fundamentals of their mechanical properties and molecular design methods. (Yokokawa)
Bio/Nano material (4)	1	This lecture describes DNA nanotechnology to construct nanoscale structures using DNA as a structural material. Fundamental knowledge, design methodology and application of DNA origami technique are focused. (Kim)
Feedback	1	

[Textbook]

[Textbook(supplemental)] Biomaterial: Bionano material: Mechanics of Motor Proteins & the Cytoskeleton, Jonathon Howard, Sinauer Associates (January 2001)

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This lecture is provided as a part of NIP (Nanotech Innovation Professional) course of the Nanotech Career-up Alliance (Nanotech CUPAL) project.

Material Chemistry

10i009

Internship 産学連携研究型インターンシップ

[Code] 10i009 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period] Flexible

[Location] [Credits] Depend on the department that the student belongs to [Restriction] No Restriction

[Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor] GL Education Center, Lecturer, Aiko Takatori, and related faculty members

[Course Description] This internship aims at mastering the meaning of engineering by experiencing the applied research and technical development in a company, and acquiring the flexible ability to cope with various industrial problems.

[Grading] The presentation and/or reports after the internship are used for evaluation. The rating is done at each department if this internship has been authorized at the department. If not, the rating is done at GL Education Center, and the credit earned by this subject is treated as a redundant credit.

[Course Goals] Through the experiences of actual businesses, such as a research or operation planning, grasping the actual condition of Japanese industries and the capability that the industries are searching for.

[Course Topics]

Theme	Class number of times	Description
	1	The research theme is determined through the prior consultation between a
T / 1 · ·		program participating company and the administrator of the GL Education
Internship in a		Center by taking the intention of students into account. After concluding the
company		memorandum which defined the matter required for enforcement, internship
		activity for one month or more is executed in an acceptance company.
Presentation of the	1	
result of internship	1	Submitting a report, and presenting the result of internship.

[Textbook] Not used

【Textbook(supplemental)】Not used

[Prerequisite(s)] Prior matching is performed.

[Independent Study Outside of Class] Not requested.

[Web Sites]

[Additional Information] The internship organized by the Collaborative Education for Next-Generation Innovators & Exploration of Knowledge Intersections is also treated as the internship of this course.

General Material Chemistry

材料化学総論

[Code] 10P011 [Course Year] Master 2nd [Term] 1st term [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P111

Chemical Industry, Advanced

化学産業特論

[Code] 10P111 [Course Year] Master Course [Term] Summer

[Class day & Period] July 26 & 27, 2017; 13:30~16:30 [Location] A2-306 [Credits] 0.5

[Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor] Dr. Tadatsugu Tanino (Sawai Pharmaceutical Co.,Ltd.)

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Energy Conversion Reactions

エネルギー変換反応論

[Code]10H201 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] K.Eguchi,T.Abe,H.Kageyama,R.Abe,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Green and Sustainable Chemistry 物質環境化学

[Code] 10H202 [Course Year] Master and Doctor Course [Term] [Class day & Period] Mon 2nd

 $\label{eq:location} \end{tabular} \end{tab$

【Instructor】K.Ohe,Y.Tsuji,T.Sakka,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Inorganic Solid-State Chemistry 無機固体化学

[Code] 10H205 [Course Year] Master and Doctor Course [Term] [Class day & Period] Thu 5th

[Location] A2-303 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] H.Kageyama,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	4	
	4	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Electrochemistry Advanced 電気化学特論

[Code] 10H200 [Course Year] Master and Doctor Course [Term] [Class day & Period] Thu 1st

[Location] A2-303 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] T.Abe,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	2	
	3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemistry of Functional Interfaces 機能性界面化学

[Code] 10H215 [Course Year] Master and Doctor Course [Term] [Class day & Period] Thu 2nd

[Location] A2-303 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] T.Sakka,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	5	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Catalysis in Organic Reactions

有機触媒化学

[Code] 10H213 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 1st

[Location] A2-306 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Department of Energy and Hydrocarbon Chemistry, Professor, K.Ohe

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Total synthesis of	2	
Minfiensine	Z	
Total synthesis of	1	
Vitamin E	1	
Total synthesis of	1	
Total synthesis of	2	
(+)-Laurenyne	2	
Total synthesis of	2	
Miriaporone 4	Z	
Total synthesis of	1	
BIRT-377	1	
Total synthesis of	1	
Ningalin D	1	
Total synthesis of	1	
Sporolide B	1	
Total synthesis of	2	
(-)-Tetrodotoxin	2	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Excited-State Hydrocarbon Chemistry 励起物質化学

[Code]10H207 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Biomedical Engineering 先端医工学

[Code]10H209 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	3	
	2	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemical Conversion of Carbon Resources 資源変換化学

[Code] 10H217 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location] [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] R. Abe

[Course Description]		
[Grading]		
[Course Goals]		
[Course Topics]		
Theme	Class number of times	Description
(1) Introduction of		
chemical conversion of	1	
resources		
(2) Chemical		
conversion using	1	
semiconductor	1	
photocatalysts		
(3) Hydrogen		
production from water	1	
using photocatalysts (1)		
(4) Hydrogen		
production from water	1	
using photocatalysts (2)		
(5) Reduction of CO2		
using photocatalysts	1	
(6) Fine chemical		
synthesis using	1	
photocatalysts		
(7) Basic science of		
catalysis	1	
(8) Hydrogen		
production fromfossil	1	
resources		
(9) Petroleum refinery	1	
process (1)	1	
(10) Petroleum refinery	1	
process (2)	1	
(11) Biomass		
technology and future	1	
energy carriers		

【Textbook】

【Textbook(supplemental)】
[Prerequisite(s)】
[Independent Study Outside of Class]
[Web Sites]
[Additional Information]

Chemistry of Organometallic Complexes 有機錯体化学

[Code] 10H210 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor] Tsuji, Terao,

[Course Description] Basic organometallic chemistry including history, structure, bonding, reactions, and survey of various metal complexes is lectured. Several typical catalytic reactions are explicated on the basis of elementary steps in organometallic chemistry such as ligand substitution, oxidative addition, reductive elimination, and insertion reactions.

[Grading] Graded by written examination

[Course Goals] Acquirement of basic idea of:

1. General properties of transition metal organometallic complexes

2. Reactivity of transition metal organometallic compounds

3. Homogeneous catalysis of practical importance

4. Recent research trends in homogeneous catalysis

[Course Topics]

Theme	Class number of times	Description
		History
		Application
		Research trends
Introduction	1	Zaise salt
		Grignard reagent
		Alkyl lithium
		Ferrocene
		Bonding
Concret monortics of		Structure in general
General properties of	1	Coordination number
organometallic complexes		-Structure
		μ -Structure
		Number of d- and s-electrons
		Classification and the nature of ligands
		Effect of complexation
		Formal charge
Organometallic seminar (1)	1	Electron counting
		18-electron rule
		Oxidation state
General properties and		
reactivities of transition	3	Several important steps in transition-metal complex catalyzed reactions are discussed, including
metal organometallic	3	coordination, oxidative addition, insertion, reductive elimination.
complexes		
		Wacker process
Recent research trends in	1	Various cross-coupling reaction
homogeneous catalysis (1)	1	Mizoroki-Heck reaction
Recent research trends in	1	C-H and C-C bond activation
homogeneous catalysis (2)	1	
Organometallics in materials	2	Asymetric catalysis
science (1)	<u>∠</u>	Asymetric catalysis
Organometallics in materials science (2)	1	Strucural metarials
Organometallic seminar (2)	1	Electronic and optoelectronic applications

[Textbook] No textbooks are used.

[Textbook(supplemental)] R.H.Crabtree, The Organometallic Chemistry of the Transition MetalsFourth Edition; Wiley-Interscience: Hoboken, 2005.

[Prerequisite(s)] Basic knowledge in organic chemistry, physical chemistry, and inorganic chemistry is requisite.

【Independent Study Outside of Class】

[Web Sites]

Design of Solid Catalysts 固体触媒設計学

[Code] 10H218 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location]A2-303 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] K.Eguchi,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	2	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Material Transformation Chemistry 物質変換化学

[Code]10H222 [Course Year] Master and Doctor Course [Term] [Class day & Period] Tue 5th [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Prof. M.Nakamura, Assoc. Prof. H. Takuya, (Assistant Profs. K. Isozaki and T. Iwamoto),

[Course Description] This course explains the basic chemistry of functional organometallics, aiming to help students understand the syntheses/structures/reactivities/functions of these compounds with a focus on applications in molecular transformation and organic synthesis.

[Grading] examinations (quizes in classes and final achievement test)

[Course Goals] To gain molecular-level insight into the reactivity and photo- and electro-functions of organometallic compounds based on elements science and to be able to apply it to the students' daily research, hopefully.

[Course Topics]

Theme	Class number of times	Description
course guidance and	1	1/11 course ouider as linter duction (accessment test
introduction	1	4/11 course guidance/introduction/assessment test
syntheses, properties,		
and applications of	6	
functional metal	6	4/18-5/30 main group organometallics in molecular transformations
nano particles		
syntheses, properties,		
and applications of		6/6-6/27 transition metal organometallic in photo- and electro-functional
organo main group	4	materials
metal compounds		

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)] knowledge of undergraduate organic chemistry

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This course is provided at Uji campus in the odd-number academic years and at Katsura campus in the even-number academic years.

Structural Organic Chemistry 構造有機化学

[Code] 10H219 [Course Year] Master and Doctor Course [Term] [Class day & Period] Tue 2nd

[Location] A2-303 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Y.Murata,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	1	
	1	
	1	
	1	
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Radiochemistry, Adv. 放射化学特論

[Code]10H238 [Course Year] Master and Doctor Course [Term] [Class day & Period] Mon 5th [Location]

[Credits] [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor]T.Ohtsuki,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	2		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemistry of Well-Defined Catalysts 錯体触媒設計学

[Code]10H226 [Course Year] Master and Doctor Course [Term] [Class day & Period] Tue 5th [Location]

[Credits] [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor]F.Ozawa,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Seminar on Energy & Hydrocarbon Chemistry (A)

物質エネルギー化学特別セミナー A

[Code] 10H208 [Course Year] Master 2nd [Term] 1st term [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] Intensive Lecture [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	6	
	5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Organic Chemistry 先端有機化学

[Code] 10H818 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 1st

[Location]A2-306 [Credits]1.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Professor Jun-ichi Yoshida and other professors

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Chemoselectivity	2	Introduction and chemoselectivity
Regioselectivity	2	Controlled Aldol Reactions
Stereoselectivity	2	Stereoselective Aldol Rections
Strategies	2	Alternative Strategies for Enone Synthesis
Choosing a Strategy	2	The Synthesis of Cyclopentenones
Summary	2	Summary and outlook

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organotransition Metal Chemistry 1 有機金属化学 1

[Code] 10H041 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location]A2-306 [Credits]1.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor] Nakamura,Matsubara,Suginome,Tsuji,Kurahashi,Omura,Murakami

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
Organomagnesium	1	Synthesis, structure, and reaction of organomagnesium compounds	
compounds	I	Synthesis, structure, and reaction of organomagnesium compounds	
Organolithium	1	Synthesis, structure, and reaction of organolithium compounds	
compounds	1	Synthesis, structure, and reaction of organonunum compounds	
Organozinc	1	Synthesis, structure, and reaction of organozinc compounds	
compounds	1	Synthesis, structure, and reaction of organozine compounds	
Organoboron	1	Synthesis, structure, and reaction of organoboron compounds	
compounds	1	Synthesis, structure, and reaction of organoboron compounds	
Organosilicon	1	Synthesis, structure, and reaction of organosilicon compounds	
compounds	I	Synthesis, structure, and reaction of organosticon compounds	
Organocopper	1	Synthesis, structure, and reaction of organocopper compounds	
compounds	I	Synthesis, structure, and reaction of organocopper compounds	
Rare earth metals	1	Synthesis, structure, and reaction of rare earth metals	
Other		Synthesis, structure, and reaction of other transition-metal compounds such as	
transition-metal	1	Ti, Zr, Cr, and Fe	
compounds			
Basic reaction of		Ligand substitution reaction, oxidative addition, oxidative cyclization,	
organotransition-metal	1	reductive elimination, transmetallation, carbonyl insertion	
compounds		reductive eminimation, transmetanation, carbonyr insertion	
Catalytic		Enantioselective hydrogenation, enantioselective oxidation (Sharpless	
enantioselective	1		
reaction		reactions), enantioselective C-C bond formation	
Coupling reaction	1	C-C Bond forming reactions (cross coupling reactions)	

【Textbook】 none

[Textbook(supplemental)] J. F. Hartwig, Organotransition metal chemistry. From bonding to catalysis., University Science Books, Mill Valley, CA, 2010.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organotransition Metal Chemistry 2 有機金属化学 2

有機並周11子 2

[Code] 10H042 [Course Year] Master Course [Term] [Class day & Period] Fri 1st [Location] A2-306

 $\label{eq:credits} \ensuremath{\left[1.5 \ensuremath{\ensuremath{\left[\ensuremath{{\rm Restriction}} \ensuremath{\right]} \ensuremath{\left[\ensuremath{{\rm Restriction}} \ensuremath{\[\ensuremath{{\rm Restriction}$

[Instructor] Ozawa, Murakami, Kondo, Nakao, Ohuchi, Kurahashi, Miki

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	2	
	1	
	1	
	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D228

Energy and Hydrocarbon Chemistry, Adv. I

物質エネルギー化学特論第一

[Code] 10D228 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd

[Location]A2-303 [Credits]1 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Atsushi Wakamiya, Takafumi Yamamoto, and Ken-ichi Amano

[Course Description] (A): Lecture of x-ray diffraction on powder

(B): Lecture of translational entropy

[Grading] Attendance and report

[Course Goals] (A): Understanding of x-ray diffraction on powder

(B): Understanding of translational entropy

[Course Topics]

Theme	Class number of times	Description
Crystal structure analysis	4	Explanation of crystal structure analysis
Translational entropy	3	Explanation of translational entropy
	1	

【Textbook】 No textbooks are used.

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge in chemistry is requisite.

【Independent Study Outside of Class】

[Web Sites]

10D229)
--------	---

Energy and Hydrocarbon Chemistry, Adv. II

物質エネルギー化学特論第二

[Code] 10D229 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd

[Location]A2-303 [Credits]1 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor]	Atsushi	Takamiya
	Takafumi	Yamamoto

Ken-ichi Amano

[Course Description] Lecture for developments of functional materials (e.g., Solar cell, Organic LED).

[Grading] Attendance and Report (short test)

[Course Goals] Understanding of mechanisms of the functional materials.

[Course Topics]

Theme	Class number of times	Description
Inorganic and		
organic functional	7	Explanation of the inorganic and organic functional materials
materials		
Feedback	1	

[Textbook] There is no mandatory textbook.

[Textbook(supplemental)]

[Prerequisite(s)] A basic inorganic/organic chemistry background is necessary.

【Independent Study Outside of Class】

[Web Sites]

10D230

Energy and Hydrocarbon Chemistry, Adv. III

物質エネルギー化学特論第三

[Code] 10D230 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】Tassel, Higashi, (KUICR) Isozaki

[Course Description] The preparation of novel materials, their characterization and the optimization of their properties is a fundamental approach towards improving our production and use of energy towards sustainable goals. The role of this course will be to introduce various fields of chemistry, specifically solid state chemistry, catalysis and nanotechnology. The on-going research in different fields will be presented to provide students with a global picture of the different techniques and strategies towards improving the figure numbers of materials for energy.

[Grading] Reports will be graded.

[Course Goals] This lecture will aim at teaching students the importance of material research in the field of energy production, storage, and use.

[Course Topics]

Theme	Class number of times	Description
Semiconductors and		
photocatalysis	2	Overview of semiconductors for photocatalysis.
(Higashi)		
Light energy	2	Our minut of light or over comparing
conversion (Higashi)	2	Overview of light energy conversion.
Structure and		
properties of metallic	2	Overview of structure and properties of motallic perpendicity
nanoparticles	2	Overview of structure and properties of metallic nanoparticles.
(Isozaki)		
Metallic nanoparticles	2	Overview of metallic nanoparticles and catalysis.
and catalyis (Isozaki)	2	
Exotic Syntheses	2	One minute of an interesting and the same
(Tassel)	2	Overview of various exotic syntheses.
Topochemical	1	Overview of topochemical reactions.
reactions (Tassel)	1	Overview of topochemical feactions.
Experiments under		
high-pressure	2	Overview of experiments under high-pressure conditions.
conditions (Tassel)		
High-pressure	1	Overview of high-pressure synthesis techniques.
syntheses (Tassel)	1	Overview of high-pressure synthesis techniques.
Feedback (All staff)	1	Feedback about the reports.

[Textbook] No textbooks. Handouts will be provided.

[Textbook(supplemental)] Solid State Chemistry and its Applications, 2nd Edition, Student Edition, Anthony R. West

[Prerequisite(s)] Fundamental knowledge in organic and inorganic chemistry at the undergraduate level.

【Independent Study Outside of Class】

[Web Sites]

Energy and Hydrocarbon Chemistry, Adv. IV

物質エネルギー化学特論第四

[Code] 10D231 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Tassel, Higashi, (KUICR) Isozaki

[Course Description] Equivalent to Energy and Hydrocarbon Chemistry, Adv. III

[Grading] Reports will be graded.

[Course Goals] Equivalent to Energy and Hydrocarbon Chemistry, Adv. III

[Course Topics]

Theme	Class number of times	Description	
Semiconductors and			
photocatalysis	2	Overview of semiconductors for photocatalysis.	
(Higashi)			
Light energy	2	Overview of light energy conversion.	
conversion (Higashi)	2		
Structure and			
properties of metallic	2	Overview of structure and properties of metallic nanoparticles.	
nanoparticles			
(Isozaki)			
Metallic			
nanoparticles and	2	Overview of metallic nanoparticles and catalysis.	
catalyis (Isozaki)			
Exotic syntheses	2	Overview of various exotic syntheses.	
(Tassel)	2		
Topochemical	1	Overview of topochemical reactions.	
reactions (Tassel)			
Experiments under			
high-pressure	2	Overview of experiments under high-pressure conditions.	
conditions (Tassel)			
High-pressure	1	Overview of high-pressure synthesis techniques.	
syntheses (Tassel)	Ŧ		
Feedback (All staff)	1	Feedback about the reports.	

[Textbook] Equivalent to Energy and Hydrocarbon Chemistry, Adv. III

[Textbook(supplemental)] Equivalent to Energy and Hydrocarbon Chemistry, Adv. III

[Prerequisite(s)] Equivalent to Energy and Hydrocarbon Chemistry, Adv. III

【Independent Study Outside of Class】

[Web Sites]

10D232

Energy and Hydrocarbon Chemistry, Adv. V 物質エネルギー化学特論第五

[Code] 10D232 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor]H.Masuda,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	4	
	4	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Energy and Hydrocarbon Chemistry, Adv. IV

物質エネルギー化学特論第六

[Code] 10D233 [Course Year] Master Course [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	4	
	3	
	3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D235

Energy and Hydrocarbon Chemistry, Adv. VII

物質エネルギー化学特論第七

[Code] 10D235 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Energy and Hydrocarbon Chemistry, Adv. VIII

物質エネルギー化学特論第八

[Code] 10D236 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 1 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10K001

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] English

Lecture Form(3) Frenzy Eccture Language Finghan

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryuichi Ashida

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called high technologies, and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Requirements and a number of credits are different with the academic system students choose, the modified academic quarter system or the academic semester system. Students who choose the academic semester system must meet the requirements for the first 11 lectures and the latter 4 lectures separately.

When the students who choose the modified quarter system are graded, the average score of the best four reports is employed. When the students who choose the academic semester system are graded, the average score of the best five reports is employed.

Please go to KULASIS Web site for more information.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Materials Processing Using External Fields for Microstructure Control	1	Properties of materials are not simply determined by crystal structure and chemical composition. Microstructure (i.e. crystal grain size, crystallographic orientation) can significantly influence the properties. Materials processing for the microstructure control, using external fields will be demonstrated in this class. (H. Yasuda: Dept. of Materials Science and Engineering)
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials. (Y. Nakao: Dept. of Material Chemistry)
Synthesis and Functions of Mixed Anion Compounds	1	As we entered the 21st century, mixed anion compounds, which contain several different anions, began to draw attention as new types of inorganic material. My lecture will show synthetic and functional aspects in this class of materials. (H. Kageyama: Dept. of Energy and Hydrocarbon Chemistry)
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as theology modifiers or thickeners because theological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced. (T. Asano: Dept. of Electronic Science and Engineering)
Introduction to Nuclear Materials	1	Nuclear materials are designed for irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked. (I. Takagi: Dept. of Nuclear Engineering)
Application of Polymer Nanoparticles to Bio-Imaging	1	Polymers are widely used in various delivery/localization events as drug carriers, stabilizers of clinical protein and nucleic acid medications, and lesion targeters. An obvious merit of polymers with an appropriate (>10 nm) size is that they escape from facile renal excretion. The size has another significance in case of tumor targeting. Tumor tissues usually have defective endothelial cells with a wide opening and undeveloped lymphatic vessel, so that polymer nanoparticles of the size range of 10 - 100 nm can permeate into the tumor and are retained therein. This is the so-called enhanced permeability and retention (EPR) effect, which shows high performance in terms of selectivity and efficiency in bio-imaging. (T. Kondo: Dept. of Energy and Hydrocarbon Chemistry)
Radiation Induced Reactions towards 1 -Dimensional Nanomaterials	1	Whether can we produce nano-material by the reactions induced by a "ray" (ionizing radiation)? The answer is yes. With an use of an atomic particle accelerated up to MeV orders, the one particle provides a nanowire along its trajectory via condensed and efficient chemical reactions in organic media. Single particle Nanofabrication Technique (SPNT) or Single Particle Triggered Linear Polymerization (STLiP), referred as, are demonstrated as versatile methods to give low dimensional nanomaterials based on a variety of organic molecular systems in this lecture. (S. Seki: Dept. of Molecular Engineering)
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry. (K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Hyperthermophiles and their Thermostable Biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids. (H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Designing Polymer Membrane Materials to Capture Green House Gases	1	We will discuss the overall obstacles involved in capturing green house gases such as CO2 or Methane, and the specific challenges to generating polymer membranes that can achieve it. Then we will consider how to design polymer materials that can overcome such obstacles. (E. Sivaniahi: Dept. of Molecular Engineering)
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides of repintronics, and multiferroic oxides. (K. Tanaka: Dept. of Material Chemistry)
Force Acting on Colloidal Particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed. (R. Yamamoto: Dept. of Chemical Engineering)
Electrodeposition and Electroless Deposition for Materials Processing	1	(1) Fundamentals chemistry, electrochemistry, and thermodynamics , and (2) applications of electrodeposition and electroless deposition for materials processing. (K. Murase: Dept. of Materials Science and Engineering)

[Textbook] None

[Textbook(supplemental)]

[Prerequisite(s)]

. .

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

Advanced Modern Science and Technology (English lecture) 現代科学技術特論(英語科目)

[Code]10K005 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period]Thu 5th [Location]A2-306 [Credits]2(Semester system) [Restriction]No Restriction [Lecture Form(s)] Relay Lecture [Language] English

 Instructor
 GL
 Edu.
 Center,
 J.
 Assoc.
 Prof.,
 Ryosuke
 Matsumoto

 Related professors
 <

[Course Description] Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system.

Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement. 【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Exploration of Radiation Belts by	unes	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma
Space Radio Engineering	1	environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)
Functional Organic Molecular Materials for Molecular Scale Nanoscience	1	This lecture explains functional organic molecular materials with functions like photochromism or molecular conductance, which are expected to play an active role in molecular scale nanoscience. (K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)
Role of Nanoparticles Aiming at Theranostic Agents for Solid Cancers – Sustainable Universe Health Care in the Aged Society	1	Malignancy takes the first position for the cause of mortality in Japan. Realization of a "society of health and longevity" therefore requires a general method for diagnosis and therapy for cancers in the early stage. Nanoparticles are currently highly expected to this type of medicinal treatment, because nanoparticles can avoid expensive therapy, which would bankrupt our universal health care system.(S. Kimura: Dept. of Material Chemistry)
What are polymers?	1	What is a polymer? Also, what is the difference between polymers and other molecules? The characteristics of polymers and polymerizations are explained with some examples on practical applications of polymers.(M. Ouchi: Dept. of Polymer Chemistry)
Precision Polymerization and Functional Materials by Macromolecular Design	1	The methodology to synthesize polymers precisely and their features are described. In addition, some examples on functional materials using polymers whose molecular design is important are introduced.(M. Ouchi: Dept. of Polymer Chemistry)
Analysis and Design of Socio-Technical Systems	1	When introducing various kinds of automation systems including robots into a new work environment, it is necessary to design and analyze from the viewpoint of socio-technical systems, which is the interaction system of people, technology and organization. In this lecture, specific problems and solutions are described.(T. Sawaragi: Dept. of Mechanical Engineering and Science)
Computational Chemistry and computer science	1	Remarkable progress in the computer science has been revolutionizing scientific research and technological development for this decade. This trend will further accelerate in the future. This lecture reviews the impact of state of the art computer science on the molecular chemistry as an example. (R. Fukuda: Dept. of Molecular Engineering)
Photofunctional Single-Walled Carbon Nanotubes	1	Basic chemical properties of single-walled carbon nanotubes are introduced, and then applications of them as photofunctional molecular platform and charge transport pathway are presented. (T. Umeyama: Dept. of Molecular Engineering)
Renewable energies and rechargeable batteries	1	For the effective use of renewable energies, rechargeable batteries have been focused. Basic chemistry of batteries and how the rechargeable batteries are utilized for the storage of the energies will be given by the first lecture. (T. Abe: Energy and Hydrocarbon Chemistry)
Renewable energies and hydrogen production	1	Fuel cells using hydrogen are clean energy sources. The second lecture is about the hydrogen production based on the renewable energies.(T. Abe: Energy and Hydrocarbon Chemistry)
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Optical clocks -measurement of time at the 18th decimal place	1	Time or frequency is the most precisely measurable quantity. Clocks referenced to atomic resonances, called atomic clocks, have extremely small uncertainies. They realize the definition of second and are applied to the global positioning system (GPS). This lecture introduces atomic clocks based on lasers, which improve the uncertainty to be the 18th decimal place.(K. Sugiyama: Dept. of Electronic Science and Engineering)
Mechanism of particle electrification	1	The basic concepts and theories of charge transfer between solid surfaces are summarized and particle electrification caused by repeated impacts on a wall is formulated.(S. Matsusaka: Dept. of Chemical Engineering)
Control of electrostatic charge on particles	1	On the basis of the concepts and formulation on particle electrification, new methods for the control of electrostatic charge on particles are presented.(S. Matsusaka: Dept. of Chemical Engineering)

【Textbook】None

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students who take Autumn term should register Lecture code 10H006.

