[E] Informatics and Mathematical Science

Kyoto University, Faculty of Engineering

[E] Informatics and Mathematical Science

Informatics and Mathematical Science	
91130 Introduction to Computer Science	1
91140 Introduction to Applied Mathematics and Physics	2
91150 Introduction to Algorithms and Data Structures	3
90690 Linear Programming	4
91240 Introduction to Programming	5
20500 Applied Mathematics A1	6
90680 Dynamics of Particles and Vibration	7
91250 Applied Mathematics and Physics Laboratory	8
90900 Exercise on Applied Mathematics and Physics	Ģ
90910 Exercise on Programming	10
90210 Hardware and Software Laboratory Project 1	11
90220 Hardware and Software Laboratory Project 2	12
90070 Introduction to Systems Analysis	13
90700 Logical Systems	14
91050 Introduction to Dynamical Systems	15
90710 Analytical Dynamics	16
90970 Logic Circuits	17
91040 Languages and Automata	18
90160 Computer Architecture 1	19
90170 Programming Languages	20
91020 Compilers	21
90230 Information Theory	22
91090 Computer Networks	23
90300 Graph Theory	24
90301 Graph Theory	25
90250 Numerical Analysis	26
20600 Applied Mathematics A2	27
20700 Applied Mathematics A3	28
90800 Mathematics of Dynamical Systems	29
90720 Linear Control Theory	30
90280 Probability and Statistics	31
90960 Stochastic Discrete Event Systems	32
90310 Applied Algebra	33
91160 Artificial Intelligence	34
91170 Human Interface	35
90920 Exercise on Numerical Analysis	36
90740 Seminar on Applied Mathematics and Physics	37
90930 System Analysis Laboratory	38

39

90840 Hardware and Software Laboratory Project 3

90390 Hardware and Software Laboratory Project 4	40
90940 Statistical Physics	41
90830 Mechanics of Continuous Media	42
90580 Modern Control Theory	43
90790 Optimization	44
91230 Nonliner Dynamics	45
90590 Theory of Information Systems	46
90490 Computer Architecture2	47
91030 Operating System	48
91220 Pattern Recognition	49
90980 Databases	50
91100 Introduction to Integrated System Engineering	51
90540 Reading and Writing Scientific English	52
91110 Information Systems	53
90551 Theory of Algorithms	54
90660 Image Processing	55
90990 Software Engineering	56
91120 Multimedia	57
90860 Computation and Logic	58
91190 Bioinformatics	59
91200 Mathematics of Information and Communication	60
90810 Signals and Systems	61
91180 Analysis in Mathematical Sciences	62
91210 Business Mathematics	63
91080 Information and Business	64
21050 Engineering Ethics	65
21080 Introduction to Engineering	66
22110 Engineering and Ecology(in English)	67
22210 Engineering and Economy(in English)	68
24010 Global Leadership Seminar I	69
25010 Global Leadership Seminar II	70
24020 International Internship of Faculty of Engineering I	71
25020 International Internship of Faculty of Engineering 2	72
53000 Introduction to Electronics	73
50182 Quantum Physics 1	74
50192 Quantum Physics 2	75
60100 Electronic Circuits	76
60320 Modulation Theory in Electrical Communication	77

Introduction to Computer Science

計算機科学概論

[Code] 91130 [Course Year] 1st year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】Introduction to Computer Science.

【Grading】

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
Fundamentals of		
computer science	1	
(Iwama)		
Computer		
organaization	3-4	
(Takagi)		
Applications of		
computer science	6-7	
(Yamamoto)		
	3-4	
review	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Introduction to Applied Mathematics and Physics

数理工学概論

[Code] 91140 [Course Year] 1st year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] Basic ideas in applied mathematics and physics are introduced via topics on communications and reasoning, operation researches, and quantum information science.

【Grading】 Evaluated by writing homework.

[Course Goals] Understanding basic ideas in applied mathematics and physics.

[Course Topics]

Theme	Class number of times	Description
	4	
	4	
	4	
reserved	3	

【Textbook】None

【Textbook(supplemental)】None

[Prerequisite(s)] None

[Web Sites]

Introduction to Algorithms and Data Structures

アルゴリズムとデータ構造入門

[Code] 91150 [Course Year] 1st year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description] Algorithms and data structures are two fundamental components of computer programs. This course gives their basic concepts, design principles, techniques, and other important concepts in computer science.

【Grading】Examination 70%

Assingments 30%

[Course Goals] The goals of the course is to understand: - mathematical models of computers and concepts of computational complexity, - basic algorithms and data structures, - design principles of algorithms, such as divide-and-conquer method and dynamic programming, and - basic ideas of graph algorithms, randomized algorithms, and approximation algorithms.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Overview
algorithms	2.5	sorting, search,
data structures	2.5	list, stack, queue, binary search, heap, hash,
algorithm design	2	divide-and conquer, dynamic programming,
1 1 21	2	- Trees and graphs - depth-/breadth-first search - shortest path algorithms -
graph algorithms	2	maximum-flow algorithms
computational	2	D ND NDl-t- ND ll
complexity	2	P, NP, NP-complete, NP-hard,
advanced topics	2	randomized and approximation algorithms
final exam	1	

【Textbook】 will be specified in the lectures

【Textbook(supplemental)】 will be specified in the lectures

[Prerequisite(s)]

[Web Sites]

Linear Programming

線形計画

[Code] 90690 [Course Year] 1st year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] Lectures on modeling and algorithms of mathematical optimization, with main focus on linear programming, which is the most fundamental subject in system optimization.

【Grading】 Based on the score of the term examination.

[Course Goals] To learn the basic ideas of formulating optimization models, and to understand theoretical properties and solution methods of linear programming.

[Course Topics]

Theme	Class number of times	Description
Introduction to Mathematical Optimizaiton	1	Introduction to Mathematical Optimization. Reviews of some mathematics for linear programming, in particular, linear algebras.
Mathematical Programming Models	4	Representative mathematical programming models such as linear programming models, network programming models, noninear programming models, and combinatorial programming models, with simple illustrative examples.
Linear Programming and Basic Solutions	2	Formulation of linear programs in the standard form, and basic concepts of basic solutions, basic feasible solutions, and optimal basic solutions.
Simplex Method	3	Basic ideas and concrete procedures of the simplex method that is a classical method for linear programming. Topics include two-stage linear programming, variables with upper bounds, and network simplex methods.
Duality and Sensitivity Analysis	3	Duality as an important theory in linear programming, and sensitivity analysis as a useful technique in decision making.
Interior Point Methods	1	Interior point methods as polynomial-time algorithms in linear programming.
Review and Summary	1	Review and Summary. Confirmation of achievement level.

【Textbook】 Fukushima, M.: Introduction to Mathematical Programming: New Edition (in Japanese), Asakura Shoten .

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Introduction to Programming

プログラミング入門

[Code] 91240 [Course Year] 1st year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2-3	
	2-3	
	2-3	
	2-3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Applied Mathematics A1

工業数学 A1

[Code] 20500 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hitoshi Yoshikawa,

【Course Description】 The theory of analytic functions of one complex variable

[Grading] Evaluation depends mainly on marks of examination, but marks of exercises are taken into account when needed.

[Course Goals] To understand properties of analytic functions with a skill for evaluation of integrals appearing in applied mathematics and physics

[Course Topics]

Theme	Class number of times	Description
The plane of one		After describing the point set topology of the plane of one complex veriable
complex variable and	2	After describing the point-set topology of the plane of one complex variable,
elementary functions		elementary functions are introduced with their properties.
Complex integrals		Cauchy's theorem and Cauchy's integral formula are shown along with
and Cauchy's	3	outstanding properties of analytic functions. An example is given of Cauchy's
theorem		theorem.
Power series	3	Sequences, series, and series of functions are discussed with the notion of
Power series	3	convergence and divergence.
Taylor's expansio0n		The Taylor series of analytic functions and the Laurent series of analytic
and Laurent's	3	•
expansion		functions on an annulus are discussed together with some examples.
Singularity and	3	The calculus of residues is dealt with. Examples are given of integral
residues	3	evaluations.
Learning	1	Lagraing achievement test
achievement test	1	Learning achievement test.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] Calculus, Linear algebra

[Web Sites]

Dynamics of Particles and Vibration

質点系と振動の力学

[Code] 90680 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction]

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] Previous knowledge of basic mechanics is required. The aim of this lecture is to show the basic concepts of dynamics of particles and rigid bodies.

【Grading】 Based on quizzes and the semester final exam

【Course Goals 】 To gain the knowledge of

Dynamics of the system of particles

Motion in a noninertial reference frame

Rigid body dynamics

【Course Topics】

Theme	Class number of times	Description
Dynamics of the system of particles	3	Basic dynamics is briefly reviewed. As fundamental concepts, the total momentum, the total angular momentum and the center of mass are introduced. Some conservation laws are derived.
Motion in a noninertial reference frame	3-4	Rotating coordinate systems and the equations of motion are described. Motion in a non-inertial frame is considered.
Rigid body dynamics	7-8	Moment of inertia, inertia tensor and torque are introduced to derive Euler's equations of motion.