10D043

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	2	
	2	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D051

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Wed 5th [Location] Funai Hall [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] GL center: J.Assoc. Tanaka, Mizuno, Takatori, Matsumoto, Ashida and Related professors

[Course Description] This course provides lectures and panel discussions by lecturers inside and outside the campus who have a remarkable achievement in engineering and are active as international leaders.

[Grading] Refer material about grading this course which is provided in 1st and 2nd lectures.

[Course Goals] This course cultivates the ability to develop familiar problem consciousness into a big concept through utilizing the materials of advanced fields in each field. This course also shows how leaders have improved their response to problems. Through this course, students learn fundamental culture, and the importance of human growth.

[Course Topics]

Theme	Class number of times	Description	
Construction of solar	anes		
updraft power generation	1	Prof. Kunimasa Sugiura (Civil and Earth Resources Engineering) Apr. 12	
(SUPG) system on the ocean			
Record and protection of			
world cultural heritage by	1	Prof. Ari Ide (Mechanical Engineering and Science) Apr. 19	
advanced image processing			
Mysterious characteristics of			
smell: from development of	1	Dr. Jun-ichi Kita (Shimadzu Corporation) Apr. 26	
smell identification device			
Science and engineering of			
metals and potential of	1	Prof. Nobuhiro Tsuji (Materials Science and Engineering) May 10	
metals			
My days with radiation ray	1	Dr. Katsumi Hayashi (Hitachi, Corporation) May 17	
Material synthesis			
considering feeling of	1	Prof. Yasujiro Murata (Energy and Hydrocarbon Chemistry) May 24	
molecules			
Practical Marketing not on			
books	1	Dr. Fuminori Takaoka (Edge, Ltd.) May 31	
Direct visualization of		Prof. Hirofumi Yamada (Electronic Science and Engineering) Jun. 7	
atoms and molecules	1		
Encouragement for serial			
innovator	1	Prof. Mitsuaki Oshima (Panasonic Corporation) Jun. 14	
Idle time and idle space	1	Prof. Kiyoshi Takeyama (Architecture and Architectural Engineering) Jun. 21	
Research of cancer therapy			
by heavy ion beams	1	Dr. Koji Noda (National Institutes for Quantum and Radiological Science and Technology) Jun. 28	
Seven Wonders of powders	1	Prof. Shuji Matsusaka (Chemical Engineering) Jul. 5	
Strong company			
organizations in Japan, USA	1	Dr. Masahiko Mori (DMG MORI Co.,Ltd.) Jul. 12	
and Germany			
Development of			
construction techniques:			
from development of	1	Dr. Ichiro Nagashima (Taisei Corporation) Jul. 19	
advanced technique to big			
projects			
Manufacturing by advanced	4	Deef Winstehn Minne (Material Chamistra) Int 26	
optical machining	1	Prof. Kiyotaka Miura (Material Chemistry) Jul. 26	

[Prerequisite(s)]

[Independent Study Outside of Class] [Web Sites] [Additional Information]

Exercise in Practical Scientific English 実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 4th or 5th [Location] A2-304

[Credits] 1 [Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] English (Japanese)

[Instructor] M. Nishikawa, Y. Tanaka, T. Mizuno, A. Takatori, R. Matsumoto, R. Ashida

[Course Description] This course is open to all master and doctoral engineering students. It is designed to help students understand how to write a research paper step by step. In this course, the students will write a short research paper (i.e. Extended Research Abstract for Proceeding. approx. 1000 -1500 words) on a topic drawn from assigned readings.

[Grading] Evaluation based on 10% participation, 60% reports, 30% final paper *More than twice unexcused absence can result in course failure

[Course Goals] The primary goal of this course is to deepen an understanding of the main features of each part of a scientific paper (IMRaD). Throughout the course, students will develop the core competencies required for language, grammar, and style to produce a research manuscript in English.

[Course Topics]

Theme	Class number of times	Description	
Unit 1: Course Overview	1	Course Overview: Introduction to writing scientific research articles	
Unit 2: Introduction	1	Raising awareness of the register of science research articles (genre, audience, purpose)	
Unit 3: Preparing to Write	1	Writing a proposal for a research paper, using corpus-based approach (Exercise: Creating own Corpus)	
Unit 4: Preparing to Write	1	Paraphrasing ideas from source texts, using citations and references in formal writing	
Unit 5: Writing Processes	1	Identifying the "moves" for an Abstract section by hint expressions	
Unit 6: Writing Processes	1	Writing an Abstract (Title) & peer feedback	
Unit 7: Writing Processes	1	Identifying the "moves" for an Introduction section by hint expressions	
Unit 8: Writing Processes	1	Writing an Introduction section & peer feedback	
Unit 9: Writing Processes	1	Writing a Method section & peer feedback	
Unit 10: Writing Processes	1	Writing a Result section & peer feedback	
Unit 11: Writing Processes	1	Writing a Discussion and a Conclusion section	
Unit 12: Writing Processes	1	Writing a cover letter to reviewers and how to respond to reviewers	
Unit 13: Monitoring and	1	Online feedback	
Revising	1	Unline Teedback	
Unit 14: Monitoring and	1	Revising a paper based on peer feedback	
Revising	1	Kevising a paper based on peer reedback	
Unit 15: Submission	1	Final Paper Due, August 6.	

[Textbook] Handout materials will be supplied by the instructor.

【Textbook(supplemental)】ALESS (2012). Active English for Science- 英語で科学する - レポート、論文、プレゼンテーション . The University of Tokyo Press. Cargill, M., & O'Connor, P. (2013). Writing scientific research articles: Strategy and steps. John Wiley & Sons. Cowell, R., & She, L. (2015). Mastering the Basics of Technical English『技術英語の基礎』 . 2nd Ed., Corona Publishing. 野口ジュディー・深山晶子・岡本真由美.(2007). 『理系英語のライティング』. アルク

[Prerequisite(s)] Students who intend to join this course must attend the first class.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] We may restrict the class size to enhance students ' learning. Students who intend to join the course are required to attend the first-day guidance. Office Hours: (by appointment) nishikawa.mikako7w@kyoto-u.ac.jp (Ext. 2052)

10i009

Internship 産学連携研究型インターンシップ

[Code] 10i009 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period] Flexible

[Location] [Credits] Depend on the department that the student belongs to [Restriction] No Restriction

[Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor] GL Education Center, Lecturer, Aiko Takatori, and related faculty members

(Course Description **)** This internship aims at mastering the meaning of engineering by experiencing the applied research and technical development in a company, and acquiring the flexible ability to cope with various industrial problems.

[Grading] The presentation and/or reports after the internship are used for evaluation. The rating is done at each department if this internship has been authorized at the department. If not, the rating is done at GL Education Center, and the credit earned by this subject is treated as a redundant credit.

[Course Goals] Through the experiences of actual businesses, such as a research or operation planning, grasping the actual condition of Japanese industries and the capability that the industries are searching for.

[Course Topics]

Theme	Class number of times	Description
	1	The research theme is determined through the prior consultation between a
T / 1'''		program participating company and the administrator of the GL Education
Internship in a		Center by taking the intention of students into account. After concluding the
company		memorandum which defined the matter required for enforcement, internship
		activity for one month or more is executed in an acceptance company.
Presentation of the	1	Coloritations a manual and annear time the manufact intermedia
result of internship	1	Submitting a report, and presenting the result of internship.

[Textbook] Not used

【Textbook(supplemental)】Not used

[Prerequisite(s)] Prior matching is performed.

[Independent Study Outside of Class] Not requested.

[Web Sites]

[Additional Information] The internship organized by the Collaborative Education for Next-Generation Innovators & Exploration of Knowledge Intersections is also treated as the internship of this course.

Experiments & Exercises in Energy and Hydrocarbon Chemistry, Adv. 物質エネルギー化学特別実験及演習

[Code] 10D234 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 8 [Restriction] No Restriction [Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	30	
	10	
	10	
	10	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S204

Energy and Hydrocarbon Chemistry Special Seminar 1

物質エネルギー化学特別セミナー1

[Code] 10S204 [Course Year] Doctor 1st [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Energy and Hydrocarbon Chemistry Special Seminar 2

物質エネルギー化学特別セミナー2

[Code] 10S205 [Course Year] Doctor 2nd [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S206

Energy and Hydrocarbon Chemistry Special Seminar 3

物質エネルギー化学特別セミナー3

[Code] 10S206 [Course Year] Doctor 2nd [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Statistical Thermodynamics

統計熱力学

[Code] 10H401 [Course Year] Master Course [Term] [Class day & Period] Thu 2nd [Location] A2-306

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Hirofumu Sato

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	4	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H405

Quantum Chemistry 量子化学

[Code] 10H405 [Course Year] Master Course [Term] [Class day & Period] Tue 2nd [Location] A2-304

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Tohru Sato

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Chemistry 量子化学

[Code] 10H406 [Course Year] Master Course [Term] [Class day & Period] Mon 1st [Location] A2-304

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Hirofumi Sato

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	2	
	2	
	1	
	2	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Spectroscopy

分子分光学

[Code] 10H408 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 2nd

[Location] A2-304 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture

[Language] Japanese [Instructor] Itoh, Watanabe, Mizuochi, related faculty

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	4	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Biomolecular Function Chemistry

生体分子機能化学

[Code] 10H448 [Course Year] Master and Doctor Course [Term] (not held; biennially)

[Class day & Period] Mon 2nd [Location] A2-304 [Credits] 1.5 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Shirakawa, Sugase

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	3	
	2	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H413

Molecular Materials 分子機能材料

[Code] 10H413 [Course Year] Master and Doctor Course [Term] (not held; biennially)

[Class day & Period] Wed 2nd [Location] A2-304 [Credits] 1.5 [Restriction] No Restriction

 $\label{eq:lecture Form(s)}$ Lecture $\label{lecture}$ Language Japanese $\label{lecture}$ Instructor A. Ito

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	3	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Catalysis Science at Molecular Level 分子触媒学

[Code] 10H416 [Course Year] Master and Doctor Course [Term] [Class day & Period] Fri 2nd

[Location] A2-304 [Credits] 1.5 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Tsunehiro Tanaka, Kentaro Teramura

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	1	
	1	
	1	
	1	
	3	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P416

Catalysis Science at Molecular Level 2 分子触媒学続論

[Code] 10P416 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location]A2-304 [Credits]0.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Hosokawa

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Photochemistry 分子光化学

[Code] 10H417 [Course Year] Master and Doctor Course [Term] (not held; biennially)

[Class day & Period] Mon 2nd [Location] A2-304 [Credits] 1.5 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hiroshi Imahori, Tomokazu Umeyama

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

【Textbook】

Textbook(supplemental)

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Photochemistry 2 分子光化学続論

[Code] 10P417 [Course Year] Master and Doctor Course [Term] [Class day & Period]

[Location]A2-304 [Credits]0.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]English

【Instructor】Hiroshi Imahori, Tomokazu Umeyama, Jaehong Park

[Course Description] We will discuss the photoinduced energy and electron transfer dynamics in molecular systems

[Grading] By the final report (95%) + class participation and attendance (5%)

[Course Goals] To understand the photoinduced energy and electron transfer dynamics in molecular systems

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Introduction to excited-state dynamics in molecular systems
Laser spectroscopic	1	Description to steady-state and time-resolved laser spectroscopic methods to
methods	I	study excited-state dynamics
Photoinduced Energy	1	Description of photoinduced energy transfer dynamics, case studies of
Transfer	I	photoinduced energy transfer processes
Photoinduced Energy	1	Description of photoinduced electron transfer dynamics, case studies of
Transfer	I	photoinduced electron transfer processes

[Textbook] No textbook

[Textbook(supplemental)] Modern Molecular Photochemistry (by N. Turro)

[Prerequisite(s)] Undergraduate level of Physical Chemistry and English

[Independent Study Outside of Class] It will be given doing the course.

[Web Sites] https://park-group.wixsite.com/park-group

[Additional Information] This course will be opened every two years and will not be available in 2017 fiscal year. Office hour: (Location and Time: Katsura campus, A4-205, appointment by email) Instructor: Jaehong Park (email: j.park@moleng.kyoto-u.ac.jp)

Condensed Matter Physical Chemistry 物性物理化学

[Code] 10H423 [Course Year] Master and Doctor Course [Term] (not held; biennially)

[Class day & Period] Fri 2nd [Location] A2-304 [Credits] 1.5 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Seki, related faculty

[Course Description] First Half: Statistical physics of macromolecular configurations and their correlation to the macroscopic properties including opto-electronic properties of conjugated polymer materials. Second Half: Classical and Quantum mechanical aspects on interaction of light, electromagnetic waves and ionizing radiations with matters, leading to the sophisticated spectroscopic techniques to probe electronic structures of molecular materials in their condensed phases and aggregates

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Statistical physics of chain molecules	3	Starting from the classical statitical mechanics of chain molecules, we discuss on the sophisticated Flory-Huggins theory of macromolecules, Ising models, as well as worm-like chain molecules.
Backbone configuration and properties	3	Macroscopic physical properties of macromolecules including opto-electronic properties of conjugated polymer chains are discusses in terms of backbone configuration and their modulations.
Interaction of light and electromagnetic waves with matters	2	Starting from the classical theory of electronic transition of molecules, the overall aspects of electromagnetic wave interaction with matters are discussed leading to classical and quantum mechanical pictures of Fermi golden rule.
Theory of interaction cross sections	2	Elastic and inelastic interaction (collision) is discussed in terms of generalized cross sectional view of the interaction starting from Bethe theory.

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Materials Science 分子材料科学

[Code] 10H422 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 2nd

[Location]A2-304 [Credits]1.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Kaji, Goto

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Quantum Materials Science 量子物質科学

[Code] 10H427 [Course Year] Master and Doctor Course [Term] [Class day & Period] Thu 2nd

[Location]A2-304 [Credits]1.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Tokuda

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	2	
	1	
	2	
	2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H428

Molecular Rheology

分子レオロジー

[Code] 10H428 [Course Year] Master and Doctor Course [Term] spring semester

[Class day & Period] Wed 3rd [Location] A2-304 [Credits] 1.5 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] mostly Japanese (occasionally English)

【Instructor】H. Watanabe, Y. Matsumiya

[Course Description] Lecture is given for the rheology and dynamics of polymeric liquids and their molecular basis.

[Grading] Mainly with report

[Course Goals] Understanding phenomenological aspect of rheology in general and molecular aspect of polymer rheology.

[Course Topics]

Theme	Class number of times	Description	
Desire of Dheeless	1	Rheology and its role in science and engineering, flow / deformation/ stress,	
Basics of Rheology		viscosity, modulus	
Rheological behavior	1	Rheological behavior of matter and classification, viscoelasticity,	
of matter	1	non-Newtonian flow, plastic flow	
Viscoelastic	2	Boltzmann's principle, relaxation functions, relaxation time, conversion among	
relaxations	2	response functions, complex modulus	
Viscoelasticity and	1	Class transition time temperature superposition WIE equation	
temperature	1	Glass transition, time-temperature superposition, WLF equation	
Stress expression of	2	Stress summaries tension (fues anony (distribution function of subshains	
polymers	2	Stress expression, tension / free-energy / distribution-function of subchains	
D //7:	1	Model description, model equation, derivation of stress and relaxation	
Rouse/Zimm model		modulus, discussion on the relaxation behavior	
		Model description, model equation, derivation of stress and relaxation	
tube model	2	modulus, discussion on the relaxation behavior, comparison to Rouse	
		dynamics	
feedback of			
evaluation and	1	Feedback of evaluation of report etc, and confirmation of level of	
confirmation of level	1	understanding	
of understanding			

[Textbook] Original text will be distributed in the class

[Textbook(supplemental)] Y Matsushita ed, Structure and Property of Polymers (Kodansha)

M Doi & S F Edwards The Theory of Polymer Dynamics (Oxford press)

W Graessley Polymeric Liquids & Networks: Dynamics and Rheology (Garland Science)

[Prerequisite(s)] Some basics on differential equations and statistical physics of polymers

【Independent Study Outside of Class】

【Web Sites】http://rheology.minority.jp

Molecular Porous Physical Chemistry 分子細孔物理化学

[Code] 10H430 [Course Year] Master and Doctor Course [Term] Fall [Class day & Period] Tue 2nd

[Location]A2-304 [Credits]1.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]English

[Instructor] Easan Sivaniah

[Course Description] This course will discuss the physical chemistry and engineering application of porous materials in the areas of adsorption and membrane separation processes.

[Grading] The course grade will be determined based on in class tests and a final report.

[Course Goals] The intention of this course is to allow students to become familiar with a range of porous materials, and the practical ways such materials are used. Although the course is not intended to be exhaustive in covering all porous materials and all applications, examples will be followed that are relevant to socially important problems, such as global warming, or water shortage.

[Course Topics]

Theme	Class number of times	Description
Overview	1	Introduction to course, and broad overview of porous materials
Thermodynamics of	2	
Mixing	2	Phase equilibria and structure formation processes
Adsorptive processes	2	Physical chemistry of adsorptive processes in porous materials
Diffusive processes	2	Physical chemistry of diffusion limited processes in porous materials
Case Study:		
Membrane Processes	2	Liquid filtration systems for nanofiltration, desalination
for liquid separation		
Case Study:		
Membrane Processes	2	Membrane separation processes for carbon dioxide capture
for gas separation		

【Textbook】

[Textbook(supplemental)] Suggested text book lists will be provided during the course

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] http://pureosity.org/en/

10D432

Laboratory and Exercises in Molecular Engineering I

分子工学特別実験及演習

[Code] 10D432 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Experiment and Exercise [Language] Japanese

【Instructor】 related faculty

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	7	
	16	
	7	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Laboratory and Exercises in Molecular Engineering I I

分子工学特別実験及演習

[Code] 10D433 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 4 [Restriction] [Lecture Form(s)] Experiment and Exercise [Language] Japanese

[Instructor] related faculty

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	7	
	16	
	7	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D439

Molecular Engineering, Adv. IA

分子工学特論第一 A

[Code] 10D439 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

 [Credits] 1
 [Restriction]
 [Lecture Form(s)]
 [Language] Japanese
 [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	8	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Engineering, Adv. IB

分子工学特論第一 B

[Code] 10D445 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

 [Credits] 1
 [Restriction]
 [Lecture Form(s)]
 [Language]
 [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	8	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D440

Molecular Engineering, Adv. IIA

分子工学特論第二 A

[Code] 10D440 [Course Year] Master Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	8	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Engineering, Adv. IIB

分子工学特論第二 B

[Code] 10D447 [Course Year] Master Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] [Lecture Form(s)] [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	8	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H436

Molecular Engineering, Adv.

分子工学特論第三

[Code]10H436 [Course Year]Master Course [Term]2nd term [Class day & Period] [Location] [Credits]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5.5	
	5.5	
	5.5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Engineering, Adv.

分子工学特論第四

[Code] 10D437 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of	Description
Theme	times	Description

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D438

Molecular Engineering, Adv. V 分子工学特論第五

[Code]10D438 [Course Year]Master and Doctor Course [Term] [Class day & Period]Fri 1st [Location]A2-304 [Credits]2 [Restriction]No Restriction [Lecture Form(s)] Lecture [Language] English [Instructor] Ravi Subramanian

[Course Description] This course is designed to provide a comprehensive and general overview of all aspects related to solar energy utilization. The course begins with a basic discussion on the science of solar energy and a historical perspective of this topic. This is followed by a discussion on subjects related to materials development, technological advancement, and future potential.

[Grading] One final exam will be conducted at the end of the course. It will be for 100 points.

¹All lecture content would be supported with PowerPoint presentations. ²Prof. Imahori Lab demonstration. ³Open notes allowed for Part B. only.

[Course Goals] The goals of the course are to i) demonstrate to the students that solar energy is an evolving and interdisciplinary topic, ii) emphasize that a collaborative understanding of the concepts related to the traditional topics of physics, chemistry, and biology are required, and iii) indicate that several approaches are required to be considered to harvest the full potential of the sun.

[Course Topics]

Theme	Class number of times	Description
Fundamentals ¹	1	Fundamental of solar energy processes. Properties of light, atomic structure and light-matter interaction at the atomic level, fundamental problems related to light
History	2	Historical aspects and earlier attempts to solar energy utilization. Here we will discuss pre-historic and preliminary approaches to solar energy conversion, the timelines, evolution of the concepts, and current trends
Materials	3	Photocatalyst: Types and synthesis approach. The common types of photoactive materials, the various generic approaches to the synthesis of these materials including composites
Materials characteristics	4	Photocatalyst: Characterization. The methods used to characterize the optical, surface, electronic, and photocatalytic properties of the photoactive materials
Concepts (PV)	5	Solar-to-electric conversion. Mechanism of solar-to-electric conversion, materials properties, types of solar cells, concept of efficiency measurements
Concepts (Eco)	6	Environmental remediation. Photocatalytic process applied to various types of liquid and gas phase pollutant conversion to less toxic and benign products
Concept (Fuel)	7	Solar-assisted water splitting. Special case of clean fuel production from water using solar ? based technologies, some representative configurations for designing photocatalyst for improving the splitting processes
Concept (Eco)	8	CO2 conversion. CO2 activation processes, interaction between CO2 and H-source to produce hydrocarbon, challenge and importance of catalyst design
Biological system	9	Solar-driven biochemical processes. Biological processes that use solar energy for value added product formation limited to algae and bacteria ? based processes for biofuel production
High temperature solar system	10	Solar thermal processes. The principle of operation and focus on the concentrated solar power approach with a little discussion on value-added product formation using emerging technologies at the interface of CSPs
Applications	11	Laboratory demonstration of assembly of a solar cell and testing of the device. An integrated video demonstration of the assembly of a state-of-the-art solar cell using current research grade materials and measuring efficiency ²
Applications	12	Examples of commercial systems operating on solar energy utilization. Identifying various solar energy utilizing facilities throughout the world, its main objective, and impact on the local communities
Future	13	Advantages and challenges to solar energy utilization. Comparison of solar energy with other technology areas and determining its similarity and differences (limitations) with those of other green technologies
Reminiscence	14	Question answer session. On this day the students can participate in a discussion on any concept related to the topics discussed in the last 12 weeks.
Exam	15	Final Exam. On this day the students will be tested on the content presented over the last 12 weeks. The exam will be in 2 part (A+B) & open notes. ³ Structure: a) objectives (Fill in blanks, True/False, Matching, 1 line and 3 -4 lines questions)
Outcomes	16	Results and Feedback. The exam results will be provided to each student within 3 days. They will have an opportunity to meet with me to discuss any modifications/concerns. Final results will then be posted. Feedback accepted.

【Textbook】 Class notes and power point presentation

【Textbook(supplemental)】None

[Prerequisite(s)] 1st year chemistry, physics, biology, and mathematics

【Independent Study Outside of Class】

[Web Sites] None

[Additional Information] Meeting time can be scheduled on an as required basis. Please email ravisy@unr.edu

Vaidyanathan (Ravi) Subramanian Associate Professor Director, SOLAR Lab Chemical and Materials Engineering Department University of Nevada, Reno LME 309, MS 388 89557-NV, USA Ph (775) 784 4686, Fax (775) 327 5059 http://wolfweb.unr.edu/homepage/ravisv/

Copyright: Elsevier Publications, All rights Reserved? [Take notes only please] Currently this course is unavilable.

分子工学特論第六

[Code] 10P439 [Course Year] Master Course [Term] [Class day & Period] [Location] [Credits] 0.5

[Restriction] [Lecture Form(s)] [Language] [Instructor] Tsunehiro Tanaka, related faculty

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P440

Molecular Engineering, Adv.

分子工学特論第七

[Code] 10P440 [Course Year] Master Course [Term] [Class day & Period] [Location] [Credits] 0.5

[Restriction] [Lecture Form(s)] Relay Lecture [Language] Japanese

[Instructor] Higashino, Sakurai, related faculty

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P448 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

[Course Description] This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The contents of a series of seminar are explained.
Intensive lectures of	2	For a given theme, a series of lectures is executed.
the specific theme		
Summary	1	The contents of a series of seminar are summarized, and the exercise for
		evaluating the level of understanding is executed.

【Textbook】 A copy of related contents is offered.

【Textbook(supplemental)】 Announced in the lecture.

[Prerequisite(s)] The basic knowledge for understanding the specific theme and the ability of understanding the lecture in English are requested.

[Independent Study Outside of Class]

[Web Sites]

10P450

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P450 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

[Course Description] This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The contents of a series of seminar are explained.
Intensive lectures of	2	For a given theme, a series of lectures is executed.
the specific theme		
Summary	1	The contents of a series of seminar are summarized, and the exercise for
		evaluating the level of understanding is executed.

[Textbook] A copy of related contents is offered.

【Textbook(supplemental)】 Announced in the lecture.

[Prerequisite(s)] The basic knowledge for understanding the specific theme and the ability of understanding the lecture in English are requested.

[Independent Study Outside of Class]

[Web Sites]

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P452 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

[Course Description] This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The contents of a series of seminar are explained.
Intensive lectures of	2	For a given theme, a series of lectures is executed.
the specific theme		
Summary	1	The contents of a series of seminar are summarized, and the exercise for
		evaluating the level of understanding is executed.

【Textbook】 A copy of related contents is offered.

【Textbook(supplemental)】 Announced in the lecture.

[Prerequisite(s)] The basic knowledge for understanding the specific theme and the ability of understanding the lecture in English are requested.

[Independent Study Outside of Class]

[Web Sites]

10P454

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P454 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

[Course Description] This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The contents of a series of seminar are explained.
Intensive lectures of	2	For a given theme, a series of lectures is executed.
the specific theme		
Summary	1	The contents of a series of seminar are summarized, and the exercise for
		evaluating the level of understanding is executed.

[Textbook] A copy of related contents is offered.

【Textbook(supplemental)】 Announced in the lecture.

[Prerequisite(s)] The basic knowledge for understanding the specific theme and the ability of understanding the lecture in English are requested.

[Independent Study Outside of Class]

[Web Sites]

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P456 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor] C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

[Course Description] This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The contents of a series of seminar are explained.
Intensive lectures of	2	For a given theme, a series of lectures is executed.
the specific theme		
Summary	1	The contents of a series of seminar are summarized, and the exercise for
		evaluating the level of understanding is executed.

【Textbook】 A copy of related contents is offered.

【Textbook(supplemental)】 Announced in the lecture.

[Prerequisite(s)] The basic knowledge for understanding the specific theme and the ability of understanding the lecture in English are requested.

[Independent Study Outside of Class]

[Web Sites]

10P457

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P457 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] English

[Instructor]C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

[Course Description] This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The contents of a series of seminar are explained.
Intensive lectures of	2	For a given theme, a series of lectures is executed.
the specific theme		
Summary	1	The contents of a series of seminar are summarized, and the exercise for
		evaluating the level of understanding is executed.

[Textbook] A copy of related contents is offered.

【Textbook(supplemental)】 Announced in the lecture.

[Prerequisite(s)] The basic knowledge for understanding the specific theme and the ability of understanding the lecture in English are requested.