【Textbook】None

【Textbook(supplemental)】 To be announced in the lecture

[Prerequisite(s)] Fundamental Physics A

[Web Sites] None

Applied Mathematics and Physics Laboratory

数理工学実験

[Code] 91250 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 4 [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	5-6	
	5-6	
	5-6	
	5-6	
	5-6	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Exercise on Applied Mathematics and Physics

基礎数理演習

[Code] 90900 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme Class number of times	Description
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	
1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Exercise on Programming

プログラミング演習

[Code] 90910 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	9	
	2	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Hardware and Software Laboratory Project 1

計算機科学実験及演習 1

[Code] 90210 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 1

[Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	2	
	7	
	3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Hardware and Software Laboratory Project 2

計算機科学実験及演習 2

[Code] 90220 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	7	
	7	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Introduction to Systems Analysis

システム解析入門

[Code] 90070 [Course Year] 2nd year [Term] [Class day & Period] [Location] Integrated Research Bldg.-213

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Yoshito Ohta, Professor

Course Description We will start by showing some examples of dynamical systems in engineering. Then we mention modelling and analysis techniques. We explain Electrical circuits and mechanical systems that use the linearizaton technique in detail. Throughout the course, we aim to understand the importance of dynamical system modeling and the implication of system control based on mathematical models.

【Grading 】 The grade is determined by the final examination.

[Course Goals] We will learn examples of dynamical systems and the rudiments of dynamical systems and approximated linearized systems. This course will be the basics of Linear Control Theory (90720) and Modern Control Theory (90580).

[Course Topics]

Theme	Class number of times	Description
Introduction to system analysis	2	Overview of the course.
Linear dynamical systems	3	First and second order systems such as electric circuits consisting of a capacitor and an inductor and mechanical systems consisting of a spring and a dumper.
State equation and linear approximation	1	Linearized systems at an operating point. Linear dynamical systems and their responses.
Laplace transform and transfer function	2	Laplace transform and linear differential equations. Transfer functions of first and second order systems.
Examples of system modeling	2	Examples of system modeling including mechanical systems, biological systems, and social infrastructures.
Discrete-time systems	1	Discrete-time systems described by difference equations.
System identification	1	System modeling using input-output data.
Exercises	3	Excercises.

【Textbook】 Handouts are given.

【Textbook(supplemental)】 Shimemura, What is automatic control?, Korona (in Japanese)

[Prerequisite(s)] Linear Algebra (A and B) and Calculus (A and B) are recommended.

[] Read the handouts in advance. Solve problems in the houdouts and exercise problems.

[Web Sites] http://www.bode.amp.i.kyoto-u.ac.jp/member/yoshito_ohta/system/index.html

[Additional Information] Contact the instructor using email. Address: yoshito_ohta@i.kyoto-u.ac.jp

90700

Logical Systems

論理システム

[Code] 90700 [Course Year] 2nd year [Term] [Class day & Period] [Location] Integrated Research Bldg.-111

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	3	
	6	
	6	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Introduction to Dynamical Systems

システムと微分方程式

[Code] 91050 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] This lecture is a basic course of theory of dynamical system.

【Grading】 Homeworks and an examination are scored.

【Course Goals】 This lecture has three purposes: (1) to master the methods solving differential equations. (2) to practice qualitative analysis. (3) to get able to formulate and to analyze mathematical models.

【Course Topics】

Theme	Class number of times	Description	
		A model is an abstractization of an aspect of the actual world. A model is a	
What is MODEL?	2.2	system of symbols equipped with inference rules. A good model is simple,	
What is MODEL?	2-3	distinct, having correspondence between symbols and actual phenomena,	
		analyzable and predictable.	
Purpose for building	2-3	Why we formulate models in terms of differential equations?	
models	2-3	Why we formulate models in terms of differential equations?	
Exponential function	4-5	Definition and properties of exponential function.	
	4-5		
Basic method for			
solving differential	3	Linear differential equations.	
equations			
0 1'4 4' 1 '	1	Phase flow, phase diagram, stability, Lyapunov function, linearized	
Qualitative analysis		approximation, limit cycle.	
Applications	2	Equations of motion, models of rocket, planet, ecology.	
	1		

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)] These lectures are given in Japanese.

[Web Sites]

Analytical Dynamics

解析力学

[Code] 90710 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	7	
	5	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Logic Circuits

論理回路

[Code] 90970 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Graduate School of Informatics, Professor, Naofumi Takagi

[Course Description] We learn logic algebra which is a basis of computer science and a logic circuit which is a basis of digital systems such as computers. First, we learn logic algebra, logic functions, and minimization of logic functions, and then, design methods of combinational circuits. We also learn a sequential machine which is the mathematical model of a sequential circuit and its minimization, as well as design methods of sequential circuits.

[Grading] Grading is done through exercises and a term-end examination on the course goals.

【Course Goals】1. Understanding basic concepts in logic algebra and logic function, and being able to explain them.

- 2. Understanding the minimization methods of logic functions, and being able to use them.
- 3. Understanding basic concepts in combinational circuits and sequential circuits, and being able to explain them.
- 4. Understanding the minimization methods of sequential machines and state assignment, and being able to use them.

[Course Topics]

Theme	Class number of times	Description	
Introduction	1	What is a logic circuit? Sets and relations.	
Logic algebra and	2		
logic function	2	Logic algebra, logic expression, logic function and its representation	
Minimization of	2	N	
logic functions	3	Minimization of logic functions	
Special logic	2	Logic functions with anguich characteristics	
functions	2	Logic functions with special characteristics	
Combinational			
circuits and their	2	Design methods of combinational circuits	
design methods			
Sequential machines		Convential aircrite and their design mothods consciolly minimization mothods	
and sequential	4	Sequential circuits and their design methods, especially minimization methods	
circuits		of sequential machines and state assignment.	
Term-end	1		
examination	1		
Feedback	1		

【Textbook】 Logic circuits, by Naofumi Takagi, Ohm-sha

【Textbook(supplemental)】

[Prerequisite(s)] Basic knowledge on sets and relations.

[] Students are required to prepare for each classroom.

Students are required to solve exercises give at each classroom and to submit answers at the next clasroom.

[Web Sites] http://www.lab3.kuis.kyoto-u.ac.jp/~ntakagi/lc.html

【Additional Information】Office hour: Tuesday, 16:30-17:30

Office: Rm. 330, Research Building #7

Email:takagi@i.kyoto-u.ac.jp

Languages and Automata

言語・オートマトン

[Code] 91040 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] We start with regular expressions and finite automata, then go to context-free grammars and pushdown automata. We learn why studying automata theory is important in computer science especially design and analysis of algorithms.

【Grading】 Two reports and a final exam.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description	
Finite automata	5	Description of finite automata, minimization and regular expressions.	
Context-free	4	Dush down outsmote contact free grammars and their conjugionary	
grammars	4	Push-down automata, context-free grammars and their equivalency.	
Turing machines and	4	Turing mashing its definition and basic properties	
related issues	4	Turing machine, its definition and basic properties.	
Hierarchy of	2	Summary of language classes. Discussions to check the achievements of	
languages	2	students	

【Textbook】 Iwama, Automata, languages and theory of computation, Corona-sha, 2003.

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Computer Architecture 1

計算機アーキテクチャ1

[Code] 90160 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Graduate School of Informatics, Professor, Naofumi Takagi

[Course Description] We learn basic organization of computers, instruction set architecture, and computer arithmetic. We also learn how to design simple computers.

[Grading] Grading is done through exercises (about 5%) and a term-end examination (about 95%) on the course goals.

[Course Goals] 1. Understanding basic organization of a computer, and being able to explain it.

- 2. Understanding instruction set architecture, and being able to explain it.
- 3. Understanding computer arithmetic, and being able to explain it.
- 4. Understanding design methods of simple processors, and being able to use them.

[Course Topics]

Theme	Class number of times	Description	
Basic organization of	2	Basic organization of a computer	
a computer	2	basic organization of a computer	
Instruction set	_	Instanction of an hiterature of a second	
architecture	5	Instruction set architecture of a computer	
Computer arithmetic	3	Computer arithmetic, arithmetic circuits	
Design of simple	4	Design of simple processors	
processors	4	Design of simple processors	
Term-end	1		
examination	1		
Feedback	1	Review	

【Textbook】 Computer Organization and Design - The Hardware/Software Interface - 5th ed. No. 1 by David A. Patterson and John L. Hennessy, Translated in Japanese by M. Narita, Nikkei BP

【Textbook(supplemental)】

[Prerequisite(s)] Logic circuits

[] Students are required to prepare for each classroom.

Students are required to solve exercises give at each classroom and to submit answers at the next clasroom.

[Web Sites] http://www.lab3.kuis.kyoto-u.ac.jp/~ntakagi/ca1.html

【Additional Information】 Office hour: Tuesday, 16:30-17:30

Office: Rm. 330, Research Building #7

Email:takagi@i.kyoto-u.ac.jp

90170

Programming Languages

プログラミング言語

[Code] 90170 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	7	
	7	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Compilers

コンパイラ

[Code] 91020 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	2	
	1	
	1-2	
	1-2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Information Theory

情報理論

[Code] 90230 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Prof. Toyoaki Nishida, Graduate School of Informatics

[Course Description] This course introduces information theory, an foundation for reliable information transmission and storage. We elaborate on source and channel models, source and channel coding, quantitative measure of information and entropy, and coding theory.

[Grading] Credit will be awarded based on a final written examination and one or more mini-tests.

[Course Goals] Students will be able to understand and apply basic concepts and principles of information theory.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	I briefly overview the history, goal, techniques and applications of information
Introduction		theory.
Source Coding and	4	I introduce source coding, Markov sources, the source coding theorem, and
its Limitation	4	entropy of information source.
Channel Coding and	2	I elaborate on mutual information and entropy, channel capacity, maximum
its Limitation	3	likelihood decoding, random coding, and the channel coding theorem.
Coding Theory	3	Following a general introduction to coding theory, I describe parity codes,
Coding Theory		Hamming codes, cyclic codes, and BCH codes.
A 1 C	3	I outline Fourier series, Fourier transform, the sampling theorem, and analogue
Analogue Sources		sources.
Conclusion	1	I reinforce the major issues in information theory.

【Textbook】 Hideki Imai: Information Theory, Shokodo (in Japanese)

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Computer Networks

コンピュータネットワーク

[Code] 91090 [Course Year] [Term] [Class day & Period] [Location] Engineering Science Depts Bldg.-313 [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] Learn about basic technologies on computer networks, which are the indispensable basis of the ubiquitous network society. The idea of the Internet, basic concepts of the Internet architecture and the protocols are lectured. Visions for the future are also presented.

 $\mbox{\footnotemark}$ Grading $\mbox{\footnotemark}$ Grading is based on the semester-end exam and reports, and partially on the attendance.

【Course Goals】

【Course Topics】

Theme	Class number of times	Description
Ubiquitous network sociaety and	1	-ubiquitous network society and computer networks
computer networks	1	-examples of network services
		-packet switching
Network architecture	1	-the OSI reference model
		-the hierarchical model in the Internet
		-electric mail
Application layer	1	-WWW (the World Wide Web)
		-applications of WWW: multimedia communication like video streaming
		-Domain Name System
		-port number -UDP (User Datagram Protocol)
Transport layer	1	-TCP (Transmission Control Protocol)
Transport layer	1	-Flow control
		-Congestion control
		-IP (Internet Protocol)
		-IP address
		-Routing algorithms
Network layer	1	-ARP (Address resolution protocol)
		-ICMP (Internet Control Message Protocol)
		-DHCP (Dynamic Host Configuration Protocol)
	1	-fundamentals of the data-link layer
Data-link layer		-controlling data links
Data-iiik iayei		-synchronization
		-error detection and correction
		-LAN (Local Area Network)
		-VLAN (Virtual LAN)
Local area network	1	-Media Access Control (MAC)
		-architecture of LAN
		-connecting LANs
	1	-WAN (Wide Area Networks)
Wide area network		-protocols for WAN
wide area network		-access lines -VPN (Virtual Private Networks)
		-Wide-area Ethernet
		-media
Physical layer	1	-encoding
,		-transmission
Wireless and mobile networks		-Wireless and microwave
	1	-wireless data links
		-wireless network
		-IPv6
		-Network security
Visions for the future networks	5	-Open source softwares
		-Cloud computing
		-Business intelligence

【Textbook】 Norio Shiratori (ed.): Information Network (Kyoritsu)

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Graph Theory

グラフ理論

[Code] 90300 [Course Year] [Term] [Class day & Period] [Location] [Credits] 2 [Restriction]

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] We learn basic theories of graphs and their applications, and fundamental algorithms for solving graph problems.

[Grading] Mainly evaluated by the final exam. Exercises and discussions in class may be considered.

[Course Goals] The goal of this course is to learn basic theories of graphs and their applications, and fundamental algorithms for solving graph problems.

[Course Topics]

Class number of times	Description
2	I explain definition of graphs and basic properties of graphs. I also briefly
3	review the basics of algorithms and their complexity.
2	Vanaltalla algorithm Drim's algorithm Stainer two mahlam
2	Kruskal's algorithm, Prim's algorithm, Steiner tree problem.
1	Dillecture a localithus
1	Dijkstra's algorithm
2	Hamilton cycle, Euler cycle, Dirac's theorem.
2	
2	Vertex coloring, edge coloring.
2	Ford Full-consults also with m
2	Ford-Fulkerson's algorithm.
2	Hall's theorem, Hungarian method.
1	
	1 2 2 2 2

【Textbook】 No specification.

【Textbook(supplemental)】 I show some recommended books in class.

[Prerequisite(s)]

[Web Sites]

90301

Graph Theory

グラフ理論

[Code] 90301 [Course Year] [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	2	
	1	
	2	
	2	
	1	
	1-2	
	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

90250

Numerical Analysis

数值解析

[Code] 90250 [Course Year] [Term] [Class day & Period] [Location] Engineering Science Depts Bldg.-313

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	6	
	3	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Applied Mathematics A2

工業数学 A2

[Code] 20600 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Nakamura Yoshimasa, Tsujimoto Satoshi

【Course Description】 "Numerical Analysis" is prerequisite to this course. In this course matrix eigenvalue problem and singular value decomposition, iteration methods for nonlinear equations, interpolation methods by polynomials, and numerical integration methods are explained which are important especially in data science and information processing.

[Grading] mainly evaluated by examination score, but reports of exercises will be taken into account in a case.

[Course Goals] Understanding both the theory and practical methods for applications through general-purpose softwares and/or programs by each student is a goal of this course.

[Course Topics]

Theme	Class number of times	Description
		computation of matrix eigenvalues and eigenvectors by the Jacobi method,
matrix eigenvalue		Gershgorin theorem, the power method and the inverse iteration, the QR
problem	6	method and the divide & conquer method with the Householder
		transformations for preprocessing, Sturm theorem
matrix singular value	1	computation of matrix singular value decomposition
decomposition		
iterative methods for	3	the principle of contractive mapping and the Newton method both of one and
nonlinear equations		multi variables, and convergence acceleration algorithms
interpolation	2	the Lagrange interpolation formula and the Hermitian interpolation formula by
methods		polynomials, and the spline functions
numerical integration	2	Newton-Cotes numerical integration formula, and the Gauss type numerical
methods		integration formula
confirmation for	1	confirmation for each student assessment
student assessment	1	Commination for each student assessment

【Textbook】 "Introduction of Numerical Analysis" (in Japanese) by T. Yamamoto, SAIENSU-SHA

【Textbook(supplemental)】

[Prerequisite(s)] Linear algebra A, Linear Algebra B, Numerical Analysis

[Web Sites]

Applied Mathematics A3

工業数学 A3

[Code] 20700 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】 The theory of Fourier analysis

【Grading】 Evaluation depends mainly on marks of examination, but marks of exercises are taken into account when needed.

[Course Goals] To understand fundamental theory of Fourier and Laplace analysis with a skill for evaluation of specific examples and applications in applied mathematics and physics.

【Course Topics】

Theme	Class number of times	Description
		Introduction of the Fourier series for periodic functions. Best approximation
Fourier series	3-4	property and the convergence of this series are shown. Discrete Fourier
		transform is also discussed.
Applications of	3-4	Application of Fourier series to differential equations
Fourier series	3-4	Application of Fourier series to differential equations
Eif	2-3	Introduction of the Fourier transform for L ² functions. Invertibility of this
Fourier transform	2-3	transform and the convolution theorem are shown.
	2-3	
Applications of		Application of Fourier sories to differential equations. The relationship with
Fourier transform	2	Application of Fourier series to differential equations. The relationship with
related		Fourier transform and Laplace transform.
Summary and	1	Summary and supplement of this course. Measure the progress of students in
assessment		acquiring knowledge and skills.

【Textbook】S. Nakamura: Fourier analysis, Asakura shoten

【Textbook(supplemental)】S. Oishi: Fourier analysis, Iwanami shoten

[Prerequisite(s)] Calculus, Linear algebra

[Web Sites] http://www-is.amp.i.kyoto-u.ac.jp/lab/tujimoto/amathA3/

90800

Mathematics of Dynamical Systems

力学系の数学

[Code] 90800 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	5-6	
	4-5	
	4-5	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Linear Control Theory

線形制御理論

[Code] 90720 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] In this course, we will learn the basics of feedback control theory which has its origin in the governor By James Watt (1788) and the feedback amplifier by Harold Black (1927). We will give lectures on analysis of feedback systems, stability criterion, servo mechanism design, and so on, based on Laplace transform.

[Grading] The final grade in this course is based on your scores in reports and the final examination.

[Course Goals] The goal of this course is to understand the basics on analysis of feedback systems and to acquire frequency-domain methods for control systems design.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Laplace transform	2	
System modeling	2	
and transfer function	2	
Transient response	2	
and stability	3	
Frequency response	2	
Stability analysis of	2	
feedback systems	2	
Characteristics of		
feedback control	2	
systems		
Summary	1	

【Textbook 】None.