【Independent Study Outside of Class】

[Web Sites]

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P459 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor]C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

[Course Description] This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The contents of a series of seminar are explained.
Intensive lectures of	2	For a given theme, a series of lectures is executed.
the specific theme		
Summary	1	The contents of a series of seminar are summarized, and the exercise for
		evaluating the level of understanding is executed.

【Textbook】 A copy of related contents is offered.

【Textbook(supplemental)】 Announced in the lecture.

[Prerequisite(s)] The basic knowledge for understanding the specific theme and the ability of understanding the lecture in English are requested.

【Independent Study Outside of Class】

[Web Sites]

10P461

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P461 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor]C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

[Course Description] This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The contents of a series of seminar are explained.
Intensive lectures of	2	For a given theme, a series of lectures is executed.
the specific theme		
Summary	1	The contents of a series of seminar are summarized, and the exercise for
		evaluating the level of understanding is executed.

[Textbook] A copy of related contents is offered.

【Textbook(supplemental)】 Announced in the lecture.

[Prerequisite(s)] The basic knowledge for understanding the specific theme and the ability of understanding the lecture in English are requested.

【Independent Study Outside of Class】

[Web Sites]

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P463 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor]C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

[Course Description] This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The contents of a series of seminar are explained.
Intensive lectures of	2	For a given theme, a series of lectures is executed.
the specific theme		
Summary	1	The contents of a series of seminar are summarized, and the exercise for
		evaluating the level of understanding is executed.

【Textbook】 A copy of related contents is offered.

【Textbook(supplemental)】 Announced in the lecture.

[Prerequisite(s)] The basic knowledge for understanding the specific theme and the ability of understanding the lecture in English are requested.

【Independent Study Outside of Class】

[Web Sites]

10P465

Japan Gateway Project Seminar

JGP セミナー

[Code] 10P465 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor]C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

[Course Description] This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The contents of a series of seminar are explained.
Intensive lectures of	2	For a given theme, a series of lectures is executed.
the specific theme		
Summary	1	The contents of a series of seminar are summarized, and the exercise for
		evaluating the level of understanding is executed.

[Textbook] A copy of related contents is offered.

【Textbook(supplemental)】 Announced in the lecture.

[Prerequisite(s)] The basic knowledge for understanding the specific theme and the ability of understanding the lecture in English are requested.

【Independent Study Outside of Class】

[Web Sites]

[Code] 10P467 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor]C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

[Course Description] This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The contents of a series of seminar are explained.
Intensive lectures of	2	For a given theme, a series of lectures is executed.
the specific theme		
Summary	1	The contents of a series of seminar are summarized, and the exercise for
		evaluating the level of understanding is executed.

【Textbook】 A copy of related contents is offered.

[Textbook(supplemental)] Announced in the lecture.

[Prerequisite(s)] The basic knowledge for understanding the specific theme and the ability of understanding the lecture in English are requested.

[Independent Study Outside of Class]

[Web Sites]

10P469

Japan Gateway Project Seminar ?

JGP セミナー

[Code] 10P469 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Announced before opening the course [Location] Announced before opening the course

[Credits] 0.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] C-PIER, Distinguished visiting project professor 6 chemistry-related departments, Professors related to the subjects

[Course Description] This is a series of lectures which are carried out by the professors who are invited with Japan Gateway: Kyoto University Top Global Program (JGP). By attending a lecture from the world top level professors, this course aims to grasping the newest trend of the specific field and extending the view of thinking.

[Grading] Attendance at a series of four lectures or more is requested. The report assigned in the lecture and/or the result of final examination are used for evaluation.

[Course Goals] Understand the fundamental and/or latest contents of a field of chemistry or chemical engineering in English, and obtain the skill of discussing the related contents in English.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	The contents of a series of seminar are explained.
Intensive lectures of	2	For a given theme, a series of lectures is executed.
the specific theme		
Summary	1	The contents of a series of seminar are summarized, and the exercise for
		evaluating the level of understanding is executed.

[Textbook] A copy of related contents is offered.

[Textbook(supplemental)] Announced in the lecture.

[Prerequisite(s)] The basic knowledge for understanding the specific theme and the ability of understanding the lecture in English are requested.

【Independent Study Outside of Class】

[Web Sites]

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction

[Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryuichi Ashida

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called high technologies, and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Requirements and a number of credits are different with the academic system students choose, the modified academic quarter system or the academic semester system. Students who choose the academic semester system must meet the requirements for the first 11 lectures and the latter 4 lectures separately.

When the students who choose the modified quarter system are graded, the average score of the best four reports is employed. When the students who choose the academic semester system are graded, the average score of the best five reports is employed.

Please go to KULASIS Web site for more information.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description		
Materials Processing Using External Fields for Microstructure Control	1	Properties of materials are not simply determined by crystal structure and chemical composition. Microstructure (i.e. crystal grain size, crystallographic orientation) can significantly influence the properties. Materials processing for the microstructure control, using external fields will be demonstrated in this class. (H. Yasuda: Dept. of Materials Science and Engineering)		
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials. (Y. Nakao: Dept. of Material Chemistry)		
Synthesis and Functions of Mixed Anion Compounds	1	As we entered the 21st century, mixed anion compounds, which contain several different anions, began to draw attention as new types of inorganic material. My lecture will show synthetic and functional aspects in this class of materials. (H. Kageyama: Dept. of Energy and Hydrocarbon Chemistry)		
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed. (T. Koga: Dept. of Polymer Chemistry)		
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed. (T. Koga: Dept. of Polymer Chemistry)		
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced. (T. Asano: Dept. of Electronic Science and Engineering)		
Introduction to Nuclear Materials	1	Nuclear materials are designed for irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked. (I. Takagi: Dept. of Nuclear Engineering)		
Application of Polymer Nanoparticles to Bio-Imaging	1	Polymers are widely used in various delivery/localization events as drug carriers, stabilizers of clinical protein and nucleic acid medications, and lesion targeters. An obvious merit of polymers with an appropriate (>10 nm) size is that they escape from facile renal excretion. The size has another significance in case of tumor targeting. Tumor tissues usually have defective endothelial cells with a wide opening and undeveloped lymphatic vessel, so that polymer nanoparticles of the size range of 10 - 100 nm can permeate into the tumor and are retained therein. This is the so-called enhanced permeability and retention (EPR) effect, which shows high performance in terms of selectivity and efficiency in bio-imaging. (T. Kondo: Dept, of Energy and Hydrocarbon Chemistry)		
Radiation Induced Reactions towards 1 -Dimensional Nanomaterials		Whether can we produce nano-material by the reactions induced by a "ray" (ionizing radiation)? The answer is yes. With an use of an atomic particle accelerated up to MeV orders, the one particle provides a nanowire along its trajectory via condensed and efficient chemical reactions in organic media. Single particle Nanofabrication Technique (SPNT) or Single Particle Triggered Linear Polymerization (STLiP), referred as, are demonstrated as versatile methods to give low dimensional nanomaterials based on a variety of organic molecular systems in this lecture. (S. Seki: Dept. of Molecular Engineering)		
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry. (K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)		
Hyperthermophiles and their Thermostable Biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids. (H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)		
Designing Polymer Membrane Materials to Capture Green House Gases	1	We will discuss the overall obstacles involved in capturing green house gases such as CO2 or Methane, and the specific challenges to generating polymer membranes that can achieve it. Then we will consider how to design polymer materials that can overcome such obstacles. (E. Sivaniahi: Dept. of Molecular Engineering)		
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides. (K. Tanaka: Dept. of Material Chemistry)		
Force Acting on Colloidal Particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed. (R. Yamamoto: Dept. of Chemical Engineering)		
Electrodeposition and Electroless Deposition for Materials Processing	1	(1) Fundamentals chemistry, electrochemistry, and thermodynamics , and (2) applications of electrodeposition and electroless deposition for materials processing. (K. Murase: Dept. of Materials Science and Engineering)		

[Textbook] None

[Textbook(supplemental)]

[Prerequisite(s)]

. .

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

10K005

Advanced Modern Science and Technology (English lecture) 現代科学技術特論(英語科目)

[Code]10K005 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period]Thu 5th [Location]A2-306 [Credits]2(Semester system) [Restriction]No Restriction [Lecture Form(s)] Relay Lecture [Language] English

 [Instructor]
 GL
 Edu.
 Center,
 J.
 Assoc.
 Prof.,
 Ryosuke
 Matsumoto

 Related professors

[Course Description] Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system.

Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement. [Course Goals]

[Course Topics]

Theme	Class number of times	Description
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)
Functional Organic Molecular Materials for Molecular Scale Nanoscience	1	This lecture explains functional organic molecular materials with functions like photochromism or molecular conductance, which are expected to play an active role in molecular scale nanoscience. (K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)
Role of Nanoparticles Aiming at Theranostic Agents for Solid Cancers – Sustainable Universe Health Care in the Aged Society	1	Malignancy takes the first position for the cause of mortality in Japan. Realization of a "society of health and longevity" therefore requires a general method for diagnosis and therapy for cancers in the early stage. Nanoparticles are currently highly expected to this type of medicinal treatment, because nanoparticles can avoid expensive therapy, which would bankrupt our universal health care system.(S. Kimura: Dept. of Material Chemistry)
What are polymers?	1	What is a polymer? Also, what is the difference between polymers and other molecules? The characteristics of polymers and polymerizations are explained with some examples on practical applications of polymers.(M. Ouchi: Dept. of Polymer Chemistry)
Precision Polymerization and Functional Materials by Macromolecular Design	1	The methodology to synthesize polymers precisely and their features are described. In addition, some examples on functional materials using polymers whose molecular design is important are introduced.(M. Ouchi: Dept. of Polymer Chemistry)
Analysis and Design of Socio-Technical Systems	1	When introducing various kinds of automation systems including robots into a new work environment, it is necessary to design and analyze from the viewpoint of socio-technical systems, which is the interaction system of people, technology and organization. In this lecture, specific problems and solutions are described.(T. Sawaragi: Dept. of Mechanical Engineering and Science)
Computational Chemistry and computer science	1	Remarkable progress in the computer science has been revolutionizing scientific research and technological development for this decade. This trend will further accelerate in the future. This lecture reviews the impact of state of the art computer science on the molecular chemistry as an example. (R. Fukuda: Dept. of Molecular Engineering)
Photofunctional Single-Walled Carbon Nanotubes	1	Basic chemical properties of single-walled carbon nanotubes are introduced, and then applications of them as photofunctional molecular platform and charge transport pathway are presented. (T. Umeyama: Dept. of Molecular Engineering)
Renewable energies and rechargeable batteries	1	For the effective use of renewable energies, rechargeable batteries have been focused. Basic chemistry of batteries and how the rechargeable batteries are utilized for the storage of the energies will be given by the first lecture.(T. Abe: Energy and Hydrocarbon Chemistry)
Renewable energies and hydrogen production	1	Fuel cells using hydrogen are clean energy sources. The second lecture is about the hydrogen production based on the renewable energies.(T. Abe: Energy and Hydrocarbon Chemistry)
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Optical clocks -measurement of time at the 18th decimal place	1	Time or frequency is the most precisely measurable quantity. Clocks referenced to atomic resonances, called atomic clocks, have extremely small uncertainies. They realize the definition of second and are applied to the global positioning system (GPS). This lecture introduces atomic clocks based on lasers, which improve the uncertainty to be the 18th decimal place.(K. Sugiyama: Dept. of Electronic Science and Engineering)
Mechanism of particle electrification	1	The basic concepts and theories of charge transfer between solid surfaces are summarized and particle electrification caused by repeated impacts on a wall is formulated.(S. Matsusaka: Dept. of Chemical Engineering)
Control of electrostatic charge on particles	1	On the basis of the concepts and formulation on particle electrification, new methods for the control of electrostatic charge on particles are presented.(S. Matsusaka: Dept. of Chemical Engineering)

【Textbook】None

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students who take Autumn term should register Lecture code 10H006.

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 4th or 5th [Location] A2-304

[Credits] 1 [Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] English (Japanese)

[Instructor] M. Nishikawa, Y. Tanaka, T. Mizuno, A. Takatori, R. Matsumoto, R. Ashida

[Course Description] This course is open to all master and doctoral engineering students. It is designed to help students understand how to write a research paper step by step. In this course, the students will write a short research paper (i.e. Extended Research Abstract for Proceeding. approx. 1000 -1500 words) on a topic drawn from assigned readings.

[Grading] Evaluation based on 10% participation, 60% reports, 30% final paper *More than twice unexcused absence can result in course failure

[Course Goals] The primary goal of this course is to deepen an understanding of the main features of each part of a scientific paper (IMRaD). Throughout the course, students will develop the core competencies required for language, grammar, and style to produce a research manuscript in English.

[Course Topics]

Theme Class number times		Description		
Unit 1: Course Overview	1	Course Overview: Introduction to writing scientific research articles		
Unit 2: Introduction	1	Raising awareness of the register of science research articles (genre, audience, purpose)		
Unit 3: Preparing to Write	1	Writing a proposal for a research paper, using corpus-based approach (Exercise: Creating own Corpus)		
Unit 4: Preparing to Write	1	Paraphrasing ideas from source texts, using citations and references in formal writing		
Unit 5: Writing Processes	1	Identifying the "moves" for an Abstract section by hint expressions		
Unit 6: Writing Processes	1	Writing an Abstract (Title) & peer feedback		
Unit 7: Writing Processes	1	Identifying the "moves" for an Introduction section by hint expressions		
Unit 8: Writing Processes	1	Writing an Introduction section & peer feedback		
Unit 9: Writing Processes	1	Writing a Method section & peer feedback		
Unit 10: Writing Processes	1	Writing a Result section & peer feedback		
Unit 11: Writing Processes	1	Writing a Discussion and a Conclusion section		
Unit 12: Writing Processes	1	Writing a cover letter to reviewers and how to respond to reviewers		
Unit 13: Monitoring and	1	Online feedback		
Revising	1			
Unit 14: Monitoring and	1			
Revising	1	Revising a paper based on peer feedback		
Unit 15: Submission	1	Final Paper Due, August 6.		

[Textbook] Handout materials will be supplied by the instructor.

【Textbook(supplemental)】ALESS (2012). Active English for Science- 英語で科学する - レポート、論文、プレゼンテーション . The University of Tokyo Press. Cargill, M., & O'Connor, P. (2013). Writing scientific research articles: Strategy and steps. John Wiley & Sons. Cowell, R., & She, L. (2015). Mastering the Basics of Technical English『技術英語の基礎』 . 2nd Ed., Corona Publishing. 野口ジュディー・深山晶子・岡本真由美.(2007). 『理系英語のライティング』. アルク

[Prerequisite(s)] Students who intend to join this course must attend the first class.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] We may restrict the class size to enhance students ' learning. Students who intend to join the course are required to attend the first-day guidance. Office Hours: (by appointment) nishikawa.mikako7w@kyoto-u.ac.jp (Ext. 2052)

10i045

10D043

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	2	
	2	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D051

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Wed 5th [Location] Funai Hall [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] GL center: J.Assoc. Tanaka, Mizuno, Takatori, Matsumoto, Ashida and Related professors

[Course Description] This course provides lectures and panel discussions by lecturers inside and outside the campus who have a remarkable achievement in engineering and are active as international leaders.

[Grading] Refer material about grading this course which is provided in 1st and 2nd lectures.

[Course Goals] This course cultivates the ability to develop familiar problem consciousness into a big concept through utilizing the materials of advanced fields in each field. This course also shows how leaders have improved their response to problems. Through this course, students learn fundamental culture, and the importance of human growth.

[Course Topics]

Theme	Class number of times	Description	
Construction of solar			
updraft power generation	1	Prof. Kunimasa Sugiura (Civil and Earth Resources Engineering) Apr. 12	
(SUPG) system on the ocean			
Record and protection of			
world cultural heritage by	1	Prof. Ari Ide (Mechanical Engineering and Science) Apr. 19	
advanced image processing			
Mysterious characteristics of			
smell: from development of	1	Dr. Jun-ichi Kita (Shimadzu Corporation) Apr. 26	
smell identification device			
Science and engineering of			
metals and potential of	1	Prof. Nobuhiro Tsuji (Materials Science and Engineering) May 10	
metals			
My days with radiation ray	1	Dr. Katsumi Hayashi (Hitachi, Corporation) May 17	
Material synthesis			
considering feeling of	1	Prof. Yasujiro Murata (Energy and Hydrocarbon Chemistry) May 24	
molecules			
Practical Marketing not on			
books	1	Dr. Fuminori Takaoka (Edge, Ltd.) May 31	
Direct visualization of			
atoms and molecules	1	Prof. Hirofumi Yamada (Electronic Science and Engineering) Jun. 7	
Encouragement for serial	1	Deef Misserki Oshime (Democratic Comparties) Ing 14	
innovator	1	Prof. Mitsuaki Oshima (Panasonic Corporation) Jun. 14	
Idle time and idle space	1	Prof. Kiyoshi Takeyama (Architecture and Architectural Engineering) Jun. 21	
Research of cancer therapy	1	Der Melle Marten auf Institutes für Omenteur und Der Hale siest Geisenen und Technologie) Imm 20	
by heavy ion beams	1	Dr. Koji Noda (National Institutes for Quantum and Radiological Science and Technology) Jun. 28	
Seven Wonders of powders	1	Prof. Shuji Matsusaka (Chemical Engineering) Jul. 5	
Strong company			
organizations in Japan, USA	1	Dr. Masahiko Mori (DMG MORI Co., Ltd.) Jul. 12	
and Germany			
Development of			
construction techniques:			
from development of	1	Dr. Ichiro Nagashima (Taisei Corporation) Jul. 19	
advanced technique to big			
projects			
Manufacturing by advanced	1	Prof. Kiyotaka Miura (Material Chemistry) Jul. 26	
optical machining		ron myouna mara (material chemistry) sur 20	

[Prerequisite(s)]

[Independent Study Outside of Class]
[Web Sites]
[Additional Information]

10i009

Internship

産学連携研究型インターンシップ

[Code] 10i009 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period] Flexible

[Location] [Credits] Depend on the department that the student belongs to [Restriction] No Restriction

[Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor] GL Education Center, Lecturer, Aiko Takatori, and related faculty members

[Course Description] This internship aims at mastering the meaning of engineering by experiencing the applied research and technical development in a company, and acquiring the flexible ability to cope with various industrial problems.

[Grading] The presentation and/or reports after the internship are used for evaluation. The rating is done at each department if this internship has been authorized at the department. If not, the rating is done at GL Education Center, and the credit earned by this subject is treated as a redundant credit.

[Course Goals] Through the experiences of actual businesses, such as a research or operation planning, grasping the actual condition of Japanese industries and the capability that the industries are searching for.

[Course Topics]

Theme	Class number of times	Description
	1	The research theme is determined through the prior consultation between a
Internship in a		program participating company and the administrator of the GL Education
		Center by taking the intention of students into account. After concluding the
company		memorandum which defined the matter required for enforcement, internship
		activity for one month or more is executed in an acceptance company.
Presentation of the	1	
result of internship	1	Submitting a report, and presenting the result of internship.

【Textbook】Not used

【Textbook(supplemental)】Not used

[Prerequisite(s)] Prior matching is performed.

[Independent Study Outside of Class] Not requested.

[Web Sites]

[Additional Information] The internship organized by the Collaborative Education for Next-Generation Innovators & Exploration of Knowledge Intersections is also treated as the internship of this course.

10S401

Advanced Molecular Engineering 分子工学特論

[Code] 10S401 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar on Molecular Engineering 1

分子工学特別セミナー1

[Code] 10S404 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S405

Advanced Seminar on Molecular Engineering 2

分子工学特別セミナー2

[Code] 10S405 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Synthesis

高分子合成

[Code] 10H649 [Course Year] Master Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] A2-306 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Physical Properties 高分子物性

[Code] 10D652 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location] A2-307

 $\label{eq:credits} \ensuremath{\texttt{I}}\xspace{0.5ex} \ensurema$

[Instructor] Hirokazu Hasegawa, Takenao Yoshizaki, Tsuyoshi Koga, Mikihito Takenaka, Hiroyuki Aoki,

[Course Description] A concise explanation is given of physical properties of polymer solutions and polymeric solids along with relevant basic theories.

[Grading] Final grades will be evaluated in a comprehensive manner on the basis of attendance, reports, and examinations.

[Course Goals] Fundamental knowledge of physical properties of polymer materials.

[Course Topics]

Theme	Class number of times	Description
		After a clarification of basic factors which determine the conformations of real
Polymer Chain		polymer chains in dilute solutions, some polymer chain models are introduced
Conformation in	4	to describe the equilibrium conformational behavior of the real chains. Further,
Dilute Solutions		behavior of average chain dimensions as a functions of molecular weight is
		considered based on the chain models.
		Various phase transition phenomena in polymer solutions (phase separation,
Thermodynamics		hydration, association, gelation, etc.) are systematically explained from
and Phase Behavior	б	thermodynamic and statistical-mechanical viewpoints. Phase separation of
of Polymer Solutions		polymer solutions, Aqueous polymer solutions, and Association and gelation
		of polymers are discussed in the lectures.
Exercise	1	Exercise in polymer solutions.
Structure and		Polymeric solids such as rubber and plastics, especially thermodynamics of
Mechanical		rubber elasticity, polymer crystallization and crystalline/amorphous
Properties of	5	higher-order structures, are discussed. Moreover, fundamentals of viscoelastic
-		properties of polymers are introduced to provide the understandings of
Polymeric Solids		relaxation phenomena such as glass transition.
Electronic and		The electronic and optical properties of polymers is reviewed. The application
Optical Properties of	5	of polymer materials in the opto-electronics and display devices is also
Polymeric Solids		presented.
Exercise	1	Exercise in polymeric solids.

[Textbook] Lecture notes distributed in the class.

【Textbook(supplemental)】

[Prerequisite(s)] Fundamental knowledge of physical chemistry.

【Independent Study Outside of Class】

[Web Sites]

Advanced Seminar on Polymer Chemistry 1

高分子化学特別セミナー 1

[Code] 10S604 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S605

Advanced Seminar on Polymer Chemistry 2

高分子化学特別セミナー2

[Code] 10S605 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Functional Chemistry

高分子機能化学

[Code] 10H645 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Mon 2nd

[Location] A2-307 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	2	
	2	
	2	
	2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H607

Design of Polymerization Reactions 高分子生成論

[Code] 10H607 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 3rd

[Location] A2-307 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Mitsuo Sawamoto and Makoto Ouchi,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme Class number of times	Description
2	
2	
2	
2	
3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Reactive Polymers

反応性高分子

[Code] 10H610 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] A2-307 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Structure and Function 高分子機能学

[Code] 10H613 [Course Year] Master Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] A2-307 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】H. Ohkita

(Course Description **)** In this class, optoelectronic functions of polymeric materials are discussed on the basis of photochemistry and photophysics. In particular, the importance of designing nanostructures of polymer assembly is highlighted by explaining examples of state-of-the-art applications, which include optical fibers, organic light-emitting diode, and organic solar cells.

[Grading] Evaluated with the grade on the final test or the quality of report submitted after the final class.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Conductive Polymers	3	
Photofunctional	3	
Polymers	3	
Optoelectronic	4	
Polymers	4	

[Textbook] None: Some handouts will be dealt in the class of every lecture.

【Textbook(supplemental)】 None:

[Prerequisite(s)] Students are expected to have knowledge of Physical Chemistry and Polymer Chemistry provided in chemisty course for undergraduate.

【Independent Study Outside of Class】

[Web Sites]

Polymer Supermolecular Structure 高分子集合体構造

[Code]10H616 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Hirokazu Hasegawa, Mikihito Takenaka,

[Course Description] Polymers self-assemble or self-organize by intra- and/or intermolecular interaction to form assembled structures of polymer molecules. Such structures are closely related to the properties of the polymeric materials, it is necessary to control the assembled structures of the constituent polymer molecules in order to control the properties of polymeric materials, especially solid materials. In this lecture particularly, formation mechanisms, analytical techniques, and elucidated structures of crystalline polymers, phase-separated structures of polymer mixtures, microphase-separated structures of block and graft copolymers will be discussed.

[Grading] The grading is based on the short tests and report assignments.

(Course Goals **)** This course aims for the development of the faculty to infer the properties of polymeric materials from their morphology based on the knowledge of structure-property relationships of higher-order structures of crystalline polymers, phase-separated structures of polymer mixtures (blends), microdomain stuctures of block copolymers, etc.

[Course Topics]

Theme	Class number of times	Description
Self-assembly and	1	The differences between self-assembly and self-organization will be discussed
Self-organization	1	by referring the examples in natural phenomena and polymeric systems.
		In the lectures, unit cell structures and hierarchical higher-order structures of
Crystalline Polymers	3	polymer crystals such as folded-chain lamellar crystals and spherulites, as well
		as deformation and thermal behavior of polymer crystals will be discussed.
		Miscibility, phase-diagrams, mechanisms and dynamics of phase transitions,
Polymer Blends	3	relationships between phase-separated structures and properties, methods to
		control the phase-separated structures will be discussed.
		The lectures include nano-scale domain formation of block copolymers by
Dia da an d Cart		microphase-separation, miscibility and phase diagrams, order-disorder and
Block and Graft	3	order-order transitions, bicontinuous structures, structure formation in thin
Copolymers		films, blends with homopolymers or other block copolymers, multi-component
		multi-block copolymers, miktoarm star block copolymers, and more.
Evaluation of Degree	1	Degree of understandings of the lectures will be evaluated by means of a short
of Understandings	1	test and group discussions.

【Textbook】Not used.

【Textbook(supplemental)】Introduced in the lectures.

[Prerequisite(s)] Thermodynamics preferable.

【Independent Study Outside of Class】

[Web Sites]

10H611

Biomacromolecular Science

生体機能高分子

[Code] 10H611 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] A2-306 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	3	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Solution Science

高分子溶液学

[Code] 10H643 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] A2-307 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Takenao Yoshizaki, Yo Nakamura,

[Course Description] Effects of stiffness and local conformations of polymer chains on polymer solution properties observed in the light scattering and viscosity experiments are considered based on appropriate polymer chain models.

[Grading] Term-end examination.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Review	1	Definitions of physical quantities determined from the light scattering and
Review	1	viscosity measurements and the theoretical formulations of those quantities.
Experiments in dilute	2	
polymer solutions	2	Principles of the light scattering and viscosity experiments.
Polymer chain		Static models for polymer chains: the Gaussian chain, the wormlike chain, and
models and their	2	the helical wormlike chain. A comparison of experimental data for the
statistics		mean-square radius of gyration with relevant theories.
Excluded-volume	2	Intra- and intermolecular excluded-volume effects represented by the
effects	Z	expansion factors and the second virial coefficient, respectively.
Steady-state	2	A comparison of experimental data for the intrinsic viscosity and diffusion
transport properties	Z	coefficient with relevant theories.
		Dynamic models for polymer chains: the Rouse-Zimm spring-bead model and
Dynamic properties	2	the dynamic helical wormlike chain. A comparison of experimental data for
		the first cumulant of the dynamic structure factor with relevant theories.

【Textbook】 Lecture note distributed in the class.