【Textbook(supplemental)】T. Sugie and M. Fujita: Introduction to Feedback Control (in Japanese). Corona Publishing, 1999

T. Katayama: Fundamentals of Feedback Control: New edition (in Japanese). Asakura Publisher, 2002

[Prerequisite(s)] It is recommended, but not required, that students take Introduction to Systems Analysis (90070) and Applied Mathematics A1 (20500) before taking this course.

[Web Sites]

Probability and Statistics

確率と統計

[Code] 90280 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Toshiyuki TANAKA, Professor, Graduate School of Informatics

【Course Description】 After summarizing basics of probability theory and statistics, various concepts and methods of modern statistics on the basis of probability theory and statistics, in particular multivariate regression analysis and statistical hypothesis testing, are described. Applications of these concepts and methods to data analysis are also reviewed.

[Grading] Grading is done on the basis of contents of reports submitted and results of written end-term examination.

[Course Goals] Course goals are to master basics of probability theory and statistics, and to understand how statistical methods such as multivariate regression analysis and principal component analysis are used in practice, including their theoretical backgrounds. Deepening understanding of practical applications is also expected.

[Course Topics]

Theme	Class number of times	Description
	4	Following items are described.
		In probability theory: Probability space, density functions, characteristic functions,
Paging of probability		expectation, covariance, correlation coefficient, Gaussian distribution, chi-squared
Basics of probability		distribution, transformation of random variables, multivariate Gaussian
theory and statistics		distribution, central limit theorem, law of large numbers.
		In statistics: Procedures of statistical testing, estimation of mean and variance, test
		on mean, test on variance, test on ratio of variances.
Multivariate	4	Describes mean-squared error estimation of regression coefficients in multivariate
regression analysis,		regression, tests on regression coefficients and regression formula, and partial
principal component		correlation coefficients. Principal component analysis and its applications are also
analysis		described.
		Describes likelihood ratio test derived from Bayesian framework and
		Nayman-Pearson lemma under the framework of statistical decision theory and
Statistical testing,	4	reviews properties of operating characteristic curve and uniformly most powerful
parameter estimation	4	test.
		Also describes maximum likelihood estimation and Bayesian estimation for
		parameter estimation methods.
Statistical learning	3	Describes statistical learning theory, which is important as a basis for modern
Statistical learning		applications of statistics to various field. Also reviews practical applications to
theory, data analysis		problems of data analysis.

【Textbook 】Printed materials are distributed if appropriate.

【Textbook(supplemental)】 C. M. Bishop: Pattern Recognition and Machine Learning, Springer. T. Hastie, R. Tibshirani, and J. Friedman: The Elements of Statistical Learning, Springer.

[Prerequisite(s)] Students are expected to have taken Probability Theory, Mathematical Statistics, Linear Algebra A, and Linear Algebra B in the Liberal Arts and General Education Courses.

[Web Sites]

[Additional Information] Course topics would be subject to change according to levels of understanding of students.

Stochastic Discrete Event Systems

確率離散事象論

[Code] 90960 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] This course covers fundamental modeling and analysis methodologies to mathematically treat queueing phenomena arising in our daily life. Queues are observed when congestion occurs in those systems such as service facilities (banks, supermarkets, etc.), transportation systems, as well as communication networks/the Internet. Foundamentals of queueing theory and traffic theory are the main part of this course.

【Grading】 Grading is based on the scores of the term examination and homeworks.

[Course Goals] Mastering the fundamentals of performance modeling and analysis and acquiring how to apply them for various types of systems.

[Course Topics]

Theme	Class number of times	Description
		Queueing model is introduced and its usefulness to mathematically describe
Introduction	1	the stochastic behaviors of discrete event systems is demonstrated.
Illuoduction	1	Applications of queueing theory are also shown. As a whole, the overview of
		the lecture is given.
		Probability distributions such as Poisson, exponential, Erlang, hyper
Preliminaries	1 ~ 2	distributions and some others and related stochastic characteristics are
		presented. Poisson process is also described in detail.
Discrete-time	2 ~ 3	Discrete-time Markov chain is covered. Topics include state transition
Markov chain	2~3	probability, steady state probability, recurrence time and others.
	2 ~ 3	Continuous-time Markov chain is taught. In particular, birth-and-death process
Continuous-time		is described in depth. Steady-state equation and state transition diagram are
Markov chain	2 ~ 3	explained and the condition for the existance of steady-state is clarified.
		Steady-state probability distribution is also derived.
Birth-and-death type		Some basic queueing models such as $M/M/1$, $M/M/c$, $M/M/$, $M/M/1/K$,
	2 ~ 3	M/M/c/c etc. are analyzed to derive probability distributions of waiting time
queueing models		and queue length.
More general	4 ~ 5	More general queueing models such as M/G/1, M/G/1/K, and GI/M/1 are
queueing models		treated. The level of attainment is checked at the end of the course.

【Textbook】 Handouts are provided.

【Textbook(supplemental)】One of recommended textbooks is L. Kleinrock, Queueing Systems vol.I, John Wiley and Sons.

[Prerequisite(s)] Some background on related topics such as Probability, Stochastic Process will be helpful to learn the course but it is not prerequisite. The course is managed to for students to attend without the background.

[Web Sites]

Applied Algebra

応用代数学

[Code] 90310 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】 An introduction with application to basic algebra in informatics.

【Grading】 Evaluation depends mainly on marks of examination, but marks of exercises are taken into account when needed.

[Course Goals] To understand basic ideas and some applications of algebras (mainly group theory).

[Course Topics]

Theme	Class number of times	Description
Introduction to group	2-3	Definition and examples of group: symmetric group, permutation group, cyclic
theory	2-3	group, general linear group and so on.
Structure of groups	4-5	Subgroup, coset, normal subgroup, quotient group, the isomorphism theorems.
Symmetric group and	3-4	Action of the grammatric arrays on a finite act Environmentian much land
enumeration problem	3-4	Action of the symmetric group on a finite set. Enumeration problem.
Group representation	3-4	Groups in terms of linear transformations of vector space.
Summary and	1	Summary and supplement of this course. Measure the progress of students in
assessment	1	acquiring knowledge and skills.

[Textbook]

【Textbook(supplemental)】T. Hiramatsu: Joho no suri oyo daisugaku (Shokabo)

[Prerequisite(s)] Linear algebra

[Web Sites] http://www-is.amp.i.kyoto-u.ac.jp/lab/tujimoto/appalg/

Artificial Intelligence

人工知能

[Code] 91160 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] This lecture introduces basic technologies of artificial intelligence. Topics will be selected from search, knowledge representation, and learning.

【Grading 】 By reports and a final examination.

[Course Goals] Learning the concept of artificial intelligence and the basic models and algorithms of search, knowledge representation, and learning.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Introducing the history of artificial intelligence researches.
		Introducing breadth-first search, depth-first search, heuristic search,
Caarah	3-4	AND/OR-graph search, adversarial search, constraint satisfaction, etc. It
Search	3-4	comes with exercise. Applications of search techniques such as computer
		chess, Sudoku, are also introduced.
Knowledge representation	4-5	Introducing semantic network, production system, Bayesian network, predicate
		logic, etc. It comes with exercise. Applications of knowledge representation
		techniques such as semantic web are also introduced.
	5-6	Introducing decision tree learning, perceptron, SVM, genetic algorithm,
Learning		reinforcement learning, etc. It comes with exercise. Applications of machine
		learning techniques such as data mining are also introduced.
Achievement level	1	Charling the achievement level
check		Checking the achievement level

【Textbook】 Materials will be distributed.

【Textbook(supplemental)】 S. Russell and P. Norvig, Artificial Intelligence A Modern Approach (3rd.ed.), Prentice Hall, 2010.

M. Ginsberg, Essentials of Artificial Intelligence, Morgan Kaufmann, 1993.

P.H. Winston, Artificial Intelligence, Addison-Wesley, 1992.

[Prerequisite(s)]

[Web Sites]

Human Interface

ヒューマンインタフェース

[Code] 91170 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction]

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Toru Ishida, Naomi Yamashita

[Course Description] This lecture introduces basic concepts and methods of interaction design. Topics will be selected from user model, usability analysis, experiment and evaluation, and design process.

【Grading 】 By reports and a final examination.

[Course Goals] Learning the concepts and methods of interaction design, including user model, usability analysis, experiment and evaluation, and design process.

【Course Topics】

Theme	Class number of times	Description
Introduction	1	Introducing the history and important concepts of interaction design.
		Introducing user models which create human computer interfaces for
User model	2-3	supporting communication and collaboration. Explaining the affect of
		interfaces to users' behavior.
	3-4	Introducing usability analysis and evaluation methods including questionnaire,
Usability analysis		interview, heuristic evaluation and cognitive walkthrough. Applications of
		usability analysis to Web evaluation are also introduced.
Experiments and	3-4	Introducing various evaluation methods including ethnography and statistical
evaluation	3-4	analysis. Applications of those methods to real problems are discussed.
Design process	2.2	Introducing the process of interaction design. The comparison between
	2-3	interaction design and software design is explained.
Achievement level	1	Checking the achievement level.
check	1	Checking the achievement level.

【Textbook】 Preece, Sharp, Rogers. Interaction Design. Wiley, 3rd edition, 2011.

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Exercise on Numerical Analysis

数值計算演習

[Code] 90920 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description] The numerical approach with computers is useful when we solve several problems in informatics and applied mathematics. In this exercise, we will learn numerical methods through implementing computer codes, executing the programs, and interpreting results.

[Grading] The students MUST submit all the reports for four subjects. The score of each subject is 25 and the grading will be done based on the total scores of reports.

[Course Goals] We will learn fundamental techniques for numerical analysis with computers. Specifically, we aim at obtaining the following four techniques. (1) Understanding algorithm for numerical analysis, (2) Coding techniques (3) Methodology of data analysis, and (4) writing ability.

【Course Topics】

Theme	Class number of times	Description
		We will explain contents of exercises on numerical simulations and introduce staffs and
Guidance	1	teaching assistants. We will further explain how to use computers in the computer room
		and account.
How to write your	1	We will study how to write an efficient report.
report	1	we will study now to write an efficient report.
		We will study concepts of errors in numerical computation and methods of differential
Error and differential		equations. By using numerical schemes of differential equations, we will evaluate
equations	4	errors in numerical computation.
equations		(a) Round error, truncation error
		(b) Euler scheme, Runge-Kutta scheme
Statistics and statistical	6	We will study fundamental methods which we need in data analysis.
tests		(a) Statistical hypothesis test,
tests		(b) Regression analysis.
	8	It is the aim of this term to learn the methods for solving the linear equations of sparse
Numerical method for		matrices and implement parallel computing codes of the methods.
		(a) The conjugate gradient method for solving linear equations of sparse symmetric
data analysis		positive definite matrices,
		(b) The BiCG method for solving linear equations of sparse non-symmetric matrices.
		We will study the basic of Monte Carlo method which is a statistical method for
Numerical integration	0	simulating complex systems.
	8	(a) Principle of Monte Carlo Method,
		(b) Metropolis algorithm.
Check for students'	2	Based on reports, we will take supplementary lessons to understand contents of this
understanding	2	exercise.

【Textbook】 Not in particular. hand out.

【Textbook(supplemental)】[1]「HANPUKUHO NO SURI」(Author:Masaaki Sugihara and Kazuo Murota, Iwanami) 【Prerequisite(s)】Under the UNIX operating system, students have to edit a file, code and test C programs, make reports and graphs, and print them.

[Web Sites]

[Additional Information] If you have any questions, please do not hesitate to ask them to teachers. Please make an appointment with a teacher corresponding to each subject.

Seminar on Applied Mathematics and Physics

数理工学セミナー

[Code] 90740 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description] Having seminars on various themes related to applied mathematics and physics.

【Grading】 Attendances are requested. Presentation and discussions are evaluated.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Seminars	Ei	themes are provided.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

[Additional Information] In early July, all the themes of seminars are announced. Students are asked to give application forms. It is assumed that students are looking at the announce board of the department office carefully.

System Analysis Laboratory

システム工学実験

[Code] 90930 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor] Kentaro OHKI, Masayuki OHZEKI, Kazuki NIINO

【Course Description】 Our course aims at learning (1) modeling, (2) analysis (3) control of systems through the numerical computation and demonstration of the following three subjects. The students can participate in all of three subjects.

[Grading] Attendance and Report for each subject, and Attitude, behavior as individuals and as a group.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Guidance	1	We will give introduction to this course and divide the participants into groups.
	10	1. Introduction to principle of active sliencer
		2. Basic lecture on DSP and programming
Active silencer		3. Experiment
		4. Analyses on response in time and frequency
		We use specialized softwares, Scilab
		1. a recursive estimation of frequency transfer function and parameter
	10	identification
Laser Beam		2. tracking step signals
		3. two-degree-of-freedom controller
Stabilization		4. tracking desired signals
		We use specialized softwares, MATLAB/SIMULINK.
		1. Mechanical model of of inverted pendulum and identification of its
		parameters
		2. Controller by state space representation
Inverted Pendulum	10	3. Inference of state variables by observer
inverted Pendulum	10	4. Pole-place method / optimal control method
		5. Swinging up of inverted pendulum
		We use specialized softwares, MATLAB/SIMULINK

[Textbook]

【Textbook(supplemental)】 Doyle, Francis and Tannenbaum: Feedback Control Theory, Prentice Hall (1992) Ljung: System Identification, 2nd edition, Prentice Hall (1998)

[Prerequisite(s)]

[Web Sites]

Hardware and Software Laboratory Project 3

計算機科学実験及演習3

[Code] 90840 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 4

[Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	
	15	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Hardware and Software Laboratory Project 4

計算機科学実験及演習 4

[Code] 90390 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 3

[Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	15	
	15	
	15	
	15	
	15	
	15	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Statistical Physics

物理統計学

[Code] 90940 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] Probability theory, statistical mechanics, and theory of stochastic process are explained as methods to investigate systems with many degrees of freedom generally. Technics for describing phase transition, dynamics, and fluctuation in equilibrium or stationary systems and some topics for nonequilibrium systems are explained.

【Grading 】Based on quizzes and the semester final exam.

[Course Goals] To gain firmly the fundamental skills for understanding various phenomena with the use of probability theory and stochastic process.

[Course Topics]

Theme	Class number of times	Description
Fundamentals of probability and entropy	3	Continuous and discrete stochastic variables are introduced and entropy, KL entropy and mutual information are explained.
Fundamentals of		Fundamentals of thermodynamics are reviewed and statistical mechanics is
statistical mechanics	3	formularized with the maximum entropy principle. Applications to ideal gases
and entropy		and spin systems are explained.
stochastic processes and random walk	3	Stochastic process, especially Markov process is explained. As examples, Gauss process, Poisson process, Wiener process and random walks are explained.
Langevin equaitons		Brownian motion is introduced as an example of Langevin equations.
and Fokker-Plandk	3	Derivation of Fokker-Planck equations from Langevin equations are described
equations		and several applications are explained.
Some topics for		We explain some topics chosen from entropy production in relaxation
nonequiliburium	2	processes to equilibrium states from nonequiliburium states, linear responce
system		theory, fluctuation theory, thermal excitation and diffusion and so on.

【Textbook】None

[Textbook(supplemental)] To be announced in the lecture

[Prerequisite(s)] Fundamentals of calculus and linear algebra

[Web Sites]

[Additional Information] According to progress of the lecture, some topics may be omitted and added.

Mechanics of Continuous Media

連続体力学

[Code] 90830 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Professor Mitsuaki Funakoshi, Graduate School of Informatics

[Course Description] The lecture on fundamental theory of fluid dynamics and elasticity is given as an introduction to the theory of mechanical behavior of continuous media.

【Grading】 Evaluation is based on the score of examination.

[Course Goals] Understanding the basic concepts in fluid dynamics and elasticity.

[Course Topics]

Theme	Class number of times	Description
concept of	1	
continuous media	1	
stress	2	
momentum equation	1	
basic equations of	2.2	
fluids	2-3	
dynamics of viscous	2.4	
fluids	3-4	
dynamics of inviscid	1.2	
fluids	1-2	
compressible fluids	1	
and sound waves	1	
basic equations in	2.2	
elasticity	2-3	
feedback	1	

【Textbook 】No

【Textbook(supplemental)】Introduced in the lecture

[Prerequisite(s)] analysis, linear algebra, fundamentals of dynamics, fundamentals of vector analysis

[Web Sites]

Modern Control Theory

現代制御論

[Code] 90580 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】 This course provides the fundamentals in modern control theory - centered around the so-called state space methods - as a continuation of classical control theory taught in Linear Control Theory. Emphasis is placed on the treatment of such concepts as controllability and observability, pole allocation, the realization problem, observers, and linear quadratic optimal regulators.

【Grading 】 The grading is based on the evaluation of reports and final examination.

[Course Goals] The objective is to study controllability and observability that are the basis of modern control theory, and also understand design methods such as optimal regulators. It is hoped that the course provides a basis for a more advanced topic such as robust control theory.

[Course Topics]

Theme	Class number of times	Description
Introduction to	1	We give real examples for which the modern control theory are applied. We
modern control	1	also give a state-space formulation for modeling dynamical systems.
Mathematics for	1	We discuss some fundamental properties of mathematics, in particular, vectors
modern control	1	and matrices.
Controllability and		We introduce the fundamental notions of controllability and observability for
	2	linear dynamical systems, and also discuss their basic properties and their
observability		criteria.
Canonical	2	We give the canonical decomposition for linear systems.
decomposition	2	we give the canonical decomposition for inlear systems.
		We introduce the realization problem that constructs state space
Realization problem	2	representations from transfer functions for single-input and single-output
		systems.
		We discuss the stability of dynamical systems described by state-space
Stability	2	equations. We also give mathematical tools for checking if a system is stable
		or not.
State feedback and		We introduce the construction of dynamic compensators via state feedback,
dynamic	3	pole allocation and observers. The relationships with controllability and
compensators		observablity are also discussed.
		We give the basic construction of optimal regulators, in particular, the
Opimal regulators	2	introduction of the matrix Riccati equation, its solvability, relationship to
		stability and observability, and root loci.