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge of polymer solutions given in the lecture Polymer Physical Properties (10D651).

【Independent Study Outside of Class】

[Web Sites]

Physical Chemistry of Polymers 高分子基礎物理化学

[Code] 10H622 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 2nd

[Location]A2-307 [Credits]1.5 [Restriction]No Restriction [Lecture Form(s)]lecture [Language]Japanese

【Instructor】 Tsuyoshi Koga

[Course Description] Molecular mechanism of characteristic physical properties of polymeric systems is lectured on the basis of the equilibrium and non-equilibrium statistical mechanics. Main topics are phase separation of polymer solutions and mixtures, microphase separation of block copolymers, gelation, rubber elasticity, and rheology of physical gels.

[Grading]

[Course Goals] Understanding the molecular mechanism of characteristic physical properties of polymeric systems based on the equilibrium and non-equilibrium statistical mechanics.

[Course Topics]

Theme	Class number of times	Description
phase separation of polymer solutions and mixtures	2	phase diagram, Flory-Huggins theory, mean-field theory, phase separation, spinodal decomposition
microphase separation of block copolymers	1	microphase separation, density functional theory, directed self-assembly
gelation	1	definition of gels, classification of gels, classical theory of gels, sol-gel transition, elastically effective chains
rubber elasticity	3	affine network theory, phantom network theory, tetra-PEG gel, slide-ring gel
rheology of associating polymers	3	telechelic associating polymers, linear viscoelasticity, Maxwell model, shear thickening, transient network theory, colloid/polymer mixture, shear-induced gel
verification of understanding	1	

【Textbook】

[Textbook(supplemental)] P.J. Flory, Principles of Polymer Chemistry (Cornell Univ. Press, New York, 1955)M. Rubinstein, R.H. Colby, Polymer Physics (Oxford Univ. Press, New York, 2003)

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Spectroscopy 高分子分光学

[Code] 10H625 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 3rd

[Location] ICR Seminar Room [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] K. Nishida

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Outline of Polymer	2	
Spectroscopy	Ζ	
Basic Mathematics	2	
for Spectroscopy	Ζ	
Neutron	2	
Spectroscopy	Ζ	
Infrared, Raman,		
Brillouin	3	
Spectroscopy		
Photon Correlation	1	
Spectroscopy	1	
Verification of	1	
Understanding	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Design of Polymer Materials

高分子材料設計

[Code] 10H628 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 2nd

[Location](Uji campus) ICR Seminar Room [Credits] [Restriction]No Restriction [Lecture Form(s)]Lecture

[Language] Japanese [Instructor] Yoshinobu TSUJII, Kohji OHNO

[Course Description] This course aims at better understanding of fundamentals on living radical polymerization and describes its application to graft polymerization for novel surface modification as well as its related matters.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
Introduction to			
radical	1	radical polymerization, mechanism, kinetics, elementary reaction	
polymerization			
Fundamentals on			
living radical		lining and include a second	
polymerization and	2	living radical polymerization, mechanism, kinetics, functional polymer,	
its application to		material design	
material design			
Physical chemistry		Surface interface abusical sherrigtary askurgar bruch theory structure	
on surfaces and	2	Surface, interface, physical chemistry, polymer brush, theory, structure,	
polymer brushes		property	
Living radical		Living redical polymonization surface initiated polymonization relymon	
polymerization and	2	Living radical polymerization, surface-initiated polymerization, polymer	
polymer particles		brush, hairy particle, star polymer	
Synthesis of polymer		Emulsion polymerization, suspension polymerization, dispersion	
particles by radical	2	polymerization, precipitation polymerization, self-organized precipitation,	
polymerizations		nonspherical particle	
Applications of	2	Self-assembly, dispersion and aggregation, depletion force, pickering	
polymer particles	2	emulsion, composites, biochemical and biomedical applications	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Controlled Synthesis

高分子制御合成

[Code] 10H647 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 4th

[Location] [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	1	
	1	
	4	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Polymer Design for Biomedical and Pharmaceutical Applications 医薬用高分子設計学

[Code] 10H636 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] A2-307 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	1	
	1	
	1	
	2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Biomaterials Science and Engineering 高分子医工学

[Code] 10H633 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 2nd

[Location] A2-307 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

1 1 1 2 2 1
Z
Z
Z
<u>2</u> 1
1
1
1
1

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D640

Polymer Chemistry Laboratory & Exercise 高分子化学特別実験及演習

[Code] 10D640 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 8 [Restriction] [Lecture Form(s)] Experiment and Exercise [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	60	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction

[Lecture Form(s)] Relay Lecture [Language] English

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryuichi Ashida

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called high technologies, and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Requirements and a number of credits are different with the academic system students choose, the modified academic quarter system or the academic semester system. Students who choose the academic semester system must meet the requirements for the first 11 lectures and the latter 4 lectures separately.

When the students who choose the modified quarter system are graded, the average score of the best four reports is employed. When the students who choose the academic semester system are graded, the average score of the best five reports is employed.

Please go to KULASIS Web site for more information.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
Materials Processing Using External Fields for Microstructure Control	1	Properties of materials are not simply determined by crystal structure and chemical composition. Microstructure (i.e. crystal grain size, crystallograp orientation) can significantly influence the properties. Materials processing for the microstructure control, using external fields will be demonstrated class. (H. Yasuda: Dept. of Materials Science and Engineering)	
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical pro- their applications in the production of some important pharmaceuticals and organic materials. (Y. Nakao: Dept. of Material Chemistry)	
Synthesis and Functions of Mixed Anion Compounds	1	As we entered the 21st century, mixed anion compounds, which contain several different anions, began to draw attention as new types of inorganic material. My lecture will show synthetic and functional aspects in this class of materials. (H. Kageyama: Dept. of Energy and Hydrocarbon Chemistry)	
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed. (T. Koga: Dept. of Polymer Chemistry)	
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed. (T. Koga: D Polymer Chemistry)	
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced. (T. Asano: Dept. of Electronic Science and Engineering)	
Introduction to Nuclear Materials	1	Nuclear materials are designed for irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked. (I. Takagi: Dept. of Nuclear Engineering)	
Application of Polymer Nanoparticles to 1 G		Polymers are widely used in various delivery/localization events as drug carriers, stabilizers of clinical protein and nucleic acid medications, and lesion targeters. An obvious merit of polymers with an appropriate (>10 nm) size is that they escape from facile renal excretion. The size has another significance in case of tumor targeting. Tumor tissues usually have defective endothelial cells with a wide opening and undeveloped lymphatic vessel, so that polymer nanoparticles of the size range of 10 - 100 nm can permeate into the tumor and are retained therein. This is the so-called enhanced permeability and retention (EPR) effect, which shows high performance in terms of selectivity and efficiency in bio-imaging. (T. Kondo: Dept. of Energy and Hydrocarbon Chemistry)	
Radiation Induced Reactions towards 1 -Dimensional Nanomaterials	Whether can we produce nano-material by the reactions induced by a "ray" (ionizing radiation)? The answer is yes. With an use of an ato accelerated up to MeV orders, the one particle provides a nanowire along its trajectory via condensed and efficient chemical reactions in org Single particle Nanofabrication Technique (SPNT) or Single Particle Triggered Linear Polymerization (STLiP), referred as, are demonstrate methods to give low dimensional nanomaterials based on a variety of organic molecular systems in this lecture. (S. Seki: Dept. of Molecular		
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the and self-organized state from the viewpoint of physical organic chemistry. (K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry	
Hyperthermophiles and their Thermostable Biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids. (H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)	
Designing Polymer Membrane Materials to Capture Green House Gases	1	We will discuss the overall obstacles involved in capturing green house gases such as CO2 or Methane, and the specific challenges to generating polymer membranes that can achieve it. Then we will consider how to design polymer materials that can overcome such obstacles. (E. Sivaniahi: Dept. of Molecular Engineering)	
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, ma properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides. (K. Tanaka: Dept. of Material Chemistry)	
Force Acting on Colloidal Particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed. (R. Yamamoto: Dept. of Chemical Engineering)	
Electrodeposition and Electroless Deposition for Materials Processing	1	(1) Fundamentals chemistry, electrochemistry, and thermodynamics, and (2) applications of electrodeposition and electroless deposition for mate processing. (K. Murase: Dept. of Materials Science and Engineering)	

[Textbook] None

[Textbook(supplemental)]

Prerequisite(s)

• • • •

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

Ryosuke

10K005

Matsumoto

Advanced Modern Science and Technology (English lecture) 現代科学技術特論(英語科目)

[Code]10K005 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period]Thu 5th [Location]A2-306 [Credits]2(Semester system) [Restriction]No Restriction [Lecture Form(s)] Relay Lecture [Language] English

Prof..

[Instructor] GL Edu. Center, J. Assoc.

Related professors

[Course Description] Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system.

Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement. [Course Goals]

[Course Topics]

Theme	Class number of	Description	
	times		
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)	
Functional Organic Molecular Materials for Molecular Scale Nanoscience	1	This lecture explains functional organic molecular materials with functions like photochromism or molecular conductance, which are expected to play an active role in molecular scale nanoscience.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)	
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)	
Role of Nanoparticles Aiming at Theranostic Agents for Solid Cancers – Sustainable Universe Health Care in the Aged Society	1	Malignancy takes the first position for the cause of mortality in Japan. Realization of a "society of health and longevity" therefore requires a general method for diagnosis and therapy for cancers in the early stage. Nanoparticles are currently highly expected to this type of medicinal treatment, because nanoparticles can avoid expensive therapy, which would bankrupt our universal health care system.(S. Kimura: Dept. of Material Chemistry)	
What are polymers?	1	What is a polymer? Also, what is the difference between polymers and other molecules? The characteristics of polymers and polymerizations are explained with some examples on practical applications of polymers.(M. Ouchi: Dept. of Polymer Chemistry)	
Precision Polymerization and Functional Materials by Macromolecular Design	1	The methodology to synthesize polymers precisely and their features are described. In addition, some examples on functional materials using polymers whose molecular design is important are introduced.(M. Ouchi: Dept. of Polymer Chemistry)	
Analysis and Design of Socio-Technical Systems	1	When introducing various kinds of automation systems including robots into a new work environment, it is necessary to design and analyze from the viewpoint of socio-technical systems, which is the interaction system of people, technology and organization. In this lecture, specific problems and solutions are described.(T. Sawaragi: Dept. of Mechanical Engineering and Science)	
Computational Chemistry and computer science	1	Remarkable progress in the computer science has been revolutionizing scientific research and technological development for this decade. This trend will further accelerate in the future. This lecture reviews the impact of state of the art computer science on the molecular chemistry as an example. (R. Fukuda: Dept. of Molecular Engineering)	
Photofunctional Single-Walled Carbon Nanotubes	1	Basic chemical properties of single-walled carbon nanotubes are introduced, and then applications of them as photofunctional molecular platform and charge transport pathway are presented. (T. Umeyama: Dept. of Molecular Engineering)	
Renewable energies and rechargeable batteries	1	For the effective use of renewable energies, rechargeable batteries have been focused. Basic chemistry of batteries and how the rechargeable batteries are utilized for the storage of the energies will be given by the first lecture.(T. Abe: Energy and Hydrocarbon Chemistry)	
Renewable energies and hydrogen production	1	Fuel cells using hydrogen are clean energy sources. The second lecture is about the hydrogen production based on the renewable energies.(T. Abe: Energy and Hydrocarbon Chemistry)	
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)	
Optical clocks -measurement of time at the 18th decimal place	1	Time or frequency is the most precisely measurable quantity. Clocks referenced to atomic resonances, called atomic clocks, ha extremely small uncertainies. They realize the definition of second and are applied to the global positioning system (GPS). Thi lecture introduces atomic clocks based on lasers, which improve the uncertainty to be the 18th decimal place.(K. Sugiyama: Do of Electronic Science and Engineering)	
Mechanism of particle electrification	1	The basic concepts and theories of charge transfer between solid surfaces are summarized and particle electrification caused by repeated impacts on a wall is formulated.(S. Matsusaka: Dept. of Chemical Engineering)	
Control of electrostatic charge on particles	1	On the basis of the concepts and formulation on particle electrification, new methods for the control of electrostatic charge on particles are presented.(S. Matsusaka: Dept. of Chemical Engineering)	

【Textbook】None

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students who take Autumn term should register Lecture code 10H006.

Organotransition Metal Chemistry 1

有機金属化学 1

[Code] 10H041 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location]A2-306 [Credits]1.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

 $\label{eq:constructor} \label{eq:constructor} \label{constructor} \label{eq:constructor} \label{eq:constructor}$

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Organomagnesium	1	Sumthering structures and respective of support support single
compounds	1	Synthesis, structure, and reaction of organomagnesium compounds
Organolithium	1	Synthesis, structure, and reaction of organolithium compounds
compounds	1	Synthesis, structure, and reaction of organonunum compounds
Organozinc	1	Synthesis, structure, and reaction of organozinc compounds
compounds	1	Synthesis, structure, and reaction of organozine compounds
Organoboron	1	Synthesis, structure, and reaction of organoboron compounds
compounds	1	Synthesis, structure, and reaction of organoboron compounds
Organosilicon	1	Synthesis, structure, and reaction of organosilicon compounds
compounds	1	Synthesis, structure, and reaction of organosineon compounds
Organocopper	1	Synthesis, structure, and reaction of organocopper compounds
compounds	1	
Rare earth metals	1	Synthesis, structure, and reaction of rare earth metals
Other		Synthesis, structure, and reaction of other transition-metal compounds such as
transition-metal	1	Ti, Zr, Cr, and Fe
compounds		
Basic reaction of		Ligand substitution reaction, oxidative addition, oxidative cyclization,
organotransition-metal	l 1	reductive elimination, transmetallation, carbonyl insertion
compounds		
Catalytic		Enantioselective hydrogenation, enantioselective oxidation (Sharpless
enantioselective	1	reactions), enantioselective C-C bond formation
reaction		
Coupling reaction	1	C-C Bond forming reactions (cross coupling reactions)

【Textbook】 none

[Textbook(supplemental)] J. F. Hartwig, Organotransition metal chemistry. From bonding to catalysis., University Science Books, Mill Valley, CA, 2010.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organotransition Metal Chemistry 2 有機金属化学 2

[Code] 10H042 [Course Year] Master Course [Term] [Class day & Period] Fri 1st [Location] A2-306

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Ozawa, Murakami, Kondo, Nakao, Ohuchi, Kurahashi, Miki

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	2	
	1	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Organic Chemistry

先端有機化学

[Code] 10H818 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 1st

[Location]A2-306 [Credits]1.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Professor Jun-ichi Yoshida and other professors

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Chemoselectivity	2	Introduction and chemoselectivity
Regioselectivity	2	Controlled Aldol Reactions
Stereoselectivity	2	Stereoselective Aldol Rections
Strategies	2	Alternative Strategies for Enone Synthesis
Choosing a Strategy	2	The Synthesis of Cyclopentenones
Summary	2	Summary and outlook

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D043

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	2	
	2	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D051

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Wed 5th [Location] Funai Hall [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] GL center: J.Assoc. Tanaka, Mizuno, Takatori, Matsumoto, Ashida and Related professors

[Course Description] This course provides lectures and panel discussions by lecturers inside and outside the campus who have a remarkable achievement in engineering and are active as international leaders.

[Grading] Refer material about grading this course which is provided in 1st and 2nd lectures.

[Course Goals] This course cultivates the ability to develop familiar problem consciousness into a big concept through utilizing the materials of advanced fields in each field. This course also shows how leaders have improved their response to problems. Through this course, students learn fundamental culture, and the importance of human growth.

[Course Topics]

Theme	Class number of times	Description
Construction of solar		
updraft power generation	1	Prof. Kunimasa Sugiura (Civil and Earth Resources Engineering) Apr. 12
(SUPG) system on the ocean		
Record and protection of		
world cultural heritage by	1	Prof. Ari Ide (Mechanical Engineering and Science) Apr. 19
advanced image processing		
Mysterious characteristics of		
smell: from development of	1	Dr. Jun-ichi Kita (Shimadzu Corporation) Apr. 26
smell identification device		
Science and engineering of		
metals and potential of	1	Prof. Nobuhiro Tsuji (Materials Science and Engineering) May 10
metals		
My days with radiation ray	1	Dr. Katsumi Hayashi (Hitachi, Corporation) May 17
Material synthesis		
considering feeling of	1	Prof. Yasujiro Murata (Energy and Hydrocarbon Chemistry) May 24
molecules		
Practical Marketing not on		Dr. Fuminori Takaoka (Edge, Ltd.) May 31
books	1	
Direct visualization of		
atoms and molecules	1	Prof. Hirofumi Yamada (Electronic Science and Engineering) Jun. 7
Encouragement for serial		
innovator	1	Prof. Mitsuaki Oshima (Panasonic Corporation) Jun. 14
Idle time and idle space	1	Prof. Kiyoshi Takeyama (Architecture and Architectural Engineering) Jun. 21
Research of cancer therapy		
by heavy ion beams	1	Dr. Koji Noda (National Institutes for Quantum and Radiological Science and Technology) Jun. 28
Seven Wonders of powders	1	Prof. Shuji Matsusaka (Chemical Engineering) Jul. 5
Strong company		
organizations in Japan, USA	1	Dr. Masahiko Mori (DMG MORI Co.,Ltd.) Jul. 12
and Germany		
Development of		
construction techniques:		
from development of	1	Dr. Ichiro Nagashima (Taisei Corporation) Jul. 19
advanced technique to big		
projects		
Manufacturing by advanced	1	Deef Kinstele Miner (Material Chamister) Let 20
optical machining	1	Prof. Kiyotaka Miura (Material Chemistry) Jul. 26

[Prerequisite(s)]

[Independent Study Outside of Class] [Web Sites] [Additional Information] [Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 4th or 5th [Location] A2-304

[Credits] 1 [Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] English (Japanese)

[Instructor] M. Nishikawa, Y. Tanaka, T. Mizuno, A. Takatori, R. Matsumoto, R. Ashida

[Course Description] This course is open to all master and doctoral engineering students. It is designed to help students understand how to write a research paper step by step. In this course, the students will write a short research paper (i.e. Extended Research Abstract for Proceeding. approx. 1000 -1500 words) on a topic drawn from assigned readings.

[Grading] Evaluation based on 10% participation, 60% reports, 30% final paper *More than twice unexcused absence can result in course failure

[Course Goals] The primary goal of this course is to deepen an understanding of the main features of each part of a scientific paper (IMRaD). Throughout the course, students will develop the core competencies required for language, grammar, and style to produce a research manuscript in English.

[Course Topics]

Theme	Class number of times	Description
Unit 1: Course Overview	1	Course Overview: Introduction to writing scientific research articles
Unit 2: Introduction	1	Raising awareness of the register of science research articles (genre, audience, purpose)
Unit 3: Preparing to Write	1	Writing a proposal for a research paper, using corpus-based approach (Exercise: Creating own Corpus)
Unit 4: Preparing to Write	1	Paraphrasing ideas from source texts, using citations and references in formal writing
Unit 5: Writing Processes	1	Identifying the "moves" for an Abstract section by hint expressions
Unit 6: Writing Processes	1	Writing an Abstract (Title) & peer feedback
Unit 7: Writing Processes	1	Identifying the "moves" for an Introduction section by hint expressions
Unit 8: Writing Processes	1	Writing an Introduction section & peer feedback
Unit 9: Writing Processes	1	Writing a Method section & peer feedback
Unit 10: Writing Processes	1	Writing a Result section & peer feedback
Unit 11: Writing Processes	1	Writing a Discussion and a Conclusion section
Unit 12: Writing Processes	1	Writing a cover letter to reviewers and how to respond to reviewers
Unit 13: Monitoring and Revising	1	Online feedback
Unit 14: Monitoring and Revising	1	Revising a paper based on peer feedback
Unit 15: Submission	1	Final Paper Due, August 6.

[Textbook] Handout materials will be supplied by the instructor.

【Textbook(supplemental)】ALESS (2012). Active English for Science- 英語で科学する - レポート、論文、プレゼンテーション . The University of Tokyo Press. Cargill, M., & O'Connor, P. (2013). Writing scientific research articles: Strategy and steps. John Wiley & Sons. Cowell, R., & She, L. (2015). Mastering the Basics of Technical English『技術英語の基礎』 . 2nd Ed., Corona Publishing. 野口ジュディー・深山晶子・岡本真由美.(2007). 『理系英語のライティング』. アルク

[Prerequisite(s)] Students who intend to join this course must attend the first class.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] We may restrict the class size to enhance students ' learning. Students who intend to join the course are required to attend the first-day guidance. Office Hours: (by appointment) nishikawa.mikako7w@kyoto-u.ac.jp (Ext. 2052)

10i045

10i041

Professional Scientific Presentation Exercises (English lecture)

科学技術者のためのプレゼンテーション演習(英語科目)

[Code] 10i041 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Thu 5th
[Location] B-Cluster 2F Seminar Room [Credits] 1
[Restriction] The number of students might be limited if too many students will get enrolled.

[Lecture Form(s)] Semina r [Language] English

[Instructor] Juha Lintuluoto, Associate Professor, Department of Synthetic Chemistry and Biological Chemistry [Course Description] It is imperative for future engineers to be able to communicate and deliver effectively scientific information to large variety of audiences. This skill enables engineers to share and absorb information to more extended audiences, and facilitates success in selling ideas and products, publishing and team working. The purpose of this course is to teach the basic rules needed for successful professional scientific presentation, both orally and written. The course also prepares students to deliver scientific information presentations to wide audiences. The course is consisted of excessive exercises, of which the student should complete seven (7) tasks. The course holds 3-4 tasks for oral presentation exercises, and 3-4 tasks for professional scientific writing exercises. The exact number of both exercises is adjusted for each student ' s needs. The course is aimed for doctor course (DC) students, both Japanese and Foreign nationals

[Grading] Reports, class activity, presentation

[Course Goals] This course is aimed to foster engineering students ' scientific presentation skills. The successfully course completed students will be able to express and present complicated and specific scientific information at more generally understandable level. The students will also be able to pose relevant questions and effectively answer to the wide variety of questions.

[Course Topics]

Theme	Class number of times	Description
	1	Guidance and Professional presentation rules and etiquette
	3	Oral presentations & questioning I, Written report I
	3	Oral presentations & questioning I, Written report I
	3	Oral presentations & questioning II, Written report II
	3	Oral presentations & questioning II, Written report II
	2	Oral presentations & questioning III, Written report III
		Oral presentations & questioning III, Written report III
		Oral presentations & questioning IV, Written report IV
		Oral presentations & questioning IV, Written report IV I
		Course summary and discussion

【Textbook】 Course materials will be provided.

[Textbook(supplemental)] Will be informed if necessary.

[Prerequisite(s)] -Fundamental skills about scientific presentation

-Advanced English skills

-Sufficient personal research results

【Independent Study Outside of Class】

[Web Sites] The web-site is listed in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credit of this course is counted as the unit for graduation requirement at department level. Course starts at April 13th, and the 1st lesson is repeated on April 20th. The course schedule is irregular. Most classes are biweekly, the detailed schedule is provided at the 1st lecture.

Internship

産学連携研究型インターンシップ

[Code] 10i009 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period] Flexible

[Location] [Credits] Depend on the department that the student belongs to [Restriction] No Restriction

[Lecture Form(s)] Seminar and Exercise [Language] Japanese

[Instructor] GL Education Center, Lecturer, Aiko Takatori, and related faculty members

(Course Description **)** This internship aims at mastering the meaning of engineering by experiencing the applied research and technical development in a company, and acquiring the flexible ability to cope with various industrial problems.

[Grading] The presentation and/or reports after the internship are used for evaluation. The rating is done at each department if this internship has been authorized at the department. If not, the rating is done at GL Education Center, and the credit earned by this subject is treated as a redundant credit.

[Course Goals] Through the experiences of actual businesses, such as a research or operation planning, grasping the actual condition of Japanese industries and the capability that the industries are searching for.

[Course Topics]

Theme	Class number of times	Description
		The research theme is determined through the prior consultation between a
T / 1''		program participating company and the administrator of the GL Education
Internship in a	1	Center by taking the intention of students into account. After concluding the
company		memorandum which defined the matter required for enforcement, internship
		activity for one month or more is executed in an acceptance company.
Presentation of the	1	
result of internship		Submitting a report, and presenting the result of internship.

[Textbook] Not used

【Textbook(supplemental)】Not used

[Prerequisite(s)] Prior matching is performed.

[Independent Study Outside of Class] Not requested.

[Web Sites]

[Additional Information] The internship organized by the Collaborative Education for Next-Generation Innovators & Exploration of Knowledge Intersections is also treated as the internship of this course. 10i009

International Internship in Engineering 1

工学研究科国際インターンシップ1

[Code] 10i010 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period]Intensive course [Location] [Credits]1 [Restriction]Defined by each internship program

[Lecture Form(s)] Exercise [Language] English

[Instructor] Faculty members in charge of educational affairs of the Global Leadership Engineering Education Center and of the department the registrant belongs to.

[Course Description] Acquisition of international skills with the training of foreign language through the internship programs hosted by the University, the Graduate School of Engineering, or The Department the registrant belongs to.

[Grading] Merit rating is performed based on the presentation or the report(s) after the participation in each internship program. Each department is responsible to identify the number of credits to be granted to the student of the department, if the credits are included in the mandatory ones. The Global Leadership Engineering Education Center takes the role to evaluate the credits if the department the student belongs to deals the credits as optional ones. The number of credits to be earned is 1 and 2, respectively to the subjects International Internship in Engineering 1 and 2 depending on the period and the contents of the internship program the students has participated in.

[Course Goals] Acquisition of international skills with the training of foreign language.

[Course Topics]

Theme	Class number of times	Description
Overseas Internship	1	The contents to be acquired should be described in the brochure of each
		internship program.
Final Presentation	1	A presentation by the student is required followed by discussion among
	I	participants.

【Textbook】 Not Applicable

【Textbook(supplemental)】 Not Applicable

[Prerequisite(s)] Described in the application booklet for each internship program. The registrant is requested to have enough language skills for the participation.

【Independent Study Outside of Class】 Not Applicable

[Web Sites] Not Applicable

[Additional Information] It is required for students to check if the internship program to participate in could be evaluated as part of mandatory credits or not and could earn how many credits before the participation to the department or educational program the student in enrolled. If the credit could not be treated as mandatory ones, get in touch with the Global Leadership Engineering Education Center.

International Internship in Engineering 2

工学研究科国際インターンシップ2

[Code] 10i011 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period]Intensive course [Location] [Credits]2 [Restriction]Defined by each internship program

[Lecture Form(s)] Exercise [Language] English

[Instructor] Faculty members in charge of educational affairs of the Global Leadership Engineering Education Center and of the department the registrant belongs to.

[Course Description] Acquisition of international skills with the training of foreign language through the internship programs hosted by the University, the Graduate School of Engineering, or The Department the registrant belongs to.

[Grading] Merit rating is performed based on the presentation or the report(s) after the participation in each internship program. Each department is responsible to identify the number of credits to be granted to the student of the department, if the credits are included in the mandatory ones. The Global Leadership Engineering Education Center takes the role to evaluate the credits if the department the student belongs to deals the credits as optional ones. The number of credits to be earned is 1 and 2, respectively to the subjects International Internship in Engineering 1 and 2 depending on the period and the contents of the internship program the students has participated in.

[Course Goals] Acquisition of international skills with the training of foreign language. Detailed objectives should be described in each program.

Theme	Class number of times	Description
Overseas Internship	1	The contents to be acquired should be described in the brochure of each
Overseas mernismp	I	internship program.
Final Presentation	1	A presentation by the student is required followed by discussion among
	1	participants.

【Textbook】 Not Applicable.

【Textbook(supplemental)】 Not Applicable.

[Prerequisite(s)] Described in the application booklet for each internship program. The registrant is requested to have enough language skills for the participation.

[Independent Study Outside of Class] Not Applicable.

[Web Sites] Not Applicable.

[Additional Information] It is required for students to check if the internship program to participate in could be evaluated as part of mandatory credits or not and could earn how many credits before the participation to the department or educational program the student in enrolled. If the credit could not be treated as mandatory ones, get in touch with the Global Leadership Engineering Education Center.

Project Management in Engineering

エンジニアリングプロジェクトマネジメント

[Code] 10i049 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 4th [Location] A2-308 [Credits] 2

 $\label{eq:restriction} \ensuremath{\mathsf{[Restriction]}}\xspace \ensuremath{\mathsf{No}}\xspace \ensuremath{\mathsf{Restriction}}\xspace \ensuremath{\mathsf{S}}\xspace \ensuremath{\mathsf{Restriction}}\xspace \ensuremath{\mathsf{S}}\xspace \ensuremath{\mathsf{S}}\xspace \ensuremath{\mathsf{Restriction}}\xspace \ensuremath{\mathsf{S}}\xspace \ensuremath{\mathsf{S}}\xspace \ensuremath{\mathsf{Restriction}}\xspace \ensuremath{\mathsf{S}}\xspace \ensuremath{\mathsf{S}}\xspace \ensuremath{\mathsf{S}}\xspace \ensuremath{\mathsf{S}}\xspace \ensuremath{\mathsf{Restriction}}\xspace \ensuremath{\mathsf{S}}\xspace \ensuremath{\mathsf{S}}\xspace \ensuremath{\mathsf{Restriction}}\xspace \ensuremath{\mathsf{S}}\xspace \ensuremath{\mathsf{Restriction}}\xspace \ensurem$

【Instructor】GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto, Ashida

Assoc.Prof. Lintuluoto

[Course Description] This course provides a basic knowledge required for the project management in various engineering fields such as process design, plant design, construction, and R&D projects. Also, visiting lecturers from industry and public works provide management insights of actual engineering projects. [Grading] Evaluated by assignments (project report exercise) and class contribution

[Course Goals] This course will help students gain a fundamental knowledge of what project management in engineering is. Throughout the course, students will learn various tools applied in project management. Students will also understand the importance of costs and money, risks, leadership, and environmental assessment in managing engineering projects. This course is followed with the course "Seminar on Project Management in Engineering." in the second semester. [Course Topics]

Theme	Class number of times	Description
	times	4/14 (Ashida)
Guidance	1	Course guidance
Introduction to project		4/21 (Takatori)
management & Project phases	1	Introduction to project management
8		Project phases
		4/28 (Lintuluoto)
Tools for project management,	1	Tools
cost, and cash flows I		Work breakdown structure
		Gantt charts
Project scheduling I	1	5/12 (Ashida) Project scheduling I
Project scheduling II	1	5/19 (Ashida) Project scheduling II
Tools for project management,		5/26 (Lintuluoto)
cost, and cash flows II	1	Cost
Tools for project management,		6/2 (Lintuluoto)
cost, and cash flows III	1	Cash flow
		6/9
TBA	1	To be announced
Leadership I	1	6/16 (Tanaka)
	1	Leadership I
Leadership II	1	6/23 (Tanaka)
		Leadership II
Risk I	1	6/30 (Matsumoto)
		Risk I
Risk II	1	7/7 (Matsumoto)
		Risk II
Environmental Impact	1	7/14 (Mizuno)
Assessment I		Environmental Impact Assessment I
Environmental Impact	1	7/21 (Mizuno)
Assessment II		Environmental Impact Assessment II
Special lecture Project management ~Tender		7/28 @ A2-306 (Cluster A, Katsura Campus)
process of Panama Canal	1	Lecturer: Taizo SHIMOMURA, Dr. (TAISEI CORPORATION)
expansion project~		
I		

【Textbook】 Course materials will be provided.

[Textbook(supplemental)] 1. Lock, Dennis. Project Management. 10th edition. Gower Publishing Ltd.

2 . Cleland, David L., and Lewis R. Ireland. Project Management. 5th edition. McGraw-Hill Professional

3. Roger Miller and Donald R. Lessard. The strategic management of large engineering projects, Shaping Institutions, Risks, and Governance, The MIT Press

[Prerequisite(s)] No pre-requisite

【Independent Study Outside of Class】

 $\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\right]}\xspace{\,\operatorname{The}}\xspace{\,\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{$

Exercise on Project Management in Engineering

エンジニアリングプロジェクトマネジメント演習

[Code] 10i050 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] B-Cluster 2F Seminar Room [Credits] 1 [Restriction] Student number will be limited.

[Lecture Form(s)] Seminar [Language] English

[Instructor] GL center: J.Assoc.Prof. Mizuno, Tanaka, Matumoto, Ashida, Maeda Assoc.Prof. Lintuluoto

(Course Description **)** In this course, students will apply the engineering know-how and the skills of management, and group leadership which they learned in the course of Project Management in Engineering to build and carry out a virtual inter-engineering project. This course provides a forum where students ' team-plan based on ideas and theories, decision making, and leadership should produce realistic engineering project outcomes. The course consists of intensive group work, presentations, and a few intermediate discussions. A written report will be required.

[Grading] Report, class activity, presentation

[Course Goals] This course prepares engineering students to work with other engineers within a large international engineering project. In particular this course will focus on leadership and management of projects along with applied engineering skills where the students learn various compromises, co-operation, responsibility, and ethics.

Theme	Class number of times	Description
		10/6
California	1	Introduction to Exercise on Project Management in Engineering
Guidance	1	Lecture on tools for the Project management in engineering
		Practice
Teamwork	7	Each project team may freely schedule the group works within given time
		frame. The course instructors are available if any need is required.
		Some lectures will be provided, such as Leadership structuring, Risk
Lecture & Teamwork	2	Management, and Environmental Impact Assessment, depending on projects
		you propose.
Presentation	1	Each project team will have a presentation based on its proposed project.

[Course Topics]

[Textbook] Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] Fundamental skills about group leading and communication, scientific presentation.

【Independent Study Outside of Class】

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] The number of students may be restricted. Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department.

10i050

Organic System Design 有機設計学

[Code] 10H802 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Tue 2nd

[Location] A2-308 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	2	
	2	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthetic Organic Chemistry 有機合成化学

[Code] 10H804 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Mon 2nd

[Location] A2-308 [Credits] [Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese

[Instructor] Department of Synthetic Chemistry and Biological Chemistry, Professor, Jun-ichi Yoshida Department of Synthetic Chemistry and Biological Chemistry, Lecturer, Aiichioro Nagaki

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
oxidation	3	
reduction	2	
carbon-carbon bond	2	
formation	3	
new methods in	2	
organic synthesis	Z	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Functional Coordination Chemistry 機能性錯体化学

[Code] 10H805 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Wed 2nd

[Location] A2-308 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Takashi Uemura, Satoshi Horike

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Fundamental		
coordination	2	
chemistry		
Properties of		
coordination	3	
polymers		
Solid state chemistry		
and materials	3	
chemistry		
Nanomaterials and	3	
nanotechnology	3	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Physical Organic Chemistry 物理有機化学

[Code] 10H808 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] A2-308 [Credits] [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Kenji Matsuda

[Course Description] Properties of organic compounds, such as electric conductivity, magnetism, photophysical properties, are discussed in terms of molecular structure and electronic structure

[Grading] Report

[Course Goals] To understand principles of photochemistry

[Course Topics]

Theme	Class number of times	Description	
Photochemical		Photochemistry, Photophysics, einstein (unit), Jablonski diagram, Excitation,	
	1	Internal conversion, Intersystem crossing, Fluorescence, Phosphorescence,	
Reaction		Photochemical reaction	
Excited States in		Born-Oppenheimer approximation, Flanck-Condon principle, Singlet, Triplet,	
Molecular Orbital	2	Energy gap, n-pi*, pi-pi*, Potential energy surface, Conical intersection,	
Theory		Solvatochromism	
		Transition probability, Fermi's golden rule, Transition moment, Oscillator	
Electronic Transition	2	strength, Polarized light, Stimulated emission, Einstein coefficient,	
		Beer-Lambert law, Selection rule, Spin-orbit coupling	
		Fluorescence, Phosphorescence, Fluorescence excitation spectrum, Mirror	
Radiative Transition	2	relationship, Vibrational structure, Fluorescence quantum yield, Emission rate	
		constant	
Daharian af	2	Energy Transfer, Quenching, Trivial, Foerster, Dexter, FRET, Stern-Volmer	
Behavior of	2	plot, Excimer, Exciplex, Triplet sensitization	
Phororeaction,	2	Quantum vield Dhotoshuamiam Conversion in abotoisomorization	
Photoisomerization	2	Quantum yield, Photochromism, Conversion in photoisomerization	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Fine Synthetic Chemistry 精密合成化学

[Code] 10H834 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location] A2-308 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Masahiro Murakami, Tomoya Miura,

[Course Description]

[Grading] Paper test

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
principle and		1. Hammond Postulate and Curtin-Hammett Principle 2. Chemo- and
examples of selective	4	Stereoselectivities of Hydride Reduction 3. Cram Model and Felkin-Anh
reaction		Model (Basic Rule) 4. Cram Model and Felkin-Anh Model (Application)
		5. (+)-Himbacine (Chackalamannil 1999) (key point: Diels-Alder) 6. ZK-EPO
	6	(Schering AG 2006) (key point: Macrolactonization) 7. (-)-Dactylolide
total synthesis of		(McLeod 2006) (key point: Ireland-Claisen) 8. (-)-Scopadulcic Acid (Overman
natural products		1999) (key point: Heck Reaction) 9. (+)-Paniculatine (Sha 1999) (key point:
		Radical Cyclization) 10. Hirsutine (Tietze 1999) (key point: Domino Reaction)
	1	11. Confirmation of achievement degree: The synthesis of target molecules
	1	using selective reaction is proposed by students, and then, we discuss it.

[Textbook] nothing

【Textbook(supplemental)】Organic Synthesis Workbook II (Wiley-VCH), Organic Synthesis Workbook III (Wiley-VCH)

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Bioorganic Chemistry

生物有機化学

[Code] 10H813 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Thu 2nd

[Location] A2-308 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Molecular Biology

分子生物化学

[Code] 10H812 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] A2-308 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

【Course Description】 Biological responses are elicited at the interface of intrinsic genetic information and extrinsic environmental factors. This course discusses on molecular aspects of brain function and immunity. Experimental tools such as fluorescent probes for second messenger molecules are also explained through performance of experiments using the probes.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Basics	1	
Principles of	2	
neurotransmission	3	
Immunity and	2	
inflammation	2	
Gaseous bioactive	2	
molecules	2	
Experiments to		
observe cellular	3	
responses		

【Textbook】 Provided in the course

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Biorecognics

生体認識化学

[Code] 10H815 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 2nd

[Location] A2-308 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	ss number of times	Description	
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	1		
	2		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Microbiology and Biotechnology 生物工学

[Code] 10H816 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Wed 2nd

[Location]A2-308 [Credits]1.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]English

【Instructor】 Haruyuki Atomi, Tamotsu Kanai

【Course Description】 This lecture will introduce the various forms of life that are present on our planet as well as the mechanisms involved in sustaining their life. Commonly used tools in the fields of biochemistry, molecular biology and genetics will also be discussed. In addition, methods to utilize cells and their enzymes in biotechnology will be introduced. Lectures will be given in English, with the aim to improve communication/discussion skills.

[Grading] Grading will be based on presentations (60%) and attendance (40%).

【Course Goals】 Basic knowledge on the various forms of life that are present on our planet as well as the mechanisms involved in sustaining their life. An understanding of the commonly used tools in the fields of biochemistry, molecular biology and genetics as well as methods to utilize cells and their enzymes in biotechnology. Lectures will be given in English, with the aim to improve communication/discussion skills.

[Course Topics]

Theme	Class number of times	Description	
Introduction	1	Diversity of life, classification of organisms, structure and function of fundamental biomolecules.	
Basic mechanisms to sustain life	3	Strategies to conserve energy, biosynthesis, cell division, cell differentiation.	
Strategies to adapt to environmental conditions	2	Effect of environmental conditions on cells and biomolecules, thermophiles, acidophiles and their enzymes.	
Protein engineering	2	Methods to study enzymes and enzyme reactions, methods to enhance their performance.	
Cell engineering	2	Methods utilized in metabolic engineering, cell surface engineering, synthetic biology.	
Topic discussion	1	Particular topics will be chosen for discussion	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Organic Chemistry 先端有機化学

[Code] 10H818 [Course Year] Master Course [Term] 1st term [Class day & Period] Tue 1st

[Location]A2-306 [Credits]1.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Professor Jun-ichi Yoshida and other professors

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Chemoselectivity	2	Introduction and chemoselectivity
Regioselectivity	2	Controlled Aldol Reactions
Stereoselectivity	2	Stereoselective Aldol Rections
Strategies	2	Alternative Strategies for Enone Synthesis
Choosing a Strategy	2	The Synthesis of Cyclopentenones
Summary	2	Summary and outlook

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Biological Chemistry 先端生物化学

[Code] 10H836 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location] A2-308

[Credits] 3 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	4	
	3	
	4	
	2	
	2	
	3	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Advanced Biological Chemistry 2 Continued 先端生物化学続論

[Code] 10P836 [Course Year] Master Course [Term] [Class day & Period] [Location] [Credits] 1

[Restriction] [Lecture Form(s)] Intensive Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organotransition Metal Chemistry 1 有機金属化学 1

[Code] 10H041 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 1st

[Location]A2-306 [Credits]1.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese [Instructor] Nakamura,Matsubara,Suginome,Tsuji,Kurahashi,Omura,Murakami

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Organomagnesium compounds	1	Synthesis, structure, and reaction of organomagnesium compounds
Organolithium compounds	1	Synthesis, structure, and reaction of organolithium compounds
Organozinc compounds	1	Synthesis, structure, and reaction of organozinc compounds
Organoboron compounds	1	Synthesis, structure, and reaction of organoboron compounds
Organosilicon compounds	1	Synthesis, structure, and reaction of organosilicon compounds
Organocopper compounds	1	Synthesis, structure, and reaction of organocopper compounds
Rare earth metals	1	Synthesis, structure, and reaction of rare earth metals
Other transition-metal compounds	1	Synthesis, structure, and reaction of other transition-metal compounds such as Ti, Zr, Cr, and Fe
Basic reaction of organotransition-metal compounds	. 1	Ligand substitution reaction, oxidative addition, oxidative cyclization, reductive elimination, transmetallation, carbonyl insertion
Catalytic enantioselective reaction	1	Enantioselective hydrogenation, enantioselective oxidation (Sharpless reactions), enantioselective C-C bond formation
Coupling reaction	1	C-C Bond forming reactions (cross coupling reactions)

【Textbook】 none

[Textbook(supplemental)] J. F. Hartwig, Organotransition metal chemistry. From bonding to catalysis., University Science Books, Mill Valley, CA, 2010.

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Organotransition Metal Chemistry 2 有機金属化学 2

[Code] 10H042 [Course Year] Master Course [Term] [Class day & Period] Fri 1st [Location] A2-306

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Ozawa, Murakami, Kondo, Nakao, Ohuchi, Kurahashi, Miki

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	2	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D839

Synthetic Chemistry and Biological Chemistry, Adv,A

合成・生物化学特論 A

[Code] 10D839 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits]2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthetic Chemistry and Biological Chemistry, Adv,B

合成・生物化学特論 B

[Code] 10D840 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits]2 [Restriction] No Restriction [Lecture Form(s)] Relay Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D841

Synthetic Chemistry and Biological Chemistry, Adv,C

合成・生物化学特論C

[Code] 10D841 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits]1 [Restriction]No Restriction [Lecture Form(s)]Intensive Lecture [Language]Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	7.5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthetic Chemistry and Biological Chemistry, Adv,D

合成・生物化学特論 D

[Code] 10D842 [Course Year] Master Course [Term] 1st term [Class day & Period] [Location]

[Credits]1 [Restriction]No Restriction [Lecture Form(s)]Intensive Lecture [Language]Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	7.5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D843

Synthetic Chemistry and Biological Chemistry, Adv,E

。 合成・生物化学特論 E

[Code] 10D843 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits]1 [Restriction]No Restriction [Lecture Form(s)]Intensive Lecture [Language]Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	7.5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Synthetic Chemistry and Biological Chemistry, Adv,F

合成・生物化学特論 F

[Code] 10D844 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits]1 [Restriction]No Restriction [Lecture Form(s)]Intensive Lecture [Language]Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	7.5	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D828

Special Experiments and Exercises in Synthetic Chemistry and Biological

Chemistry

合成・生物化学特別実験及演習

[Code] 10D828 [Course Year] Master Course [Term] 1st+2nd term [Class day & Period] [Location]

[Credits] 8 [Restriction] No Restriction [Lecture Form(s)] Experiment and Exercise [Language] Japanese

[Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	30	
	15	
	15	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction

[Lecture Form(s)] Relay Lecture [Language] English

【Instructor】GL Edu. Center, J. Assoc. Prof., Ryuichi Ashida

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called high technologies, and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Requirements and a number of credits are different with the academic system students choose, the modified academic quarter system or the academic semester system. Students who choose the academic semester system must meet the requirements for the first 11 lectures and the latter 4 lectures separately.

When the students who choose the modified quarter system are graded, the average score of the best four reports is employed. When the students who choose the academic semester system are graded, the average score of the best five reports is employed.

Please go to KULASIS Web site for more information.

[Course Goals]

[Course Topics]

Theme Class number times		Description		
Materials Processing Using External Fields for Microstructure Control		Properties of materials are not simply determined by crystal structure and chemical composition. Microstructure (i.e. crystal grain size, crystallographic orientation) can significantly influence the properties. Materials processing for the microstructure control, using external fields will be demonstrated in this class. (H. Yasuda: Dept. of Materials Science and Engineering)		
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials. (Y. Nakao: Dept. of Material Chemistry)		
Synthesis and Functions of Mixed Anion Compounds	1	As we entered the 21st century, mixed anion compounds, which contain several different anions, began to draw attention as new types of inorganic material. My lecture will show synthetic and functional aspects in this class of materials. (H. Kageyama: Dept. of Energy and Hydrocarbon Chemistry)		
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed. (T. Koga: Dept. of Polymer Chemistry)		
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed. (T. Koga: Dept. of Polymer Chemistry)		
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced. (T. Asano: Dept. of Electronic Science and Engineering)		
Introduction to Nuclear Materials	1	Nuclear materials are designed for irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked. (I. Takagi: Dept. of Nuclear Engineering)		
Application of Polymer Nanoparticles to Bio-Imaging	1	Polymers are widely used in various delivery/localization events as drug carriers, stabilizers of clinical protein and nucleic acid medications, and lesion targeters. An obvious merit of polymers with an appropriate (>10 nm) size is that they escape from facile renal excretion. The size has another significance in case of tumor targeting. Tumor tissues usually have defective endothelial cells with a wide opening and undeveloped lymphatic vessel, so that polymer nanoparticles of the size range of 10 - 100 nm can permeate into the tumor and are retained therein. This is the so-called enhanced permeability and retention (EPR) effect, which shows high performance in terms of selectivity and efficiency in bio-imaging. (T. Kondo: Dept, of Energy and Hydrocarbon Chemistry)		
Radiation Induced Reactions towards 1 -Dimensional Nanomaterials	1	Whether can we produce nano-material by the reactions induced by a "ray" (ionizing radiation)? The answer is yes. With an use of an atomic particle accelerated up to MeV orders, the one particle provides a nanowire along its trajectory via condensed and efficient chemical reactions in organic media. Single particle Nanofabrication Technique (SPNT) or Single Particle Triggered Linear Polymerization (STLiP), referred as, are demonstrated as versatile methods to give low dimensional nanomaterials based on a variety of organic molecular systems in this lecture. (S. Seki: Dept. of Molecular Engineering)		
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry. (K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)		
Hyperthermophiles and their Thermostable Biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids. (H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)		
Designing Polymer Membrane Materials to Capture Green House Gases	1	We will discuss the overall obstacles involved in capturing green house gases such as CO2 or Methane, and the specific challenges to generating polymer membranes that can achieve it. Then we will consider how to design polymer materials that can overcome such obstacles. (E. Sivaniahi: Dept. of Molecular Engineering)		
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides. (K. Tanaka: Dept. of Material Chemistry)		
Force Acting on Colloidal Particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed. (R. Yamamoto: Dept. of Chemical Engineering)		
Electrodeposition and Electroless Deposition for Materials Processing	1	(1) Fundamentals chemistry, electrochemistry, and thermodynamics , and (2) applications of electrodeposition and electroless deposition for materials processing. (K. Murase: Dept. of Materials Science and Engineering)		

[Textbook] None

[Textbook(supplemental)]

[Prerequisite(s)]

. .

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

10K005

Matsumoto

Advanced Modern Science and Technology (English lecture) 現代科学技術特論(英語科目)

[Code]10K005 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period]Thu 5th [Location]A2-306 [Credits]2(Semester system) [Restriction]No Restriction [Lecture Form(s)] Relay Lecture [Language] English

 [Instructor]
 GL
 Edu.
 Center,
 J.
 Assoc.
 Prof.,
 Ryosuke

 Related professors

[Course Description] Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system.

Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement. 【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Exploration of Radiation Belts by Space Radio Engineering	1	Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma environment. We review historical development of space radio engineering and current understanding of radiation belt dynamics.(Y. Omura: Dept. of Electrical Engineering)
Functional Organic Molecular Materials for Molecular Scale Nanoscience	1	This lecture explains functional organic molecular materials with functions like photochromism or molecular conductance, which are expected to play an active role in molecular scale nanoscience.(K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Micro- and Nano-scale Separations in Analytical Chemistry	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis, will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)
Role of Nanoparticles Aiming at Theranostic Agents for Solid Cancers – Sustainable Universe Health Care in the Aged Society	1	Malignancy takes the first position for the cause of mortality in Japan. Realization of a "society of health and longevity" therefore requires a general method for diagnosis and therapy for cancers in the early stage. Nanoparticles are currently highly expected to this type of medicinal treatment, because nanoparticles can avoid expensive therapy, which would bankrupt our universal health care system.(S. Kimura: Dept. of Material Chemistry)
What are polymers?	1	What is a polymer? Also, what is the difference between polymers and other molecules? The characteristics of polymers and polymerizations are explained with some examples on practical applications of polymers.(M. Ouchi: Dept. of Polymer Chemistry)
Precision Polymerization and Functional Materials by Macromolecular Design	1	The methodology to synthesize polymers precisely and their features are described. In addition, some examples on functional materials using polymers whose molecular design is important are introduced.(M. Ouchi: Dept. of Polymer Chemistry)
Analysis and Design of Socio-Technical Systems	1	When introducing various kinds of automation systems including robots into a new work environment, it is necessary to design and analyze from the viewpoint of socio-technical systems, which is the interaction system of people, technology and organization. In this lecture, specific problems and solutions are described.(T. Sawaragi: Dept. of Mechanical Engineering and Science)
Computational Chemistry and computer science	1	Remarkable progress in the computer science has been revolutionizing scientific research and technological development for this decade. This trend will further accelerate in the future. This lecture reviews the impact of state of the art computer science on the molecular chemistry as an example. (R. Fukuda: Dept. of Molecular Engineering)
Photofunctional Single-Walled Carbon Nanotubes	1	Basic chemical properties of single-walled carbon nanotubes are introduced, and then applications of them as photofunctional molecular platform and charge transport pathway are presented. (T. Umeyama: Dept. of Molecular Engineering)
Renewable energies and rechargeable batteries	1	For the effective use of renewable energies, rechargeable batteries have been focused. Basic chemistry of batteries and how the rechargeable batteries are utilized for the storage of the energies will be given by the first lecture. (T. Abe: Energy and Hydrocarbon Chemistry)
Renewable energies and hydrogen production	1	Fuel cells using hydrogen are clean energy sources. The second lecture is about the hydrogen production based on the renewable energies.(T. Abe: Energy and Hydrocarbon Chemistry)
Genome sequences, what do they say and how can we use them?	1	Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Optical clocks -measurement of time at the 18th decimal place	1	Time or frequency is the most precisely measurable quantity. Clocks referenced to atomic resonances, called atomic clocks, have extremely small uncertainies. They realize the definition of second and are applied to the global positioning system (GPS). This lecture introduces atomic clocks based on lasers, which improve the uncertainty to be the 18th decimal place.(K. Sugiyama: Dept. of Electronic Science and Engineering)
Mechanism of particle electrification	1	The basic concepts and theories of charge transfer between solid surfaces are summarized and particle electrification caused by repeated impacts on a wall is formulated.(S. Matsusaka: Dept. of Chemical Engineering)
Control of electrostatic charge on particles	1	On the basis of the concepts and formulation on particle electrification, new methods for the control of electrostatic charge on particles are presented.(S. Matsusaka: Dept. of Chemical Engineering)

【Textbook】None

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students who take Autumn term should register Lecture code 10H006.

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D046

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	2	
	2	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Wed 5th [Location] Funai Hall [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] GL center: J.Assoc. Tanaka, Mizuno, Takatori, Matsumoto, Ashida and Related professors

[Course Description] This course provides lectures and panel discussions by lecturers inside and outside the campus who have a remarkable achievement in engineering and are active as international leaders.

[Grading] Refer material about grading this course which is provided in 1st and 2nd lectures.

[Course Goals] This course cultivates the ability to develop familiar problem consciousness into a big concept through utilizing the materials of advanced fields in each field. This course also shows how leaders have improved their response to problems. Through this course, students learn fundamental culture, and the importance of human growth.