【Textbook 】None specified.

【Textbook(supplemental)】 Linear Algebra, K. Jaenich, translation by M. Nagata, Gendai-suugakusha, Mathematics for Systems and Control, Y. Yamamoto, Asakura,

[Prerequisite(s)] It is desirable that the student has studied classical control theory (linear control theory). Fundamental knowledge on linear algebra is assumed, e.g., matrices, determinants, rank of a matrix, dimension of a vector space, isomorphism.

[Web Sites]

Optimization

最谪化

[Code] 90790 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] Mathematical programming or optimization is a methodology for modeling a real-world problem as a mathematical problem with an objective function and constraints, and solving it by some suitable procedure (algorithm). This course consists of lectures on basic theory and methods in nonlinear optimization and combinatorial optimization.

【Grading 】Based on the score of the term examination.

[Course Goals] To understand basic theory and algorithms in continuous optimization and combinatorial optimization.

[Course Topics]

Theme	Class number of times	Description
Fundamentals of		Basic notions in continuous optimization such as global and local minima,
nonlinear	2	convex sets and functions, gradients and Hessian matrices of multivariate
optimization		functions.
Method of		Posic unconstrained entimization methods such as steepest descent method
unconstrained	2	Basic unconstrained optimization methods such as steepest descent method,
optimization		Newton's method, quasi-Newton methods, conjugate gradient method.
Optimality		Optimality conditions for constrained optimization problems, called
conditions and	2	Karush-Kuhn-Tucker conditions, as well as the second-order optimality
duality		conditions and Lagrangian duality theory.
Methods of		Posic methods of constrained entimization such as populty methods and
constrained	1	Basic methods of constrained optimization such as penalty methods and
optimization		sequential quadratic programing methods.
Combinatorial	1	Typical combinatorial optimization problems such as traveling salesman
optimization	1	problem and knapsack problem, and their computational complexity.
Branch-and-bound		Basic exact solution strategies for combinatorial optimization such as
method and dynamic	2	branch-and-bound method and dynamic programming.
programming		oranch-and-bound method and dynamic programming.
Approximation	3	Approximation algorithms for hard combinatorial optimization problems, and
algorithms		their theoretical performance guarantees.
Summary and review	1	Summary and review. Confirmation of achievement level.

[Textbook]

【Textbook(supplemental)】 M. Fukushima, Introduction to Mathematical Programming: New Edition (in Japanese), Asakura Shoten;

M. Yagiura and T. Ibaraki, Combinatorial Optimization - Metaheuristic Algorithms (in Japanese), Asakura Shoten

[Prerequisite(s)] Linear Programming (90690) recommended.

[Web Sites]

Nonliner Dynamics

非線形動力学

[Code] 91230 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	3	
	2	
	4	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Theory of Information Systems

情報システム理論

[Code] 90590 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] Methodologies and techniques for performance evaluation of information systems aiming for their optimal design are covered in the lecture.

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Outline of	1~2	The overview of networking architectures is given, and the significance of
Information Systems	1~2	optimal design of network systems is discussed.
Introduction to		The objectives and methods of the performance evaluation of information
Performance	3~4	network systems are presented and basic performance measures are
Evaluation		introduced.
Elements of Traffic	5.6	The elements of traffic theory (including generating function methods and
Theory	5~6	Markov chains, etc.) are delivered.
Performance		The analytical methods for some basic mathematical models of
	4 ~	telecommunication and computer systems, and well-known formulas for
Analysis of	4~5	performance measures (such as mean queue length, mean waiting time, loss
Information Systems		rate, etc.) are discussed.

【Textbook】 Printed materials are given in the lecture.

【Textbook(supplemental)】 D. Bertsekas and R. Gallager, Data Networks 2nd Ed., Prentice-Hall, 1992.

- L. Kleinrock, Queueing Systems Vol.2, John Wiley and Sons, 1976.
- D. P. Heyman and M. J. Sobel, Stochastic Models in Operations Research, Dover Publications, 2003.

[Prerequisite(s)] Stochastic discrete event systems, and basics of queueing theory.

[Web Sites]

Computer Architecture2

計算機アーキテクチャ2

[Code] 90490 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Graduate School of Informatics, Professor, Naofumi Takagi

[Course Description] We learn pipeline processing and storage hierarchy in computers. We also learn secondary storage devices and peripheral devices as well as multi-processor systems and computer clusters.

[Grading] Grading is done through exercises and a term-end examination on the course goals.

[Course Goals] 1. Understanding pipepline processing in computers and being able to explain it.

- 2. Understanding storage hierarchy in computers, and being able to explain it.
- 3. Understanding basics of I/O and communication with other processors.
- 4. Understanding basics of parallel processors.

[Course Topics]

Theme	Class number of times	Description	
Dinalina mna assaina	5	Basic concepts of pipeline processing, pipelining of data paths, data hazards,	
Pipeline processing	3	branch hazards, more sophisticated pipeline processing, etc.	
Memory hierarchy	6	Basic concepts of storage hierarchy, caches, virtual store, etc.	
I/O and	1	I/O and data communication	
communication	1	I/O and data communication	
D 11 1	2	Multi-processor systems, computer clusters, SIMD extention, vector	
Parallel processors	2	processors, etc.	
Term-end	1		
examination	1		
Feedback	1	review	

【Textbook】 Computer Organization and Design - The Hardware/Software Interface - 5th ed.No. 2, by David A. Patterson and John L. Hennessy, Translated in Japanese by M. Narita, Nikkei BP

【Textbook(supplemental)】

[Prerequisite(s)] Computer Architecture 1

[] Students are required to prepare for each classroom.

Students are required to solve exercises give at each classroom and to submit answers at the next clasroom.

[Web Sites] http://www.lab3.kuis.kyoto-u.ac.jp/~ntakagi/ca2.html

【Additional Information】Office hour: Tuesday, 16:30-17:30

Office: Rm. 330, Research Building #7

Email:takagi@i.kyoto-u.ac.jp

Operating System

オペレーティングシステム

[Code] 91030 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	9	
	4	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Pattern Recognition

パターン認識と機械学習

[Code] 91220 [Course Year] [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] This course provides foundations of Pattern Recognition and Machine Learning and includes exercises with some Machine Learning systems. Their applications to Artificial Intelligence, Intelligent Media Processing, and Processing large scale data are also provided.

【Grading】 The grading is based on the examination following the course, and some home-works provided in the course. 【Course Goals】 The course aims at making students acquire foundations of Pattern Recognition and Machine Learning and understand data driven computing. The exercises are for students to ensure the contents and to making use of them.

[Course Topics]

Theme	Class number of times	Description	
	'	What is Pattern Recognition?: feature vectors and feature spaces, prototypes and	
		the nearest neighborhood method	
		Discriminant Functions: linear discriminant functions, piece-wise linear	
		discriminant function, quadratic discriminant functions, over-fitting	
Pattern Recognition	7	Statistical Learning: Bayes decision, loss function, maximum likelihood	
(Kawahara)	/	estimation, normal distribution, parametric learning	
		Discriminative Learning: Non- parametric learning, perceptrons, neural networks,	
		Support Vector Machines	
		Feature Extraction: feature normalization, KL expansion, principal component	
		analysis, discriminant analysis	
	7	Machine Learning from Discrete Data: Decision Tree, Bag of words, N-gram	
		Model	
		Distance and Clastering : hierarchical clustering, distances between discrete data,	
Mashina Lasmina		the k-means method, the EM algorithm	
Machine Learning		Validation and Evaluation: cross validation, ROC, precision and recall	
(Yamamoto)		Association Rules: the Apri-ori algorithm, maximal frequent item sets, the	
		FP-growth algorithm (a divide-and-conquer algorithm), closed item sets	
		Learning from Various Types of Data: finding frequent substrings, teating tree	
		structure	
Excersises	1	Evanuelana	
(Yamamoto)	1	Excersises	

【Textbook 】Indicated in the Japanese page

【Textbook(supplemental)】 Pattern Classification (Richard O. Duda, Peter E. Hart, and David G. Stork, Wiley), Learning Machines (N.J.Nilsson, Morgan Kaufmann),

(学習機械(渡辺茂訳,コロナ社)),

The Top Ten Algorithms in Data Mining (Xindong Wu and Vipin Kumar, Chapman and Hall/CRC)

[Prerequisite(s)] Artificial Intelligence, Mathematical Analysis, Linear Algebra, Probability and Statistics, Information Theory

[Web Sites]

[Additional Information] The contents above will be changed according to some reasons, e.g. the total number of classes in the term.