[Course Topics]

Theme	Class number of times	Description		
Construction of solar	unico			
updraft power generation	1	Prof. Kunimasa Sugiura (Civil and Earth Resources Engineering) Apr. 12		
(SUPG) system on the ocean	·			
Record and protection of				
world cultural heritage by	1	Prof. Ari Ide (Mechanical Engineering and Science) Apr. 19		
advanced image processing	•	ror. An reconanical Engineering and Science) Apr. 19		
Mysterious characteristics of				
smell: from development of	1	Dr. Jun-ichi Kita (Shimadzu Corporation) Apr. 26		
smell identification device	I	2. Can tela (diminadza Corporation / Tipit 20		
Science and engineering of	1	Prof. Nahuhira Tauii (Matariala Sajanas and Ensinaarina) May 10		
metals and potential of	1	Prof. Nobuhiro Tsuji (Materials Science and Engineering) May 10		
metals	1	De Katayumi Hayashi (Hitashi Composition) May 17		
My days with radiation ray	1	Dr. Katsumi Hayashi (Hitachi, Corporation) May 17		
Material synthesis	<i>,</i>			
considering feeling of	1	Prof. Yasujiro Murata (Energy and Hydrocarbon Chemistry) May 24		
molecules				
Practical Marketing not on	1	Dr. Fuminori Takaoka (Edge, Ltd.) May 31		
books				
Direct visualization of	1	Prof. Hirofumi Yamada (Electronic Science and Engineering) Jun. 7		
atoms and molecules				
Encouragement for serial	1	Prof. Mitsuaki Oshima (Panasonic Corporation) Jun. 14		
innovator	1			
Idle time and idle space	1	Prof. Kiyoshi Takeyama (Architecture and Architectural Engineering) Jun. 21		
Research of cancer therapy	1	Koji Noda (National Institutes for Quantum and Radiological Science and Technology) Jun. 28		
by heavy ion beams	I	Di. Koji Noda (National Institutes for Quantum and Radiological Science and Technology) Jun. 28		
Seven Wonders of powders	1	Prof. Shuji Matsusaka (Chemical Engineering) Jul. 5		
Strong company				
organizations in Japan, USA	1	Dr. Masahiko Mori (DMG MORI Co.,Ltd.) Jul. 12		
and Germany				
Development of				
construction techniques:				
from development of	1	Dr. Ichiro Nagashima (Taisei Corporation) Jul. 19		
advanced technique to big				
projects				
Manufacturing by advanced				
mananacturing by advanced	1	Prof. Kiyotaka Miura (Material Chemistry) Jul. 26		

[Prerequisite(s)] 【Independent Study Outside of Class】 [Web Sites] [Additional Information]

10i045

Exercise in Practical Scientific English 実践的科学英語演習

[Code] 10i045 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Thu 4th or 5th [Location] A2-304

[Credits] 1 [Restriction] Up to 20 students for each class [Lecture Form(s)] Seminar [Language] English (Japanese)

[Instructor] M. Nishikawa, Y. Tanaka, T. Mizuno, A. Takatori, R. Matsumoto, R. Ashida

[Course Description] This course is open to all master and doctoral engineering students. It is designed to help students understand how to write a research paper step by step. In this course, the students will write a short research paper (i.e. Extended Research Abstract for Proceeding. approx. 1000 -1500 words) on a topic drawn from assigned readings.

[Grading] Evaluation based on 10% participation, 60% reports, 30% final paper *More than twice unexcused absence can result in course failure

[Course Goals] The primary goal of this course is to deepen an understanding of the main features of each part of a scientific paper (IMRaD). Throughout the course, students will develop the core competencies required for language, grammar, and style to produce a research manuscript in English.

[Course Topics]

Theme	Class number of times	Description	
Unit 1: Course Overview	1	Course Overview: Introduction to writing scientific research articles	
Unit 2: Introduction	1	Raising awareness of the register of science research articles (genre, audience, purpose)	
Unit 3: Preparing to Write	1	Writing a proposal for a research paper, using corpus-based approach (Exercise: Creating own Corpus)	
Unit 4: Preparing to Write	1	Paraphrasing ideas from source texts, using citations and references in formal writing	
Unit 5: Writing Processes	1	Identifying the "moves" for an Abstract section by hint expressions	
Unit 6: Writing Processes	1	Writing an Abstract (Title) & peer feedback	
Unit 7: Writing Processes	1	Identifying the "moves" for an Introduction section by hint expressions	
Unit 8: Writing Processes	1	Writing an Introduction section & peer feedback	
Unit 9: Writing Processes	1	Writing a Method section & peer feedback	
Unit 10: Writing Processes	1	Writing a Result section & peer feedback	
Unit 11: Writing Processes	1	Writing a Discussion and a Conclusion section	
Unit 12: Writing Processes	1	Writing a cover letter to reviewers and how to respond to reviewers	
Unit 13: Monitoring and	1	Online feedback	
Revising	1	Online feedback	
Unit 14: Monitoring and	1	Devicing a new based on man facilitati	
Revising	1	Revising a paper based on peer feedback	
Unit 15: Submission	1	Final Paper Due, August 6.	

[Textbook] Handout materials will be supplied by the instructor.

【Textbook(supplemental)】ALESS (2012). Active English for Science- 英語で科学する - レポート、論文、プレゼンテーション . The University of Tokyo Press. Cargill, M., & O'Connor, P. (2013). Writing scientific research articles: Strategy and steps. John Wiley & Sons. Cowell, R., & She, L. (2015). Mastering the Basics of Technical English『技術英語の基礎』 . 2nd Ed., Corona Publishing. 野口ジュディー・深山晶子・岡本真由美.(2007). 『理系英語のライティング』. アルク

[Prerequisite(s)] Students who intend to join this course must attend the first class.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] We may restrict the class size to enhance students ' learning. Students who intend to join the course are required to attend the first-day guidance. Office Hours: (by appointment) nishikawa.mikako7w@kyoto-u.ac.jp (Ext. 2052)

Professional Scientific Presentation Exercises (English lecture)

科学技術者のためのプレゼンテーション演習(英語科目)

[Code] 10i041 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Thu 5th
[Location] B-Cluster 2F Seminar Room [Credits] 1
[Restriction] The number of students might be limited if too many students will get enrolled.

[Lecture Form(s)] Semina r [Language] English

[Instructor] Juha Lintuluoto, Associate Professor, Department of Synthetic Chemistry and Biological Chemistry [Course Description] It is imperative for future engineers to be able to communicate and deliver effectively scientific information to large variety of audiences. This skill enables engineers to share and absorb information to more extended audiences, and facilitates success in selling ideas and products, publishing and team working. The purpose of this course is to teach the basic rules needed for successful professional scientific presentation, both orally and written. The course also prepares students to deliver scientific information presentations to wide audiences. The course is consisted of excessive exercises, of which the student should complete seven (7) tasks. The course holds 3-4 tasks for oral presentation exercises, and 3-4 tasks for professional scientific writing exercises. The exact number of both exercises is adjusted for each student ' s needs. The course is aimed for doctor course (DC) students, both Japanese and Foreign nationals

[Grading] Reports, class activity, presentation

[Course Goals] This course is aimed to foster engineering students ' scientific presentation skills. The successfully course completed students will be able to express and present complicated and specific scientific information at more generally understandable level. The students will also be able to pose relevant questions and effectively answer to the wide variety of questions.

[Course Topics]

Theme	Class number of times	Description
	1	Guidance and Professional presentation rules and etiquette
	3	Oral presentations & questioning I, Written report I
	3	Oral presentations & questioning I, Written report I
	3	Oral presentations & questioning II, Written report II
	3	Oral presentations & questioning II, Written report II
	2	Oral presentations & questioning III, Written report III
		Oral presentations & questioning III, Written report III
		Oral presentations & questioning IV, Written report IV
		Oral presentations & questioning IV, Written report IV I
		Course summary and discussion

[Textbook] Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] -Fundamental skills about scientific presentation

-Advanced English skills

-Sufficient personal research results

【Independent Study Outside of Class】

[Web Sites] The web-site is listed in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credit of this course is counted as the unit for graduation requirement at department level. Course starts at April 13th, and the 1st lesson is repeated on April 20th. The course schedule is irregular. Most classes are biweekly, the detailed schedule is provided at the 1st lecture.

10i042

Advanced Engineering and Economy (English lecture) 工学と経済(上級)(英語科目)

[Code] 10i042 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Tue 5th [Location] B-Cluster 2F Seminar Room [Credits] 2 [Restriction] The number of students might be limited if too many students will get enrolled. [Lecture Form(s)] Lectures, Group works&tasks [Language] English [Instructor] Juha Lintuluoto, Associate Professor, Department of Synthetic Chemistry and Biological Chemistry

[Course Description] Engineering economics plays central role in any industrial engineering project. For an engineer, it is important to apply the engineering know-how with the economic analysis skills to obtain the best available materials, methods, devices, etc. in the most economical way. This course is aimed to teach engineering students the basic economic methods to manage economically an engineering project. In addition, the report writing on various engineering economic issues prepares to write reports in a professional form. The lab sessions are meant for the verbal skills improvement as well as improvement of analytical thinking. The topics are of current relevant topics Small-group brain-storming method is used. The exercise sessions cover the use of Ms-Excel for various quantitative economic analyses.

[Grading] Final test, reports, class activity

[Course Goals] This course is aimed to strengthen engineering students ' skills in economics. The course concept is to teach students selectively those subjects which serve as major tools to solve economic tasks in engineering environment. The reports and lab sessions provide students stimulating and analytical thinking requiring tasks, and presentation skills training is an important part of this course.

[Course Topics]

Theme	Class number of times	Description	
Student orientation and			
Introduction to engineering economy	1	Course contents, goals	
Cost concepts and design economics	1	Cost terminology and classification	
Cost estimation techniques	1	WBS for cost estimation, estimation techniques (indexes, unit, factor, power-sizing, learning curve, CER, top down, bottom up), target costing	
The time value of money	1	Simple interest, compound interest, economic equivalence concept, cash-flow diagrams, PW, FW, AW	
Evaluating a single project	1	MARR, present wort method, bond value, capitalized worth, internal rate of return, external rate of return, payback method	
Comparison and selection among alternatives	1	Investment and cost alternatives, study period, equal and unequal useful lives, rate-of-return method, imputed market value	
Depreciation and income taxes	1	SL and DB depreciation methods, book value, after-tax MARR, marginal income tax rate, gain(loss) on asset disposal, after-tax economic analysis general procedure, EVA,	
Price changes and exchange rates	1	Actual dollars, real dollars, inflation, fixed and responsive annuities, exchange rates, purchasing power	
Replacement analysis	1	Determining economic life of challenger, determining economic life of defender, abandonment, after-tax replacement study	
Evaluating projects with the benefit-cost ratio method	1	Benefits, costs, dis-benefits, self-liquidating projects, multi-purpose projects, interest rate vs. public project, conventional B-C ratio PW and AW method, modified B-C ratio PW and AW method	
Breakeven and sensitivity analysis	1	Breakeven analysis, sensitivity analysis, spider plot	
Probabilistic risk analysis 1 Sources of uncertainty, discrete and continuous variables, probability trees, Monte C decision trees, real options analysis		Sources of uncertainty, discrete and continuous variables, probability trees, Monte Carlo simulation example, decision trees, real options analysis	
The capital budgeting process	1	Capital financing and allocation, equity capital and CAPM, WACC, WACC relation to MARR, opportunity cost	
Decision making considering multiattributes	1	Non-compensatory models (dominance, satisficing, disjunctive resolution, lexicography), compensatory models (non-dimensional scaling, additive weight)	
Final test	1	90 minutes, concept questions, calculation task (option of choice)	
		Additionally, students will submit three reports during the course on given engineering economy subjects. Also, required are the five lab participations (ca.60 min/each) for each student. Additionally, three exercise sessions (ca.60 min/each), where use of Ms-Excel will be practiced for solving various engineering economy tasks,	

should be completed

【Textbook】 Engineering Economy 15th ed. William G. Sullivan (2011)

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] -This course is highly recommended for those who attend "Project Management in Engineering" course , Small group working method [Independent Study Outside of Class]

[Web Sites] The web-site is listed in the home page of the GL education center.

[Additional Information] Students are requested to check in advance whether the credits of this course are counted as the units for graduation requirement at department level. The course starts on Oct.3rd.

International Internship in Engineering 1

工学研究科国際インターンシップ1

[Code] 10i010 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period] Intensive course [Location] [Credits]1 [Restriction] Defined by each internship program

[Lecture Form(s)] Exercise [Language] English

[Instructor] Faculty members in charge of educational affairs of the Global Leadership Engineering Education Center and of the department the registrant belongs to.

[Course Description] Acquisition of international skills with the training of foreign language through the internship programs hosted by the University, the Graduate School of Engineering, or The Department the registrant belongs to.

[Grading] Merit rating is performed based on the presentation or the report(s) after the participation in each internship program. Each department is responsible to identify the number of credits to be granted to the student of the department, if the credits are included in the mandatory ones. The Global Leadership Engineering Education Center takes the role to evaluate the credits if the department the student belongs to deals the credits as optional ones. The number of credits to be earned is 1 and 2, respectively to the subjects International Internship in Engineering 1 and 2 depending on the period and the contents of the internship program the students has participated in.

[Course Goals] Acquisition of international skills with the training of foreign language.

[Course Topics]

Theme	Class number of times	Description
Overseas Internship	1	The contents to be acquired should be described in the brochure of each
		internship program.
Final Presentation	1	A presentation by the student is required followed by discussion among
		participants.

【Textbook】 Not Applicable

【Textbook(supplemental)】 Not Applicable

[Prerequisite(s)] Described in the application booklet for each internship program. The registrant is requested to have enough language skills for the participation.

[Independent Study Outside of Class] Not Applicable

[Web Sites] Not Applicable

[Additional Information] It is required for students to check if the internship program to participate in could be evaluated as part of mandatory credits or not and could earn how many credits before the participation to the department or educational program the student in enrolled. If the credit could not be treated as mandatory ones, get in touch with the Global Leadership Engineering Education Center.

10i011

International Internship in Engineering 2

工学研究科国際インターンシップ2

[Code] 10i011 [Course Year] Master and Doctor Course [Term] 1st+2nd term

[Class day & Period]Intensive course [Location] [Credits]2 [Restriction]Defined by each internship program

[Lecture Form(s)] Exercise [Language] English

[Instructor] Faculty members in charge of educational affairs of the Global Leadership Engineering Education Center and of the department the registrant belongs to.

[Course Description] Acquisition of international skills with the training of foreign language through the internship programs hosted by the University, the Graduate School of Engineering, or The Department the registrant belongs to.

[Grading] Merit rating is performed based on the presentation or the report(s) after the participation in each internship program. Each department is responsible to identify the number of credits to be granted to the student of the department, if the credits are included in the mandatory ones. The Global Leadership Engineering Education Center takes the role to evaluate the credits if the department the student belongs to deals the credits as optional ones. The number of credits to be earned is 1 and 2, respectively to the subjects International Internship in Engineering 1 and 2 depending on the period and the contents of the internship program the students has participated in.

[Course Goals] Acquisition of international skills with the training of foreign language. Detailed objectives should be described in each program.

Course Topic	cs 】
--------------	------

Theme	Class number of times	Description
Overseas Internship	1	The contents to be acquired should be described in the brochure of each
		internship program.
Final Presentation	1	A presentation by the student is required followed by discussion among
		participants.

【Textbook】 Not Applicable.

【Textbook(supplemental)】 Not Applicable.

[Prerequisite(s)] Described in the application booklet for each internship program. The registrant is requested to have enough language skills for the participation.

【Independent Study Outside of Class】 Not Applicable.

[Web Sites] Not Applicable.

[Additional Information] It is required for students to check if the internship program to participate in could be evaluated as part of mandatory credits or not and could earn how many credits before the participation to the department or educational program the student in enrolled. If the credit could not be treated as mandatory ones, get in touch with the Global Leadership Engineering Education Center.

Project Management in Engineering

エンジニアリングプロジェクトマネジメント

[Code] 10i049 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 4th [Location] A2-308 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto, Ashida

Assoc.Prof. Lintuluoto

[Course Description] This course provides a basic knowledge required for the project management in various engineering fields such as process design, plant design, construction, and R&D projects. Also, visiting lecturers from industry and public works provide management insights of actual engineering projects. [Grading] Evaluated by assignments (project report exercise) and class contribution

[Course Goals] This course will help students gain a fundamental knowledge of what project management in engineering is. Throughout the course, students will learn various tools applied in project management. Students will also understand the importance of costs and money, risks, leadership, and environmental assessment in managing engineering projects. This course is followed with the course "Seminar on Project Management in Engineering." in the second semester. [Course Topics]

Theme	Class number of	Description
	times	4/14/A_L:J_\
Guidance	1	4/14 (Ashida)
Guidance	1	Course guidance
Introduction to project		4/21 (Takatori)
management & Project phases	1	Introduction to project management
		Project phases
		4/28 (Lintuluoto)
Tools for project management,	1	Tools
cost, and cash flows I	1	Work breakdown structure
		Gantt charts
Project scheduling I	1	5/12 (Ashida)
	-	Project scheduling I
Project scheduling II	1	5/19 (Ashida)
	-	Project scheduling II
Tools for project management,	1	5/26 (Lintuluoto)
cost, and cash flows II	1	Cost
Tools for project management,	1	6/2 (Lintuluoto)
cost, and cash flows III	1	Cash flow
TBA	1	6/9
		To be announced
Leadership I	1	6/16 (Tanaka)
	1	Leadership I
Leadership II	1	6/23 (Tanaka)
		Leadership II
Risk I	1	6/30 (Matsumoto)
	1	Risk I
Risk II	1	7/7 (Matsumoto)
	1	Risk II
Environmental Impact	1	7/14 (Mizuno)
Assessment I	1	Environmental Impact Assessment I
Environmental Impact	1	7/21 (Mizuno)
Assessment II	1	Environmental Impact Assessment II
Special lecture		
Project management ~Tender	1	7/28 @ A2-306 (Cluster A, Katsura Campus)
process of Panama Canal		Lecturer: Taizo SHIMOMURA, Dr. (TAISEI CORPORATION)
expansion project~		

【Textbook】 Course materials will be provided.

[Textbook(supplemental)] 1. Lock, Dennis. Project Management. 10th edition. Gower Publishing Ltd.

2 . Cleland, David L., and Lewis R. Ireland. Project Management. 5th edition. McGraw-Hill Professional

3. Roger Miller and Donald R. Lessard. The strategic management of large engineering projects, Shaping Institutions, Risks, and Governance, The MIT Press

[Prerequisite(s)] No pre-requisite

【Independent Study Outside of Class】

 $\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\right]}\xspace{\,\operatorname{The}}\xspace{\,\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{$

10i050

Exercise on Project Management in Engineering

エンジニアリングプロジェクトマネジメント演習

[Code] 10i050 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] B-Cluster 2F Seminar Room [Credits] 1 [Restriction] Student number will be limited.

[Lecture Form(s)] Seminar [Language] English

[Instructor] GL center: J.Assoc.Prof. Mizuno, Tanaka, Matumoto, Ashida, Maeda Assoc.Prof. Lintuluoto

(Course Description **)** In this course, students will apply the engineering know-how and the skills of management, and group leadership which they learned in the course of Project Management in Engineering to build and carry out a virtual inter-engineering project. This course provides a forum where students ' team-plan based on ideas and theories, decision making, and leadership should produce realistic engineering project outcomes. The course consists of intensive group work, presentations, and a few intermediate discussions. A written report will be required.

[Grading] Report, class activity, presentation

[Course Goals] This course prepares engineering students to work with other engineers within a large international engineering project. In particular this course will focus on leadership and management of projects along with applied engineering skills where the students learn various compromises, co-operation, responsibility, and ethics.

Theme	Class number of times	Description	
	_	10/6	
California		Introduction to Exercise on Project Management in Engineering	
Guidance	1	Lecture on tools for the Project management in engineering	
		Practice	
	7	Each project team may freely schedule the group works within given time	
Teamwork	/	frame. The course instructors are available if any need is required.	
Lecture & Teamwork	2	Some lectures will be provided, such as Leadership structuring, Risk	
		Management, and Environmental Impact Assessment, depending on projects	
		you propose.	
Presentation	1	Each project team will have a presentation based on its proposed project.	

[Course Topics]

[Textbook] Course materials will be provided.

[Textbook(supplemental)] Will be informed if necessary.

[Prerequisite(s)] Fundamental skills about group leading and communication, scientific presentation.

【Independent Study Outside of Class】

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] The number of students may be restricted. Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department.

Special Seminar 1in Synthetic Chemistry and Biological Chemistry

合成・生物化学特別セミナー1

[Code] 10S807 [Course Year] Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10S808

Special Seminar 2in Synthetic Chemistry and Biological Chemistry

合成・生物化学特別セミナー 2

[Code] 10S808 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Special Seminar 3 in Synthetic Chemistry and Biological Chemistry

合成・生物化学特別セミナ-3

[Code] 10S809 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10H002

Special Topics in Transport Phenomena 移動現象特論

[Code] 10H002 [Course Year] Master and Doctor Course [Term] Spring term

[Class day & Period] Tue 4th [Location] A2-305 [Credits] 1.5 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Department of Chemical Engineering, Professor, Ryoichi Yamamoto

【Course Description】 After general introductions on the flow properties (Rheology) of polymeric liquids as typical examples of non-Newtonian fluids, the relationship (known as the constitutive equation) between strain rate and stress is explained. In addition to classical phenomenological approaches, molecular approaches based on statistical mechanics will be taught in this course. To this end, basic lectures on "Langevin Equation", "Hydrodynamic Interaction", and "Linear Response Theory" will also be given.

[Grading] Answers to several questions and exercises, which will be given during the course, are used to judge.

[Course Goals] To understand strength and weakness of both phenomenological and molecular approaches to formulate general behaviors of non-Newtonian fluids mathematically as forms of constitutive equations. Also to learn mathematical and physical methodologies necessarily to achieve this.

[Course Topics]

Theme	Class number of times	Description
		Shedding lights on the nature of polymeric liquids in comparisons with simple
- Polymeric Liquids /	C	Newtonian liquids. Various formulations on the characteristic behaviors of
Rheology	6	polymeric liquids based on both empirical and molecular approaches are
		lectured.
- Stochastic Process /	3	To deal with Brownian motions of particles in solvents, a lecture on Langevin
Langevin Equation	3	equation is given after some basic tutorials on stochastic process.
- Green Function /		To deal with motions of interacting particles in solvents, a lecture on the
Hydrodynamic	2	hydrodynamic interaction is given after some basic tutorials on Green function
Interaction		and Poisson equation.
Understanding	1	
Check	1	

[Textbook] Transport Phenomena 2nd Ed., Bird, Stewart, Lightfoot, (Wiley)

[Textbook(supplemental)] Introduction to Polymer Physics, Doi, (Oxford) Theory of Simple Liquids 4th Ed., Hansen, McDonald, (Academic Press) Colloidal Dispersions, Russel, Saville, and Schowlter, (Cambridge)

[Prerequisite(s)] Under graduate level basic knowledge on "Fluid Mechanics / Transport Phenomena" and basic mathematics including "Vector Analyses" are required.

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This is an biennial course which will be open in 2016, 2018, 2020, ...

Advanced Topics in Transport Phenomena (English lecture)

Advanced Topics in Transport Phenomena

[Code] 10H003 [Course Year] Master and Doctor Course [Term] Spring term

[Class day & Period] Tue 4th [Location] A2-305 [Credits] 1.5 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] English

[Instructor] Department of Chemical Engineering, Professor, Ryoichi Yamamoto

[Course Description] After general introductions on the flow properties (Rheology) of polymeric liquids as typical examples of non-Newtonian fluids, the relationship (known as the constitutive equation) between strain rate and stress is explained. In addition to classical phenomenological approaches, molecular approaches based on statistical mechanics will be taught in this course. To this end, basic lectures on "Langevin Equation", "Hydrodynamic Interaction", and "Linear Response Theory" will also be given.

[Grading] Answers to several questions and exercises, which will be given during the course, are used to judge.

[Course Goals] To understand strength and weakness of both phenomenological and molecular approaches to formulate general behaviors of non-Newtonian fluids mathematically as forms of constitutive equations. Also to learn mathematical and physical methodologies necessarily to achieve this.

[Course Topics]

Theme	Class number of times	Description	
		Shedding lights on the nature of polymeric liquids in comparisons with simple	
- Polymeric Liquids /	C	Newtonian liquids. Various formulations on the characteristic behaviors of	
Rheology	6	polymeric liquids based on both empirical and molecular approaches are	
		lectured.	
- Stochastic Process /	3	To deal with Brownian motions of particles in solvents, a lecture on Langevin	
Langevin Equation	3	equation is given after some basic tutorials on stochastic process.	
- Green Function /		To deal with motions of interacting particles in solvents, a lecture on the	
Hydrodynamic	2	hydrodynamic interaction is given after some basic tutorials on Green function	
Interaction		and Poisson equation.	
Understanding	1		
Check	1		

[Textbook] Transport Phenomena 2nd Ed., Bird, Stewart, Lightfoot, (Wiley)

[Textbook(supplemental)] Introduction to Polymer Physics, Doi, (Oxford) Theory of Simple Liquids 4th Ed., Hansen, McDonald, (Academic Press) Colloidal Dispersions, Russel, Saville, and Schowlter, (Cambridge)

[Prerequisite(s)] Under graduate level basic knowledge on "Fluid Mechanics / Transport Phenomena" and basic mathematics including "Vector Analyses" are required.

【Independent Study Outside of Class】

[Web Sites]

Separation Process Engineeering, Adv. 分離操作特論

[Code] 10H005 [Course Year] Master and Doctor Course [Term] Spring term [Class day & Period] Mon 2nd [Location] A2-305 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] N.Sano,

[Course Description] The separation related with transport phenomena of heat and mass and particles will be lectured. Adsorption, drying, distillation will be explained. In addition, new separation methods will be explained.

[Grading] Reports submitted from students and exams will be evaluated.

[Course Goals] This course will deepen the students' understanding on multiphase transport phenomena by lecturing separation operations, and the students will know how to develop effective separation methods. Also they will know recent developments of separation techniques in chemical engineering.

Course	Topics]
---------------	----------

Theme	Class number of times	Description
Separation using	2	Purification of gas and water using electric discharges and particle separation using
electric field	2	dielectrophoresis are explained.
		Distillation is used commonly in chemical industries. Here, advanced knowledge
Distillation	2	on distillation about multi-component distillation, extraction distillation, etc. will
		be explained.
		Drying is a typical operation utilizing phase transformation and simultaneous
Drying	1	transport of heat and mass. Wet bulb temperature, adiabatic cooling change,
		humidity chart, etc. will be explained to deepen students' understanding on drying.
During machanism	1	Conditions to keep the product quality from the view point of optimizing drying
Drying mechanism		operation will be explained. Troubles like non-uniform component concentration,
and preservation of		deformation, cracking, flavor loss, and so forth will be explained, and students will
product quality		know how to deal with these troubles.
Design of drying units		A variety of drying units are used, and the points to designing these units will be
and trouble shooting	1	lectured. Many examples of troubles seen in drying operations will be explained.
in drying processes		rectured. Many examples of troubles seen in drying operations will be explained.
		Analysis using adsorption is used for structural analysis of porous materials, and it
Basics of adsorption	2	is important to evaluate adsorbents. Here, basic knowledge about these analysis
		will be explained.
Properties of		Features and properties of typical adsorbents should be known to select appropriate
adsorbent and recent	1	species of adsorbents. These points will be lectured. Some methods to synthesize
	1	adsorbents from waste materials are explained. In addition, idea about how to
adsorption techniques		reduce the cost for adsorption operation will be lectured.
Basics of extraction	1	Liquid-liquid extraction will be lectured from fundamentals to advanced type of
Basics of extraction	1	operations, related with extraction of valuable metals.

【Textbook】"Gendai Kagaku Kogaku" Hashimoto and Ogino, Sangyo Tosho; "Kanso Gijustu Jitsumu Nyumon" Tamon, Nikkan Kogyo Shinbun

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge about transport phenomena and separation engineering should be required.

【Independent Study Outside of Class】

[Web Sites]

Chemical Reaction Engineering, Adv. 反応工学特論

[Code] 10H008 [Course Year] Master and Doctor Course [Term] [Class day & Period] [Location] [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Prof. Motoaki Kawase, Department of Chemical Engineering; Assoc. Prof. Hiroyuki Nakagawa, Department of Chemical Engineering

[Course Description] The following contents are covered:

- Kinetic analysis of gas-solid-catalyst reaction, gas-solid reaction, CVD reaction, and enzymatic reaction,

- Operation and design of reactors for gas-solid-catalyst and gas-solid reactions, and

- Industrial reactors including fixed bed, fluidized bed, moving bed, simulated moving bed, and stirred tank types.

[Grading] Based on the result of examination at the end of term and the results of quizzes and reports imposed every week [Course Goals] To understand kinetic analysis of chemical reactions utilized in the industry and procedure to design and operate industrial reactors.

[Course Topics]

Theme	Class number of times	Description
Gas-solid-catalyst	1	Commercial catalysts and industrial gas-solid-catalyst reactions are overviewed. Chemical
reaction (1) Overview	1	reaction engineering fundamentals of the gas-solid-catalyst reaction is explained.
Gas-solid-catalyst		
reaction (2) Generalized		The generalized offectiveness factor and the selectivity offected by mass transfer are
effectiveness factor and	1	The generalized effectiveness factor and the selectivity affected by mass transfer are
selectivity in complex		explained.
reactions		
Gas-solid-catalyst		
reaction (3) Deactivation	2	Deactivation mechanisms of solid catalysts are overviewed. The deactivation and consequent
and regeneration of	2	change in selectivity are explained in terms of the decay function and specific activity.
catalyst		
Gas-solid-catalyst		
reaction (4) Design and	1	Industrial catalytic reactors including fixed-bed and fluidized-bed reactors are overviewed.
operation of industrial	1	Design and operation of these reactors including thermal stability are explained.
catalytic reactors		
Liquid-solid-catalyst		Concepts and theories of simulated moving had is explained. Its application to astalutia
reaction Simulated	1	Concepts and theories of simulated moving bed is explained. Its application to catalytic reactions are reviewed.
moving bed reactor		reactions are reviewed.
CVD reaction (1)	1	Thermal and plasma chemical vapor deposition reactions and processes are overviewed.
Fundamentals	1	Fundamentals from chemical reaction engineering view point are explained.
CVD reaction (2) Kinetic		Kinetic analysis of CVD is described from CRE viewpoint. Reaction models including
analysis and modeling	1	elementary reaction model and overall reaction model are derived and applied to some
anarysis and modering		examples.
Gas-solid reaction (1)		Kinetic measurement and analysis of complicated gas-solid reactions, particularly coal
Kinetic analysis	2	pyrolysis, are explained with the first-order reaction model to the distributed activation
KINCUC analysis		energy model (DAEM).
Gas-solid reaction (2)		Concepts and derivation of the reaction models including the grain model and the
Kinetic analysis of	1	random-pore model are explained. Application of the models to coal gasification is
gas-solid reaction		overviewed.

【Textbook】 Prints are distributed.

【Textbook(supplemental)】

[Prerequisite(s)] Needs knowledge of chemical reaction engineering including heterogeneous reactions.

[Independent Study Outside of Class]

[Web Sites]

10H009

Chemical Reaction Engineering, Adv. (English lecture)

Chemical Reaction Engineering, Adv.

[Code]10H009 [Course Year]Master and Doctor Course [Term] [Class day & Period]Wed 3rd [Location]A2-302 [Credits] [Restriction] [Lecture Form(s)] [Language]English

[Instructor] Prof. Motoaki Kawase, Department of Chemical Engineering; Assoc. Prof. Hiroyuki Nakagawa, Department of Chemical Engineering; Junior Assoc. Prof. Ryuichi Ashida, Department of Chemical Engineering

[Course Description] This lecture is given in English. The following contents are covered: - Kinetic analysis of gas-solid-catalyst reaction, gas-solid reaction, and CVD reaction, - Operation and design of reactors for gas-solid-catalyst and gas-solid reactions, and - Industrial reactors including fixed bed, fluidized bed, moving bed, simulated moving bed, and stirred tank types.

[Grading] Based on the result of examination at the end of term and the results of quizzes and reports imposed every week.

[Course Goals] To understand kinetic analysis of chemical reactions utilized in the industry and procedure to design and operate industrial reactors.

[Course Topics]

Theme	Class number of times	Description
Gas-solid-catalyst		
reaction (1)	1	Commercial catalysts and industrial gas-solid-catalyst reactions are overviewed. Chemical reaction engineering fundamentals of the gas-solid-catalyst reaction is explained.
Fundamentals		
Gas-solid-catalyst		
reaction (2) Generalized		The generalized effectiveness factor and the selectivity affected by mass transfer are
effectiveness factor and	1	
selectivity in complex		explained.
reactions		
Gas-solid-catalyst		
reaction (3) Deactivation	2	Deactivation mechanisms of solid catalysts are overviewed. The deactivation and consequent
and regeneration of	2	change in selectivity are explained in terms of the decay function and specific activity.
catalyst		
Gas-solid-catalyst		
reaction (4) Design and	1	Industrial catalytic reactors including fixed-bed and fluidized-bed reactors are overviewed.
operation of industrial	1	Design and operation of these reactors including thermal stability are explained.
catalytic reactors		
Liquid-solid-catalyst		Concept and applications of simulated moving bed reactor are explained. Model-based analysis of simulated moving bed reactor is explained.
reaction Simulated	1	
moving bed reactor		analysis of simulated moving bed reactor is explained.
		Fundamentals of CVD reactions are explained from chemical reaction engineering view
CVD reaction	2	point. Kinetic analysis of CVD is described. Reaction models including elementary reaction
		model and overall reaction model are derived and applied to some examples.
Gas-solid reaction (1)		Kinetic measurement and analysis of complicated gas-solid reactions, particularly coal
Kinetic analysis	2	pyrolysis, are explained with the first-order reaction model to the distributed activation
ixinetic analysis		energy model (DAEM).
Gas-solid reaction (2)		Concepts and derivation of the reaction models including the grain model and the
Kinetic analysis of	1	random-pore model are explained. Application of the models to coal gasification is
gas-solid reaction		overviewed.

【Textbook】 Prints are hand out at the class.

【Textbook(supplemental)】

[Prerequisite(s)] Needs knowledge of chemical reaction engineering including heterogeneous reactions.

【Independent Study Outside of Class】

[Web Sites]

Advanced Process Systems Engineering

プロセスシステム論

[Code] 10H011 [Course Year] Master and Doctor Course [Term] 2016/Fall term [Class day & Period]
[Location] [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese
[Instructor] Dept. of Chem. Eng., Professor, Shinji Hasebe

[Course Description] In the design and operation of chemical processes, various types of optimization problems arise. In this course, the formulation procedure of these problems and their solution methods are explained.
[Grading] The degree of understandings is evaluated by the homework (30%) and final examination (70%).
[Course Goals] The course goals are to obtain the ability of constructing the mathematical models, solving the optimization problems, and explaining the results of optimization.

Theme	Class number of times	Description
Formulations as the optimization problems	1	For optimization problems which arise in the design and operational problems, formulations as the optimization problems are introduced.
Unconstraint optimization	2	For unconstrained single and multivariable optimization problems, analytical and numerical optimization methods are explained. For the design problem of chemical plants, optimization procedure using numerical differentiation is also explained.
Linear programming	1	The applications of linear programming in the chemical engineering are explained.
Lagrangian multipliers	1	For the problems containing equality constraints, it is explained that the necessary conditions for an extremum can be obtained by Lagrangian multipliers.
Nonlinear programming with constraints	2	The concepts of quadratic programming and successive linear programming are explained, and their applications to chemical engineering problems are introduced.
Dynamic programming	1	The concept of dynamic programming is explained, and its applications to chemical engineering problems are introduced.
Mixed integer programming	2	For process synthesis and scheduling problems, the mathematical formulations as mixed integer (non) linear programming problems are explained, and their solution procedures are illustrated.
Meta-heuristics	1	The concepts of meta-heuristic methods such as simulated annealing and genetic algorithm are explained using the examples which appear in the chemical engineering problems.

[Course Topics]

【Textbook】 The supplemental prints are distributed in the class.

[Textbook(supplemental)] Optimization of Chemical Processes (McGraw-Hill)

最適化(岩波講座情報科学19,岩波書店)

これならわかる最適化数学(共立出版)

[Prerequisite(s)] The basic knowledge of unit operations, calculus and linear algebra is requested.

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] This course is not opened in the 2015 academic year.

10H053

Process Data Analysis

プロセスデータ解析学

[Code] 10H053 [Course Year] Master and Doctor Course [Term] 2017/ Fall term

[Class day & Period] Tue 2nd [Location] A2-305 [Credits] 1.5 [Restriction] No Restriction

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Dept. of Chem. Eng., Professor, Shinji Hasebe

[Course Description] Process data analysis methods for product quality prediction, fault detection and diagnosis, and product yield improvement is explained together with their industrial applications. The basics and methods covered in this lecture are: basics of probability and statistics, correlation analysis, regression analysis, multivariate analysis such as principal component analysis, discriminant analysis, and partial least squares. In addition, soft-sensor design and multivariate statistical process control are explained.

[Grading] The degree of understandings is evaluated by the homework (30 %) and final examination (70 %).

[Course Goals] To understand the basics of probability and statistics.

To understand multivariate analysis.

To be able to apply process data analysis to practical problems.

[Course Topics]

Theme	Class number of times	Description
what is process data	1	
analysis	1	
preparation for data	1	
analysis	1	
point estimation and	1	
interval estimation	1	
regression analysis	2	
	1	
multivariate analysis	1	
soft-sensor design	1	
multivariate		
statistical process	1	
control		
current topics	2	

[Textbook **]** Prints are distributed.

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Fine Particle Technology, Adv. 微粒子工学特論

[Code] 10H017 [Course Year] Master and Doctor Course [Term] Autumn [Class day & Period] Mon 2nd

[Location]A2-303 [Credits]1.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Dept. of Chem. Eng., Professor, Shuji Matsusaka

[Course Description] Analyses of particle behavior in gases, Particle handling operations, and measurement methods are lectured. Also, particle charging that affect particle behavior in gases are theoretically explained. Furthermore, the control of the particle charging and its applications are lectured.

[Grading] Examination

[Course Goals] Understand the analysis and modeling of dynamic behavior of particles. Furthermore develop the ability to apply the knowledge for particle handling and processing.

[Course Topics]

Theme	Class number of times	Description
Particle properties	2	Mathematical description of particle diameter distribution, properties of fine
and measurements	3	particles, and their measurement methods are explained.
Particle adhesion and		Measurement methods for adhesion forces of particles and dynamical analysis
	3	method for particle collision and elastic deformation are lectured. Furthermore,
dynamical analysis		distinct element method is explained.
		Temporal and spatial distribution of deposition and reentrainment of fine
Behavior of particles	3	particles in gas-solid flow are explained using physical models and probability
in airflow		theory. In addition, complicated reentrainment phenomena during particle
		collision are discussed.
		Concept of particle charging and quantitative analysis methods of charging
Particle charging and control	2	process are explained; also, charge distribution of particles is analyzed.
		Furthermore, new methods to control particle charge are introduced.

【Textbook】Lecture notes

[Textbook(supplemental)] K. Okuyama, H. Masuda and S. Morooka: Biryuushi Kougaku ? Fine particle technology, Ohmsha, Tokyo (1992)

[Prerequisite(s)] Basic knowledge on powder technology in bachelor course

【Independent Study Outside of Class】

[Web Sites]

10H020

Surface Control Engineering

界面制御工学

[Code] 10H020 [Course Year] Master and Doctor Course [Term] [Class day & Period] Wed 2nd

[Location] A2-305 [Credits] [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese

[Instructor] M.Miyahara,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	3	
	2	
	3	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Code] 10H021 [Course Year] Master and Doctor Course [Term] Spring [Class day & Period] Wed 4th [Location] A2-302 [Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Dept. of Chemical Engineering, Prof. M.Ohshima

,Dept of Chemical Engineering, Associate Prof. S.Nagamine,

[Course Description] Focusing on transport phenomena (flow & rheology, mass flux, heat flux) in polymer processing process, the key relationships among polymer properties, processing schemes, and processing machine are taught.

【Grading】 40% midterm quiz, 60% exam at end

[Course Goals] The objective of this course is to know how the polymers are different in terms of thermal, rheological and mechanical properties. The attendees learn what Tg, Tc, Tm, G' and G are, how those properties can be measured and how these obtained measurement data can be appreciated. Visual Observation movies relates those properties with the transport phenomena that occur in several polymer processing processes.

[Course Topics]

Theme	Class number of times	Description
Orientation &		The characteristics of polymers are reviewed by exercising the characterization of general
Introduction of Polymer	1	polymers, like PE, PP, PLA, PC, PS, PVC in terms of appearance, thermal and mechanical
Processing		properties.
State of Thermoplastic	1	The relationship among pressure-volume-temperature of thermoplastic polymer is described.
Polymer	1	The way of identifying the Tg, Tc is taught. Several equations of state are introduced.
		Several important thermal properties of thermoplastic polymers, such as glass transition
Thermal Properties of	2	temp, Tg, crystallization temp, Tc, and melting temp, Tm are explained together with the
Thermoplastic Polymers	2	measurement methods of those thermal properties. The latest measurement device, Flash
		DSC, is introduced with some of the interesting data of crystallization process.
		The basic of polymer rheology, viscosity and elasticity, is given. Several phenomena of
		non-Newtonian fluid are introduced. The fundamental constitutive equations, Maxwell and
Rheological Properties		Voigt models, describing the viscoelasticity of the polymers are explained. Exercising on
of Thermoplastic	2	identification of polymer structures, such as the degree of entanglement, molecular weight,
Polymers		presence of long-chain branch from the rheological data, relationship between polymer
		rheology and polymer structure is explained.
	1	The basics of Polymer Processing are the series of Melt, Flow and Shape. Here the class
Basic Flows in Polymer		focus on the Flow. The two types flow, i.e., drag and pressure flows are explained together
Processing		with master equation. Without solving the mathematical equations, the skill of estimating the
		velocity profile is cultivated.
Visual Observation of		Entertaining several visual observation movies showing the flow phenomena in real polymer
Flow Phenomena in	1	processing machine like injection molding machine and extruder, The effects of thermal and
Processing Machine		rheological properties of polymer on those flow phenomena are clarified.
Phase separation and	2	The basis of these concretion of the lymon technical actions action to the
Morphology Formation	2	The basic of phase separation of polymer-polymer, polymer-solvent are taught.
Phase Separation		Several polymer processing schemes exploiting a phase separation phenomenon are
Phenomena in Polymer	1	introduced. Synergistic design of the polymer properties, processing scheme and processing
Processing		machine is stressed.
Check what we learn	1	During the class, plenty of quiz are given to check the understanding.

【Textbook】Handout

[Textbook(supplemental)] Agassant, J.F., Polymer Processing: Principles and Modeling

[Prerequisite(s)] Basic of Transport Phenomena

[Independent Study Outside of Class]

[Web Sites]

10H023

Environmental System Engineerig 環境システム工学

[Code] 10H023 [Course Year] Master and Doctor Course [Term] [Class day & Period] Tue 2nd

[Location] A2-305 [Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Chemical Engineering, Professor, Kazuhiro Mae Chemical Engineering, Associate professor, Taisuke Maki

(Course Description **)** First, we overview the concept of environmentally benign chemical processing based on the causal relation between energy and environmental issues. Then, we discuss various new technologies for energy production and environmentally harmonized processes from the viewpoint of chemical engineering.

[Grading] Coursework will be graded based on the reports.

[Course Goals] To learn methodology for system-up of environmentally benign process based on energy and exergy. To consider perspective of biomass and hydrogen utilization. To understand several environmental evaluation methods.

[Course Topics]

Theme	Class number of times	Description	
Concept of			
environmentally	4	Design of eveness and coloulation of eveness for versions conversion measure	
benign system based	4	Basic of exergy and calculation of exergy for various conversion process	
on exergy			
Biomass conversion	3	Introduction of various conversion processes for baiomass and wastes from the	
	3	view point of kinetics	
Environmental		Introduction of various environmental evaluation methods Calculation of LCA	
evaluation method (1	2	analysis	
)		anarysis	
Environmental		Calculation of E factor and anvironmental afficiency for several chamical	
evaluation method (2	2	Calculation of E-factor and environmental efficiency for sevaral chemical	
)		processes	
Confirmation of	1	Feedback of evaluation results for reports and exercises.	
study achievement			

[Textbook] The textbook is not required. Materials will be supplied by instructors.

[Textbook(supplemental)] Pysical chemistry, Themodynamics

[Prerequisite(s)] Basic knowledge for chemical engieering themodynamics is required.

【Independent Study Outside of Class】

[Web Sites]

Special Topics in English for Chemical Engineering 化学技術英語特論

[Code]10H037 [Course Year]Master and Doctor Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] [Language] English [Instructor],

(Course Description **)** The class offers the presentation skill in English. After learning the way of preparing Table, Figure, and presentation slides for the international conference or conventions, each student is asked to make a presentation related to his/her research topics in class. Through the short presentation, he/she learns the way of entertaining the question that the audience might have.

[Grading] Class attendance and skill presentation skill obtained in class. The evaluation is made on the short presentation each student is asked to make.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	6	
	2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemical Engineering

10E038

Process Design

プロセス設計

[Code] 10E038 [Course Year] Master Course [Term] 1st term [Class day & Period] Fri 3rd

[Location] A2-304 [Credits] 2 [Restriction] Yes. See the additional information at the bottom of this page.

[Lecture Form(s)] Lecture and exercise [Language] Japanese

[Instructor] Dept. of Chem. Eng., Professor, hinji Hasebe

Part-time lecturer, Kazuyoshi Baba

All the faculty members of Dept. of Chem. Eng.

[Course Description] The fundamental skills of designing chemical processes which consist of various unit operations are learned. Then, a conceptual design exercise of a chemical process is executed using the knowledge of chemical engineering and process simulation system.

[Grading] The results are evaluated by the contents of the final report and the oral presentation.

[Course Goals] It is requested to understand the way of conceptual design, and to have the skill of designing chemical processes by applying the knowledge of chemical engineering and related field.

Theme	Class number of times	Description
Concept of process design	1	The assembly of the optimally designed unit operations does not result in the
		total optimum system. The concepts of the system boundary and the total
		optimal design are explained.
Computer-aided process design	1	In an actual process design, use of a process simulator is indispensable. The
		design technique using the sequential modular approach, which is mainly used
		in the process simulator, is explained.
How to use process	2	How to use the process simulator which is widely used in the real process
simulators		design is explained.
Reality of process design	6	Process design consists of successive steps such as the acquisition of market
		research and data, process synthesis, and an equipment design. For these steps,
		the problems which should be taken into consideration are made clear, and the
		techniques which can be used at each step are explained.
Practice of a		
chemical process	1	The design exercise is executed by 2 to 3 students' group.
design		
Oral presentation	4	The design result at each group is presented at the oral session where all the
Oral presentation		faculty members attend.

[Course Topics]

[Textbook] Lecture materials are distributed in the class.

【Textbook(supplemental)】

[Prerequisite(s)] The basic knowledge of chemical engineering such as the unit operation and reaction engineering are requested.

[Independent Study Outside of Class] The design exercise is executed by 2 to 3 students' group.

[Web Sites] http://www.cheme.kyoto-u.ac.jp/processdesign/

[Additional Information] Each group of students is supervised by the professors of the affiliation laboratory. The credit obtained in this course cannot be counted as the credit for graduation if the students have taken the same subject at the undergraduate course of chemical process engineering.

Special Topics in Chemical Engineering I 化学工学特論第一

[Code] 10H030 [Course Year] Master Course [Term] Spring [Class day & Period] Tue 5th

[Location]A2-307 [Credits]1.5 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Katsuaki Tanabe (Associate Professor, Department of Chemical Engineering)

[Course Description] Advanced Statistical Mechanics and Thermodynamics

[Grading] Evaluated based on attendance, quizzes, and exams

[Course Goals] Deepen your understanding for statistical mechanics and thermodynamics

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Revisits	1	
Thermal cycles	1	
Non-equilibrium	1	
thermal cycles	1	
Distribution	1	
functions 1	1	
Midterm exam	1	
Feedback	1	
Distribution	1	
functions 2	1	
Distribution	1	
functions 3	1	
Partition functions	1	
Information	1	
thermodynamics	1	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)] Fundamental thermodynamics and math

【Independent Study Outside of Class】

[Web Sites]

10H032

Special Topics in Chemical Engineering II 化学工学特論第二

[Code] 10H032 [Course Year] Master Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Noriaki Sano,

(Course Description **)** Technologies based on electrochemistry and electric discharges, which are used for chemical engineering applications (chemical reactions, separations, etc.) will be explained from fundamentals. First, fundamentals in electric phenomena for chemical engineering applications (Chemical equilibria, electron excitation, mass transfer, reaction rate, etc.) will be explained, and the students will improve their ability to develop the technologies using the relevant phenomena for broad range of technological field.

[Grading] class participation, report, exams

[Course Goals] The students will gain the ability to develop new applications of electrochemistry and high voltage technologies based on fundamental understanding.

[Course Topics]

Theme	Class number of times	Description
Ionization in gases and electrochemistry in solutions	2	The fundamentals of ionization in gases and solutions will be explained. The student will understand the features of ionization in gases and solutions. The knowledge gained here will be the fundamentals to understand the development of many applications of electrochemistry and gas discharges.
Electrochemistry for chemical analyses	3	Principles of analytical methods (measurement of PH, analysis of catalyst, etc.) will be explained. Based on the principles, the students will understand the important factors to use these methods.
Applications for batteries and fuel cells	3	Localized electric energy supplies (batteries, fuel cells, solar cells, capacitors, etc.) are driven by electrochemistry. The students understand their principles and features, and understand the problems to solve to improve their performance.
Chemistry by electric discharges and plasmas	2	Unique chemistries can be achieved by using electric discharges and plasmas for reactions in gases, surface treatment, and film synthesis. The students will understand the principles and features of these reactions, which can not be realized by other thermal reactions.
Assessment	1	Assessment

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites] Non

Special Topics in Chemical Engineering III 化学工学特論第三

[Code] 10H033 [Course Year] Master Course [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Department of Chemical Engineering, Junior Associate Professor, Satoshi Watanabe

[Course Description] In this course, students will learn fundamental phenomena observed in colloidal dispersions and related characterization techniques.

[Grading] Attendance, reports, and exams.

[Course Goals] To understand the basic phenomena in colloidal dispersions, including particle charging, interactions, and phase behaviors.

[Course Topics]

Theme	Class number of times	Description
Colloidal	4	The definition of colloidal dispersions and their wide applications will be
Dispersions	1	described.
Dortiala Charges and		In this theme, following topics will be explained: the formation of electric
Particle Charges and	5	double layer, the derivation of electric potential by solving the
Interpartticle	5	Poisson-Boltzmann equation, and the interaction between two charged
potentials in Liquids		surfaces.
Characterization of		In this theme, characterization techniques of colloidal particles will be
Colloidal	2	introduced, including dynamic light scattering, the measurements of
Dispersions		electrophoretic mobility and surface forces.
		Colloidal suspensions show an order-disorder transition, which is analogous to
Equilibrium Phase	2	the solid-liquid transition of molecular systems. This theme will deal with
Behavior	3	colloidal crystals formed through the order-disorder phase transition, and the
		formation process and their optical properties will be discussed.

[Textbook] Reference materials will be distributed during the lectures if needed.

[Textbook(supplemental)] 1) Colloidal Dispersions, W.B. Russel, D.A. Saville, and W.R. Schowalter, Cambridge University Press

2) Theory of The Stability of Lyophobic Colloids, E.J. W. Verwey and J.Th.G. Overbeek, Dover Publications

[Prerequisite(s)] Maths, Thermodynamics

【Independent Study Outside of Class】

[Web Sites]

10H035

Special Topics in Chemical Engineering IV 化学工学特論第四

[Code] 10H035 [Course Year] Master Course [Term] [Class day & Period] Tue 3rd [Location] A2-305

[Credits] [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Research Internship in Chemical Engineering

研究インターンシップ(化工)

[Code] 10H040 [Course Year] Master and Doctor Course [Term] 1st+2nd term [Class day & Period]

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] Exercise [Language] English [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	27	
	2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P043

Chemical Engineering Seminar

化学工学セミナー1

[Code] 10P043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemical Engineering Seminar

化学工学セミナー 2

[Code]10P044 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10P045

Chemical Engineering Seminar

化学工学セミナー3

[Code] 10P045 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Chemical Engineering Seminar

化学工学セミナー 4

[Code]10P046 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period] [Location]

[Credits] [Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10E045

Reseach in Chemical Engineering

化学工学特別実験及演習

[Code] 10E045 [Course Year] Master 1st [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	5	
	5	
	10	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

化学工学特別実験及演習

[Code] 10E047 [Course Year] Master 1st [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
	6	
	10	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10E049

Reseach in Chemical Engineering

化学工学特別実験及演習

[Code] 10E049 [Course Year] Master 2nd [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	6	
	12	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

化学工学特別実験及演習

[Code] 10E051 [Course Year] Master 2nd [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] [Lecture Form(s)] Seminar and Exercise [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	4	
	12	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10K001

Introduction to Advanced Material Science and Technology (English

lecture)

先端マテリアルサイエンス通論(英語科目)

[Code] 10K001 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Fri 5th [Location] A2-306 [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction

[Lecture Form(s)] Relay Lecture [Language] English

[Instructor] GL Edu. Center, J. Assoc. Prof., Ryuichi Ashida

Related professors

[Course Description] The various technologies used in the field of material science serve as bases for so-called high technologies, and, in turn, the high technologies develop material science. These relate to each other very closely and contribute to the development of modern industries. In this class, recent progresses in material science are briefly introduced, along with selected current topics on new biomaterials, nuclear engineering materials, new metal materials and natural raw materials. The methods of material analysis and future developments in material science are also discussed.

[Grading] Requirements and a number of credits are different with the academic system students choose, the modified academic quarter system or the academic semester system. Students who choose the academic semester system must meet the requirements for the first 11 lectures and the latter 4 lectures separately.