Databases

データベース

[Code] 90980 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1-2	
	2-3	
	2-3	
	4	
	4	

【Textbook】 Raghu Ramakrishnan and Johannes Gehrke-- Database Management Systems, 3rd edition, McGraw-Hill, 2002.

【Textbook(supplemental)】 J.D.Ullman: Principles of Database and Knowledge-base Systems Vol.1, Computer Science Press, 1988.

Hector Garcia-Molina, Jeffrey D. Ullman, Jennifer Widom: Database Systems: The Complete Book, Pearson; 2nd International, 2008.

C.J. Date: An Introduction to Database Systems, Addison Wesley; 8th edition, 2003.

Serge Abiteboul, Richard Hull, Victor Vianu: "Foundations of Databases", Addison Wesley, 1994.

[Prerequisite(s)]

[Web Sites]

Introduction to Integrated System Engineering

集積システム入門

[Code] 91100 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Structure of logic	2 ~ 3	
circuits	2 " 3	
Estimating	3 ~ 4	
propagation delay	J 4	
Power consumption		
and low-power	2	
design		
SPICE lab exercise	4	
System LSI design	1 ~ 2	
Review	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Reading and Writing Scientific English

技術英語

[Code] 90540 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] [Language] [Instructor]

【Course Description】 How is it that scientists from all over the world can all share and contribute to the world's most advanced scientific discoveries, despite coming from very different linguistic backgrounds? The key to that success is the reliance on a common language: scientific english. Scientific english is a streamlined version of english, designed to convey complex ideas as clearly as possible. In this class, three lecturers introduce English technical writing, presentation and reading:

1. English technical writing

Writing a scientific paper or a patent proposal in english requires a different skill set than writing other types of documents in english (letter, announcement, speech etc..). We will survey in this section of this course the following relevant topics:

- Basic rules of scientific paper writing and avoidable mistakes;
- Differences between scientific english and scientific japanese;
- Typography, proofreading, figures: tools to maximize quality and impact;
- Research interactions in an international publishing environment: reviewing, rebuttals & letters to editors.

2. Technical presentation

In the presentation classes, we will learn the basic presentation skills by

- watching videos of example good/poor presentations;
- learning the typical organizations of technical presentations;
- making and presenting slides for the particular topic.

3. Reading technical papers in English

Reading technical papers requires a skill to understand logical and mathematical expressions, besides basic reading comprehension. The key is to grasp the context in English without word-for-word translation. In the classes, we pick up materials from technical papers or textbooks and read them together.

[Grading] Your grade is determined by your performance of class attendance and the score of final examination.

[Course Goals] You will acquire basic knowledge and skill for reading and writing technical articles in English.

[Course Topics]

Theme	Class number of times	Description
English writing	5	Reading and writing articles on information science and technology in English
Technical presentation	5	Learn basic / technical presentation skills in English.
English reading	5	Learn reading English technical documents.

【Textbook】 We will deliver supplemental materials in classes.

【Textbook(supplemental)】 "SPEAKING of SPEECH (New Edition)", David Harrington and Charles LeBeau, MACMILLAN.

[Prerequisite(s)]

[Web Sites]

[Additional Information] You are expected to attend class regularly.

Information Systems

情報システム

[Code] 91110 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	1	
	1	
	1	
	2	
	2	
	2	
	1	
	2	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Theory of Algorithms

アルゴリズム論

[Code] 90551 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] We introduce a computation model suitable for discussing both time and space complexities of algorithms and problems, then study basic ideas and issues of computational complecity theory.

【Grading】 Two reports and a final exam.

【Course Goals】

[Course Topics]

Theme	Class number of times	Description	
review of language	1		
and automata theory	1		
Turing mashings	4	Basic properites of Turing machites including their computation power and	
Turing machines	4	several equivalent machines.	
Decidability and	4	The notion of decidebility of much lamp and examples of an decideble much lamp	
Undecidability	4	The notion of decidability of problems and examples of undecidable problems.	
Introduction of	-	Decidable but intractable problems and NP-completeness. Discussion to	
complexity theory	6	check the achievements of students	

【Textbook】 Iwama, Introduction to theory of algorithms, Shoko-do, 2001 .

【Textbook(supplemental)】

[Prerequisite(s)] 91040

[Web Sites]

Image Processing

画像処理論

[Code] 90660 [Course Year] [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1 ~ 2	
	1 ~ 2	
	1	
	1	
	1	
	1	
	1	
	1 ~ 2	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Software Engineering

ソフトウェア工学

[Code] 90990 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	2	
	2	
	1	
	2	
	1	
	1	
	2	
	1	

【Textbook】ソフトウェア工学入門 (鰺坂恒夫著,サイエンス社)

【Textbook(supplemental)】 Ian Sommerville: ""Software Engineering 8th Edition"",Addison-Wesley, ISBN 0321313798, 2006.

[Prerequisite(s)]

[Web Sites]

Multimedia

マルチメディア

[Code] 91120 [Course Year] [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	3 ~ 4	
	2 ~ 3	
	3	
	1 ~ 2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Computation and Logic

計算と論理

[Code] 90860 [Course Year] [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	6	
	7	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Bioinformatics

生命情報学

[Code] 91190 [Course Year] [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Takatsune Kumada (Graduate School of Informatics, Professor)

Tatsuya Akutsu (Institute for Chemical Research, Professor)

[Course Description] This course overviews mathematical models and computational methods in bioinformatics. In particular, this course explains how such methods as graph theory, machine learning, optimization, and nonlinear differential equations are applied to analyses of biological sequences and biological systems including neural and brain systems. This course is given in Japanese.

【Grading】 See Japanese page for details.

[Course Goals] See Japanese page for details.

[Course Topics]

Theme	Class number of times	Description
Neural information	1	
processing in brain	1	
Visual information	2	
processing	2	
Visual attention	2	
Cognitive function	1	
Overview of	1	
bioinformatics	1	
Sequence analysis	1	
Inference of	2	
phylogenetic trees	<u></u>	
Hidden Markov	2	
models	<u></u>	
Analysis of protein	1	
structures	1	
Scale-free networks	1	
Feedback	1	

[Textbook]

【Textbook(supplemental)】Textbooks or recommended books will be informed in the course as required. The latter part of the course, a recommended book is as follows (in Japanese); 阿久津達也 著:バイオインフォマティクスの数理とアルゴリズム, 共立出版 (2007)

[Prerequisite(s)] Basic knowledge related to biology and brain science will be provided in the course.

[Web Sites]

[Additional Information] The oder and contents of the course topics can be changed.

Mathematics of Information and Communication

情報と通信の数理

[Code] 91200 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Toshiyuki TANAKA, Professor, Graduate School of Informatics, Jun OHKUBO, Assistant Professor, Graduate School of Informatics

[Course Description] Describes basics of "Shannon theory," which provides a solid mathematical framework for quantitatively understanding and dealing with "information" (reduction of uncertainty) and "communication" (relationship between uncertainties). Advanced topics such as rate-distortion theory and network information theory will be reviewed as well.

[Grading] Grading is done on the basis of evaluation of both written assignments given in the class and the end-term examination.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
		An overview of the whole course is followed by introduction of basic
Introduction / Basic	_	information measures such as entropy, relative entropy, and mutual
concepts	5	information. Asymptotic equipartition property and entropy rate of Markov
		chains are also described.
		The problem of data compression can be reduced to that of how to provide to
D	2	random variables a description whose length is short on average. Average
Data compression	3	description length of given random variables, as well as its relation with
		entropy, is discussed.
	2	One of the most profound results of Shannon theory is channel coding
		theorem, which states that it is possible to transmit information over a noisy
Channel capacity		channel with a vanishing amount of errors. Channel capacity, which is a
		measure of information transmission ability of a given channel, is introduced,
		and theoretical limit of communication is argued.
T. C		In view of wireless communication and measurements, a theory that can deal
Information theory	2	with continuous-valued random variables. Differential entropies for such
for		random variables are introduced, on the basis of which information
continuous-valued random variables		transmission capability of a Gaussian channel is discussed as the most basic
		example.
Advanced topics	2	Some advanced topics such as rate-distortion theory, Kolmogorov complexity,
	2	and network information theory will be discussed.
Check of	1	
achievement	1	

【Textbook】T. M. Cover and J. A. Thomas, Elements of Information Theory, 2nd ed., Wiley-Interscience, 2006. 【Textbook(supplemental)】To be introduced in the class.

[Prerequisite(s)] Assumes basic knowledge of probability theory. Knowledge of statistics and Markov chains should be helpful.

[Web Sites]

Signals and Systems

信号とシステム

[Code] 90810 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	3	
	2	
	2	
	2	
	3	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Analysis in Mathematical Sciences

数理解析

[Code] 91180 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	2	
	2	
	2	
	2	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Business Mathematics

ビジネス数理

[Code] 91210 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

Course Description I it is important to learn the mechanism of the business and the process of the value creation in understanding the contemporary society. I introduce various theories of the business strategy including the finance, accounting, risk management, R&D and marketing. Moreover, how the technique and the idea of mathematical engineering are used in the phase of various decision makings of the business.