When the students who choose the modified quarter system are graded, the average score of the best four reports is employed. When the students who choose the academic semester system are graded, the average score of the best five reports is employed.

Please go to KULASIS Web site for more information.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Materials Processing Using External Fields for Microstructure Control	1	Properties of materials are not simply determined by crystal structure and chemical composition. Microstructure (i.e. crystal grain size, crystallographic orientation) can significantly influence the properties. Materials processing for the microstructure control, using external fields will be demonstrated in this class. (H. Yasuda: Dept. of Materials Science and Engineering)
Modern Organic Synthesis for Material Science	1	The lecture will deliver recent developments in organic synthesis, particularly focusing on catalytic reactions that have revolutionized chemical processes, and their applications in the production of some important pharmaceuticals and organic materials. (Y. Nakao: Dept. of Material Chemistry)
Synthesis and Functions of Mixed Anion Compounds	1	As we entered the 21st century, mixed anion compounds, which contain several different anions, began to draw attention as new types of inorganic material. My lecture will show synthetic and functional aspects in this class of materials. (H. Kageyama: Dept. of Energy and Hydrocarbon Chemistry)
Rheology Control by Associating Polymers	1	Hydrophobically modified water-soluble polymers (associating polymers) have been used as rheology modifiers or thickeners because rheological properties of solutions and dispersions are drastically changed by the addition of small amounts of associating polymers. In this lecture, recent development on the molecular origin of the structure formation and rheological properties of associating polymers will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Directed Self-Assembly (DSA) of Block Copolymers	1	Recently, Directed Self-Assembly (DSA) technology of block copolymers has received a lot of attention in the field of semiconductor research. In this lecture, the fundamentals of microphase separation of block copolymers and the application of DSA to lithographic technologies will be reviewed. (T. Koga: Dept. of Polymer Chemistry)
Photonic Crystal Technology	1	Photonic crystals are materials with periodic modulation of refractive index, in which a frequency range that existence of photon is prohibited (i.e. photonic band gap) can be formed. In this class, basics and applications of photnic crystals are introduced. (T. Asano: Dept. of Electronic Science and Engineering)
Introduction to Nuclear Materials	1	Nuclear materials are designed for irradiation field of neutron and high-energy particles. Some topics of nuclear transmutation, thermonuclear fusion, boron neutron capture therapy and others will be talked. (I. Takagi: Dept. of Nuclear Engineering)
Application of Polymer Nanoparticles to Bio-Imaging	1	Polymers are widely used in various delivery/localization events as drug carriers, stabilizers of clinical protein and nucleic acid medications, and lesion targeters. An obvious merit of polymers with an appropriate (>10 nm) size is that they escape from facile renal excretion. The size has another significance in case of tumor targeting. Tumor tissues usually have defective endothelial cells with a wide opening and undeveloped lymphatic vessel, so that polymer nanoparticles of the size range of 10 - 100 nm can permeate into the tumor and are retained therein. This is the so-called enhanced permeability and retention (EPR) effect, which shows high performance in terms of selectivity and efficiency in bio-imaging. (T. Kondo: Dept. of Energy and Hydrocarbon Chemistry)
Radiation Induced Reactions towards 1 -Dimensional Nanomaterials	1	Whether can we produce nano-material by the reactions induced by a "ray" (ionizing radiation)? The answer is yes. With an use of an atomic particle accelerated up to MeV orders, the one particle provides a nanowire along its trajectory via condensed and efficient chemical reactions in organic media. Single particle Nanofabrication Technique (SPNT) or Single Particle Triggered Linear Polymerization (STLiP), referred as, are demonstrated as versatile methods to give low dimensional nanomaterials based on a variety of organic molecular systems in this lecture. (S. Seki: Dept. of Molecular Engineering)
Physical Organic Chemistry of Supramolecular Photofunctional Organic Materials	1	This lecture explains interesting behaviors of photofunctional organic materials, such as photochromic compounds and fluorescence dyes, in the aggregated and self-organized state from the viewpoint of physical organic chemistry. (K. Matsuda: Dept. of Synthetic Chemistry and Biological Chemistry)
Hyperthermophiles and their Thermostable Biomolecules	1	This lecture will first introduce the diversity and classification of life. It will then focus on hyperthermophiles and their thermostable molecules, such as proteins, nucleic acids and lipids. (H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
Designing Polymer Membrane Materials to Capture Green House Gases	1	We will discuss the overall obstacles involved in capturing green house gases such as CO2 or Methane, and the specific challenges to generating polymer membranes that can achieve it. Then we will consider how to design polymer materials that can overcome such obstacles. (E. Sivaniahi: Dept. of Molecular Engineering)
Oxide Magnetic Materials	1	The aim of the lecture is to review the fundamentals and applications of oxide magnetic materials. Main topics include fundamentals of magnetism, magnetic properties of oxides, magneto-optics of oxides, oxides for spintronics, and multiferroic oxides. (K. Tanaka: Dept. of Material Chemistry)
Force Acting on Colloidal Particles	1	Colloid means small particles dispersed in a liquid solvent. Theoretical approaches on several forces acting on colloidal particles such as thermal, hydrodynamic, and electrostatic forces will be discussed. (R. Yamamoto: Dept. of Chemical Engineering)
Electrodeposition and Electroless Deposition for Materials Processing	1	(1) Fundamentals chemistry, electrochemistry, and thermodynamics , and (2) applications of electrodeposition and electroless deposition for materials processing. (K. Murase: Dept. of Materials Science and Engineering)

[Textbook] None

[Textbook(supplemental)]

[Prerequisite(s)]

. .

[Independent Study Outside of Class]

[Web Sites]

[Additional Information] Check the notice on the bulletin board.

Students who take Spring term (Lecture code 10H012) should attend first 11 lectures.

Advanced Modern Science and Technology (English lecture) 現代科学技術特論(英語科目)

[Code]10K005 [Course Year]Master and Doctor Course [Term]2nd term [Class day & Period]Thu 5th [Location]A2-306 [Credits]2(Semester system) [Restriction]No Restriction [Lecture Form(s)] Relay Lecture [Language] English

[Course Description] Engineering/Engineers have been expected to fulfill key roles among social issues and others, such as energy, environment and resource. This class introduces cutting edge science and technologies from their backgrounds, research and development, to problems for the practical applications. In addition to the understanding of each technology, the attendances learn the importance for engineers to have multidisciplinary mind and understand the significance of engineering to realize sustainable development. Group discussions will be done for further understanding of the topics of the course.

[Grading] Students who choose the academic semester system must meet the requirements for the first 11 lecturers and the latter 4 lecturers separately.

When evaluating your grade, I employ the average score of best four reports for students who chose the modified quarter system, and best five reports for students who chose academic semester system.

Please go to KULASIS Web site. You can find an attachment file, "通知版: 2016 現代科学技術特論講義概要", where the term Credit will tell you the requirement. 【Course Goals】

[Course Topics]

Theme	Class number of	Description
	times	Dedicates before a financial construction of an analysis of a large construction of the Death and there been shown at dis d
Exploration of Radiation Belts by		Radiation belts of energetic particles are formed around magnetized planets such as the Earth, and they have been studied extensively by spacecraft missions and computer simulations for better understanding and utilization of the space plasma
Space Radio Engineering	1	environment. We review historical development of space radio engineering and current understanding of radiation belt
1 0 0		dynamics.(Y. Omura: Dept. of Electrical Engineering)
Functional Organic Molecular		This lecture explains functional organic molecular materials with functions like photochromism or molecular conductance, which
Materials for Molecular Scale	1	are expected to play an active role in molecular scale nanoscience.(K. Matsuda: Dept. of Synthetic Chemistry and Biological
Nanoscience		Chemistry)
Micro- and Nano-scale Separations	1	Micro- and nano-scale high performance separation techniques, including capillary electrophoresis and microchip electrophoresis,
in Analytical Chemistry	1	will be discussed in terms of both fundamental characteristics and applications.(K. Otsuka: Dept. of Material Chemistry)
Role of Nanoparticles Aiming at		Malignancy takes the first position for the cause of mortality in Japan. Realization of a "society of health and longevity "
Theranostic Agents for Solid	1	therefore requires a general method for diagnosis and therapy for cancers in the early stage. Nanoparticles are currently highly
Cancers - Sustainable Universe	1	expected to this type of medicinal treatment, because nanoparticles can avoid expensive therapy, which would bankrupt our
Health Care in the Aged Society		universal health care system.(S. Kimura: Dept. of Material Chemistry)
What are polymers?	1	What is a polymer? Also, what is the difference between polymers and other molecules? The characteristics of polymers and
F,		polymerizations are explained with some examples on practical applications of polymers.(M. Ouchi: Dept. of Polymer Chemistry)
Precision Polymerization and		The methodology to synthesize polymers precisely and their features are described. In addition, some examples on functional
Functional Materials by	1	materials using polymers whose molecular design is important are introduced.(M. Ouchi: Dept. of Polymer Chemistry)
Macromolecular Design		
Analysis and Design of	1	When introducing various kinds of automation systems including robots into a new work environment, it is necessary to design and
Socio-Technical Systems		analyze from the viewpoint of socio-technical systems, which is the interaction system of people, technology and organization. In
		this lecture, specific problems and solutions are described.(T. Sawaragi: Dept. of Mechanical Engineering and Science)
Computational Chemistry and		Remarkable progress in the computer science has been revolutionizing scientific research and technological development for this
computer science	1	decade. This trend will further accelerate in the future. This lecture reviews the impact of state of the art computer science on the
		molecular chemistry as an example.(R. Fukuda: Dept. of Molecular Engineering)
Photofunctional Single-Walled Carbon Nanotubes	1	Basic chemical properties of single-walled carbon nanotubes are introduced, and then applications of them as photofunctional
		molecular platform and charge transport pathway are presented. (T. Umeyama: Dept. of Molecular Engineering)
Renewable energies and	1	For the effective use of renewable energies, rechargeable batteries have been focused. Basic chemistry of batteries and how the rechargeable batteries are utilized for the storage of the energies will be given by the first lecture. (T. Abe: Energy and Hydrocarbon
rechargeable batteries	1	Chemistry)
Renewable energies and hydrogen		Fuel cells using hydrogen are clean energy sources. The second lecture is about the hydrogen production based on the renewable
production	1	energies.(T. Abe: Energy and Hydrocarbon Chemistry)
		Owing to the revolutionary advances in DNA sequencing technology, the complete genome sequences of a large number of
Genome sequences, what do they	1	organisms are now available. Here we will discuss what these genome sequences tell us and how we can use them to further
say and how can we use them?		increase our understanding of life.(H. Atomi: Dept. of Synthetic Chemistry and Biological Chemistry)
		Time or frequency is the most precisely measurable quantity. Clocks referenced to atomic resonances, called atomic clocks, have
Optical clocks -measurement of		extremely small uncertainies. They realize the definition of second and are applied to the global positioning system (GPS). This
time at the 18th decimal place	1	lecture introduces atomic clocks based on lasers, which improve the uncertainty to be the 18th decimal place.(K. Sugiyama: Dept.
		of Electronic Science and Engineering)
Mechanism of particle	1	The basic concepts and theories of charge transfer between solid surfaces are summarized and particle electrification caused by
electrification	1	repeated impacts on a wall is formulated.(S. Matsusaka: Dept. of Chemical Engineering)
Control of electrostatic charge on	1	On the basis of the concepts and formulation on particle electrification, new methods for the control of electrostatic charge on
particles	1	particles are presented.(S. Matsusaka: Dept. of Chemical Engineering)

【Textbook】None

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] Students who take Autumn term should register Lecture code 10H006.

10D043

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D043 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period]

[Location] A2-307 [Credits] 1 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Instrumental Analysis, Adv.

先端科学機器分析及び実習

[Code] 10D046 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period]

 $\label{eq:location} \end{tabular} A2-307 \end{tabular} \$

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	2	
	2	
	2	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10D051

Frontiers in Modern Science & Technology

現代科学技術の巨人セミナー「知のひらめき」

[Code] 10D051 [Course Year] Master and Doctor Course [Term] First term/Spring term [Class day & Period] Wed 5th [Location] Funai Hall [Credits] First term: 2, Spring term: 1.5 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] GL center: J.Assoc. Tanaka, Mizuno, Takatori, Matsumoto, Ashida and Related professors

[Course Description] This course provides lectures and panel discussions by lecturers inside and outside the campus who have a remarkable achievement in engineering and are active as international leaders.

[Grading] Refer material about grading this course which is provided in 1st and 2nd lectures.

[Course Goals] This course cultivates the ability to develop familiar problem consciousness into a big concept through utilizing the materials of advanced fields in each field. This course also shows how leaders have improved their response to problems. Through this course, students learn fundamental culture, and the importance of human growth.

[Course Topics]

(SUPG) system on the ocean	times 1		
updraft power generation (SUPG) system on the ocean	1		
(SUPG) system on the ocean		Prof. Kunimasa Sugiura (Civil and Earth Resources Engineering) Apr. 12	
Record and protection of			
L			
world cultural heritage by	1	Prof. Ari Ide (Mechanical Engineering and Science) Apr. 19	
advanced image processing			
Mysterious characteristics of			
smell: from development of	1	Dr. Jun-ichi Kita (Shimadzu Corporation) Apr. 26	
smell identification device			
Science and engineering of			
metals and potential of	1	Prof. Nobuhiro Tsuji (Materials Science and Engineering) May 10	
metals			
My days with radiation ray	1	Dr. Katsumi Hayashi (Hitachi, Corporation) May 17	
Material synthesis			
considering feeling of	1	Prof. Yasujiro Murata (Energy and Hydrocarbon Chemistry) May 24	
molecules			
Practical Marketing not on			
books	1	Dr. Fuminori Takaoka (Edge, Ltd.) May 31	
Direct visualization of		Prof. Hirofumi Yamada (Electronic Science and Engineering) Jun. 7	
atoms and molecules	1		
Encouragement for serial	1	Prof. Mitsuaki Oshima (Panasonic Corporation) Jun. 14	
innovator	1		
Idle time and idle space	1	Prof. Kiyoshi Takeyama (Architecture and Architectural Engineering) Jun. 21	
Research of cancer therapy	1	Dr. Kaii Nada (National Institutes for Quantum and Dadialasiaal Saianas and Tashnalasu) Jun. 20	
by heavy ion beams	1	Dr. Koji Noda (National Institutes for Quantum and Radiological Science and Technology) Jun. 28	
Seven Wonders of powders	1	Prof. Shuji Matsusaka (Chemical Engineering) Jul. 5	
Strong company			
organizations in Japan, USA	1	Dr. Masahiko Mori (DMG MORI Co.,Ltd.) Jul. 12	
and Germany			
Development of			
construction techniques:			
from development of	1	Dr. Ichiro Nagashima (Taisei Corporation) Jul. 19	
advanced technique to big			
projects			
Manufacturing by advanced optical machining	1	Prof. Kiyotaka Miura (Material Chemistry) Jul. 26	

[Prerequisite(s)]

[Independent Study Outside of Class] [Web Sites] [Additional Information]

Project Management in Engineering

エンジニアリングプロジェクトマネジメント

[Code] 10i049 [Course Year] Master and Doctor Course [Term] 1st term [Class day & Period] Fri 4th [Location] A2-308 [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

[Instructor] GL center: J.Assoc.Prof. Takatori, Mizuno, Tanaka, Matumoto, Ashida

Assoc.Prof. Lintuluoto

[Course Description] This course provides a basic knowledge required for the project management in various engineering fields such as process design, plant design, construction, and R&D projects. Also, visiting lecturers from industry and public works provide management insights of actual engineering projects. [Grading] Evaluated by assignments (project report exercise) and class contribution

[Course Goals] This course will help students gain a fundamental knowledge of what project management in engineering is. Throughout the course, students will learn various tools applied in project management. Students will also understand the importance of costs and money, risks, leadership, and environmental assessment in managing engineering projects. This course is followed with the course "Seminar on Project Management in Engineering." in the second semester. [Course Topics]

Theme	Class number of	Description
	times	4/14/A-L:J-V
Guidance	1	4/14 (Ashida) Course guidance
Guidance	1	
Introduction to project		4/21 (Takatori)
management & Project phases	1	Introduction to project management
		Project phases
		4/28 (Lintuluoto)
Tools for project management,	1	Tools
cost, and cash flows I	1	Work breakdown structure
		Gantt charts
Project scheduling I	1	5/12 (Ashida)
	1	Project scheduling I
Project scheduling II	1	5/19 (Ashida)
	1	Project scheduling II
Tools for project management,	1	5/26 (Lintuluoto)
cost, and cash flows II	1	Cost
Tools for project management,	1	6/2 (Lintuluoto)
cost, and cash flows III	1	Cash flow
TBA	1	6/9
	I	To be announced
Leadership I	1	6/16 (Tanaka)
		Leadership I
Leadership II	1	6/23 (Tanaka)
		Leadership II
Risk I	1	6/30 (Matsumoto)
	1	Risk I
Risk II	1	7/7 (Matsumoto)
	1	Risk II
Environmental Impact	1	7/14 (Mizuno)
Assessment I	1	Environmental Impact Assessment I
Environmental Impact	1	7/21 (Mizuno)
Assessment II	1	Environmental Impact Assessment II
Special lecture		
Project management ~Tender	1	7/28 @ A2-306 (Cluster A, Katsura Campus)
process of Panama Canal	1	Lecturer: Taizo SHIMOMURA, Dr. (TAISEI CORPORATION)
expansion project~		

【Textbook】 Course materials will be provided.

[Textbook(supplemental)] 1. Lock, Dennis. Project Management. 10th edition. Gower Publishing Ltd.

2 . Cleland, David L., and Lewis R. Ireland. Project Management. 5th edition. McGraw-Hill Professional

3. Roger Miller and Donald R. Lessard. The strategic management of large engineering projects, Shaping Institutions, Risks, and Governance, The MIT Press

[Prerequisite(s)] No pre-requisite

【Independent Study Outside of Class】

 $\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\right]}\xspace{\,\operatorname{The}}\xspace{\,\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Web}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Cuc}}\xspace{\,\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\left[\ensuremath{\operatorname{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{\{Sites}}\ensuremath{$

10i050

Exercise on Project Management in Engineering

エンジニアリングプロジェクトマネジメント演習

[Code] 10i050 [Course Year] Master and Doctor Course [Term] 2nd term [Class day & Period] Fri 5th

[Location] B-Cluster 2F Seminar Room [Credits] 1 [Restriction] Student number will be limited.

[Lecture Form(s)] Seminar [Language] English

[Instructor] GL center: J.Assoc.Prof. Mizuno, Tanaka, Matumoto, Ashida, Maeda Assoc.Prof. Lintuluoto

(Course Description **)** In this course, students will apply the engineering know-how and the skills of management, and group leadership which they learned in the course of Project Management in Engineering to build and carry out a virtual inter-engineering project. This course provides a forum where students ' team-plan based on ideas and theories, decision making, and leadership should produce realistic engineering project outcomes. The course consists of intensive group work, presentations, and a few intermediate discussions. A written report will be required.

[Grading] Report, class activity, presentation

[Course Goals] This course prepares engineering students to work with other engineers within a large international engineering project. In particular this course will focus on leadership and management of projects along with applied engineering skills where the students learn various compromises, co-operation, responsibility, and ethics.

Theme	Class number of times	Description
		10/6
California	1	Introduction to Exercise on Project Management in Engineering
Guidance		Lecture on tools for the Project management in engineering
		Practice
Teamwork	7	Each project team may freely schedule the group works within given time
		frame. The course instructors are available if any need is required.
	z 2	Some lectures will be provided, such as Leadership structuring, Risk
Lecture & Teamwork		Management, and Environmental Impact Assessment, depending on projects
		you propose.
Presentation	1	Each project team will have a presentation based on its proposed project.

[Course Topics]

[Textbook] Course materials will be provided.

【Textbook(supplemental)】 Will be informed if necessary.

[Prerequisite(s)] Fundamental skills about group leading and communication, scientific presentation.

【Independent Study Outside of Class】

[Web Sites] The web-site will be opened in the home page of the GL education center.

[Additional Information] The number of students may be restricted. Students are requested to check in advance whether the credit from this course will be accepted as a graduation requirement for their department.

Special Seminar of Chemical Engineering 1

化学工学特別セミナー 1

[Code] 10T004 [Course Year] Doctor 1st [Term] 1st term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	2	
	2	
	1	
	2	
	1	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Special Seminar in Chemical Engineering 2

化学工学特別セミナー 2

[Code] 10T005 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] Wed 3rd

[Location]A2-303 [Credits]2 [Restriction]No Restriction [Lecture Form(s)]Lecture [Language]Japanese

[Instructor] Matsusaka

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Class number of times	Description	
2		
5		
4		
2		
3		
3		
2		
2		
-	times 3 4 3 3	Description 3 4 3 3 3

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

Special Seminar of Chemical Engineering 3

化学工学特別セミナー 3

[Code] 10T006 [Course Year] Doctor 1st [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	2	
	2	
	2	
	2	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10T007

Special Seminar in Chemical Engineering 4

化学工学特別セミナー 4

[Code] 10T007 [Course Year] Doctor Course [Term] 2nd term [Class day & Period] [Location]

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Chemical Engineering, Professor, Kazuhiro Mae Chemical Engineering, Associate professor, Taisuke Maki

[Course Description]

[Grading] Coursework will be graded based on the reports.

[Course Goals] To Understand the dealing concept of solid phase reaction. To learn representative solid reaction models and the application methodology to industrial process using several process models.

[Course Topics]

Theme	Class number of times	Description	
Concept of solid	1	Introduction of solid phase reaction models based on the number of active	
reaction model	1	sites.	
Gas-solid reaction		Introduction of representative gas-solid reactions such as shrinking core	
	3	model, random pore mod, elgrain model etc. The construction methodology of	
model		the model is learned.	
Solid reaction model	3	The pyrolysis rate model of organic solid material based on DAEM. The data	
(Pyrolysis)	3	analysis of coal pyrolysis was exercised.	
		Introduction of the basic of lattice model. The model to describe cross-linking	
Percolation model	3	during the pyrolysis of organic solid such as polymer is considered to	
		understand the percolation model.	
Deceter of collid		Introduction of fixed bed, moving bed, and fluidized bed reactors for solid	
Reactor of solid reation	4	reactions. Each reactor model is explained to construct the design equation of	
		the reactor size.	
Confirmation of	1		
study achievement	1	Feedback of evaluation results for reports and exercises.	

[Textbook] The textbook is not required. Materials will be supplied by instructors.

[Textbook(supplemental)]

[Prerequisite(s)] Required master degree knowledge on chemical engineering

[Independent Study Outside of Class]

[Web Sites]

Special Seminar in Chemical Engineering 5

化学工学特別セミナー 5

[Code] 10T008 [Course Year] Doctor Course [Term] 1st term

[Class day & Period] a series of lectures-chemical engineering [Location] [Credits] 2 [Restriction]

[Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Dept. of Chemical Engineering, Profs. M. Miyahara, M. Ohshima, H. Tamon, and K. Mae

[Course Description] The state of the arts in chemical engineering is given in a series of lectures of professors who are experts in a specific field.

[Grading] Presence to the lecture and Report submission

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4	
Polymer Processing		Introducing the processing schemes of polymeric porous materials, the
-How to make a fine	4	importance of the literacy of chemical engineering for the polymer processing
cellular foam		is discussed.
	4	
	3	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

10T009

Special Seminar in Chemical Engineering 6

化学工学特別セミナー6

[Code] 10T009 [Course Year] Doctor Course [Term] 1st term [Class day & Period] Intensive lecture

[Location] [Credits] 2 [Restriction] [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Department of Chemical Engineering, Professors R. Yamamoto, M. Kawase, S. Hasebeand S. Matsusaka

[Course Description] Through the lectures on the advances and latest problems in the chemical engineering, future directions of technology are discussed.

[Grading] The contribution to the discussion and the contents of the homework of each subject are used for evaluation.

[Course Goals] Deep understanding of the fundamental and/or latest contents of a field of chemical engineering.

[Course Topics]

Theme	Class number of times	Description
	4	
Chemical reaction engineering for material synthesis processes	4	Of material synthesis processes, theory of chemical reaction engineering modeling and kinetic analysis of chemical vapor deposition (CVD) processes are explained.
Transport phenimena in complex fluids and soft materials	4	Students will learn basic theories for the dynamics of particulate fluids and techniques for performing numerical simulations.
Process symthesis	3	Using separation processes as examples, the modeling and solution methods of synthesis problem are lectured.

【Textbook】 Printed materials of related contents are offered.

【Textbook(supplemental)】

[Prerequisite(s)] Required master degree knowledge on chemical engineering

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This class is opened in 2019 and every other year.

Special Seminar in Chemical Engineering 7

化学工学特別セミナー 7

[Code] 10T010 [Course Year] Doctor Course [Term] 2nd term

[Class day & Period] Intensive (10:00--17:00 on Saturdays 20th, 27th Jan., 3rd Feb.) [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Intensive Lecture [Language] Japanese

[Instructor] Professor Motoaki Kawase and Junior Associate Professor Ryuichi Ashida

[Course Description] Some topics in the state-of-the-art studies related to chemical engineering are lectured. In the first half, extension of chemical engineering to electrochemical reaction processes is explained with taking a polymer electrolyte fuel cell as an example. In the latter half, application of chemical engineering to reactions of complex heavy carbonaceous resources is presented and kinetic modeling of reactions of solids and heavy liquids for predicting the rate and quality of the products is explained.

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Chemical reaction engineering of fuel cells	5	Extension of chemical engineering to electrochemical reaction processes is explained with taking a polymer electrolyte fuel cell as an example.
Case studies of polymer electrolyte fuel cell	4	Based on the proposed theory, some case studies are discussed in which the effects of convective flow as well as the effects of catalyst layer structure including the catalyst layer thickness, pore structure parameters, and catalyst activity on the cell performance are estimated.
Chemical reaction engineering of conversion of heavy carbonaceous resources	6	Approach to conversion processes of heavy carbonaceous resources including low-rank coal and biomass from the view point of chemical reaction engineering is explained.

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

【Independent Study Outside of Class】

[Web Sites]

[Additional Information] This is an biennial course which will be open in 2017, 2019, ...

10T010

工学研究科シラバス 2017 年度版 ([C] Advanced Engineering Course Program) Copyright ©2017 京都大学工学研究科 2017 年 4 月 1 日発行(非売品)

編集者 京都大学工学部教務課 発行所 京都大学工学研究科 〒 615-8530 京都市西京区京都大学桂

デザイン 工学研究科附属情報センター

工学研究科シラバス 2017 年度版

- \cdot [A] Common Subjects of Graduate School of Engineering
- [B] Master's Program
- [C] Advanced Engineering Course Program
- [D] Interdisciplinary Engineering Course Program
- ・オンライン版 http://www.t.kyoto-u.ac.jp/syllabus-gs/
 本文中の下線はリンクを示しています.リンク先はオンライン版を参照してください.
- オンライン版の教科書・参考書欄には 京都大学蔵書検索 (KULINE) へのリンクが含まれています.

京都大学工学研究科 2017.4