[Grading] Written examination (70%), and attendance and the class participation (30%)

[Course Goals] The target of the class is to obtain enough knowledge about an outline, a vital point of the business strategy and the effectiveness of mathematical methods.

【Course Topics】

Theme	Class number of times	Description
Evaluation of	times	<u> </u>
corporate value and	4	
business strategy		
Finance and	2	
accounting	2	
	6	Bayes theorem (strategic change by acquisition of information by marketing);
Ducinoss stratosy		Optimization technique (decision of business portfolio and sales price);
Business strategy		Decision tree and real option (research management); Game Theory
		(environmental solution)
Business risk	2	
management	2	
Summary and review	1	Summary and review; Confirmation of achievement level.

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Information and Business

情報と職業

[Code] 91080 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	7	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Engineering Ethics

工学倫理

[Code] 21050 [Course Year] 4th year [Term] [Class day & Period] Thu 3rd [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Introduction to Engineering

工学序論

[Code] 21080 [Course Year] 1st year [Term] [Class day & Period] [Location] [Credits] 1

[Restriction] No Restriction [Lecture Form(s)] [Language] [Instructor],

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1~2	
	6	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Engineering and Ecology(in English)

工学とエコロジー(英語)

[Code] 22110 [Course Year] [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] English [Instructor],

[Course Description] The purpose of this course is to teach global ecological and environmental topics from an engineer viewpoint. The course especially contains such global ecological and environmental topics where engineering can provide solutions for sustainability. The course is consisted of lectures and additional exercises, of which the student should complete five (5) written short reports and five (5) 60 minutes laboratory session attendances. The laboratory sessions are held weekly after the lecture, and consist of interactive group work tasks.

【Grading 】Test, reports, laboratory performance.

[Course Goals] This course will provide tasks for engineering students to become aware of the relationships between engineering and various aspects of environmental issues. Students will also learn how to apply engineering skills to various environmental and ecological issues. The course prepares the students to be able to write engineering related ecological and environmental topics in English as well as verbally express themselves of these subjects.

[Course Topics]

Theme	Class number of times	Description
Student orientation, and		
Basic issues and critical	1	
thinking about the	1	
environment		
Environment and human		
population, ecosystems	2	
and communities		
Succession and restoration	3	
Biogeography	4	
Productivity and energy		
flow	5	
World food supply	6	
Effects of agriculture	7	
Basics of energy, fossil	0	
fuels	8	
Alternative - and nuclear	0	
energies and environment	9	
Water supply and use	10	
Water management,	11	
pollution and treatment	11	
Air pollution,	12	
Environmental economics	12	
Waste management,	13	
environmental planning	13	
Final test	14	

[Textbook]

【Textbook(supplemental)】None

[Prerequisite(s)] Note:

- -Interactive lessons (discussion), Small group working method
- -This course is held in English.

[]

[Web Sites] None

[Additional Information] If you have any questions or need further information, feel free to contact at 090aglobal@mail2.adm.kyoto-u.ac.jp.

Engineering and Economy(in English)

工学と経済(英語)

[Code] 22210 [Course Year] [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] English [Instructor],

Course Description 1 The purpose of this course is to teach economy from an engineer viewpoint. The course especially contains such economic topics which engineer can use to solve practical engineering economy problems. The course is consisted of lectures and additional exercises, of which the student should complete five (5) written short reports and five (5) 60 minutes laboratory session attendances. The laboratory sessions are held weekly after the lecture, and consist of interactive group work tasks. Laboratory sessions are held weekly from 18 to 19 o' clock.// The course is aimed for both Japanese and Foreign nationals.// The course starts on October 6th.

【Grading 】 Test, reports, laboratory performance.

[Course Goals] This course will provide tasks for engineering students to be able to understand relationships between engineering and engineering economy. Students will learn solving economic problems related to engineering project at various levels. The course also prepares the students to write engineering related economic topics in English as well as verbally express themselves of these subjects.

[Course Topics]

Theme	Class number of times	Description
Student orientation,		
Introduction to	1	Course introduction; Principles of engineering economy
engineering economy		
Cost concept	1	Cost terminology; Competition; Total revenue function; Breakeven point
Design economics	1	Cost-driven design; Making vs. purchasing; Trade-offs
Cost estimation techniques I	1	Integrated approach and WBS; Index, unit, and factor techniques
Cost estimation techniques	1	Parametric estimating; Power-sizing technique; Learning curve; Cost estimation, bottom-up,
II		top-down, target costing
The time value of money I	1	Simple interest; Compound interest; Equivalence concept; Cash-flow digrams
The time value of money	1	Present and future equivalent values of single cash flows
II	1	Tresent and future equivalent values of single easil flows
The time value of money	1	Uniform series cash flows; Deferred annuities; Uniform gradient cash flows; Nominal and
III	1	effective interest rates
Evaluation of a single	1	Determining minimum attractive rate of return (MARR); The present worth method; Bond value;
project I	1	Capitalized-worth method
Evaluation of a single	1	The future worth method; The annual worth method; The internal rate of return method; The
project II	1	external rate of return method
Comparison and selection	1	
among alternatives I	1	Basic concepts; The study (analysis) period; Useful lives are equal to the study period
Comparison and selection	1	Useful lives are unequal to the study period; Repeatability; Cotermination; The imputed market
among alternatives II	1	value technique
Income taxes and	1	Concepts and terminology; Depreciation; Straight-line method; Declining-balance method; Income
depreciation	1	taxes; Marginal tax; Gain or loss on the disposal of an asset; After-tax economic analysis
Final test	1	The test is based on the above topics

 $\hbox{\tt [Textbook] Sullivan, Wicks, Koelling; Engineering Economy, 15th Ed. 2012, Chapters~1-7.}$

【Textbook(supplemental)】

[Prerequisite(s)] Note:

- -Interactive lessons (discussion), Small group working method
- -This course is held in English.

[]

[Web Sites] None

[Additional Information] If you have any questions or need further information, feel free to contact at 090aglobal@mail2.adm.kyoto-u.ac.jp.

Global Leadership Seminar I

G L セミナー (企業調査研究)

[Code] 24010 [Course Year] [Term] [Class day & Period] [Location] [Credits] 1 [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2~3	
	2~3	
	12	
	3~4	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Global Leadership Seminar II

GLセミナー (課題解決演習)

[Code] 25010 [Course Year] [Term] [Class day & Period] [Location] [Credits] 1 [Restriction]

[Lecture Form(s)] [Language] [Instructor],

[Course Description]

[Grading]

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	1	
	3	
	7	
	1	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

International Internship of Faculty of Engineering I

工学部国際インターンシップ1

[Code] 24020 [Course Year] [Term] [Class day & Period] [Location] [Credits] 1 [Restriction]

[Lecture Form(s)] Exercise [Language] English, et al.

[Instructor] Faculty of Engineering, Professor, Hitoshi Mikada and the related faculty members

[Course Description] Acquisition of international skills with the training of foreign language through the to internship programs hosted by the University, the Faculty of Engineering, or the Departments in the Department.

[Grading] Marit rating is done based on the presentation or reports after each internship program. Each D epartment responsible to identify if the credit earned by this subject to be included as mandatory ones or not. If the credit is not included in the department in which the participant belongs to, the credit is granted by the Global Leadership Education Center as a optional credit. The number of credits, either 1 or 2, will be determined depending on the contents and the duration of the program that the participant has participated in.

[Course Goals] The acquisition of international skills with the training of foreign language through the to internship programs hosted by the University is the major expectation to the students.

[Course Topics]

	Theme	Class number of times	Description
--	-------	-----------------------	-------------

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

International Internship of Faculty of Engineering 2

工学部国際インターンシップ 2

[Code] 25020 [Course Year] [Term] [Class day & Period] [Location] [Credits] 2 [Restriction]

[Lecture Form(s)] Exercise [Language] English, et al.

[Instructor] Faculty of Engineering, Profesor, Hitoshi Mikada, and the related faculty members

[Course Description] Acqusition of international skills with wth the training of foreign language through the participation to the international internship programs held by the Faculty of Engineering or its subsidiary bodies.

Grading Marit rating is done based on the presentation or reports after each internship program. Each D epartment responsible to identify if the credit earned by this subject to be included as mandatory ones or not. If the credit is not included in the department in which the participant belongs to, the credit is granted by the Global Leadership Education Center as a optional credit. The number of credits, either 1 or 2, will be determined depending on the contents and the duration of the program that the participant has participated in.

[Course Goals] The acquisition of international and foreign language skills through the participation to international programs is expected. Detailed objectives of the participation should be identified by each program.

[Course Topics]

Theme Class number of times Description

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Introduction to Electonics

エレクトロニクス入門

[Code] 53000 [Course Year] [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

【Course Description】

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	2	
	5	
	2	
	5	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

Quantum Physics 1

量子物理学 1

[Code] 50182 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Miyadera,

[Course Description]

【Grading 】 examination

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction	2	
Fundamental		
framework of	3	
quantum theory		
Quantization	2	
Particle motion in	3	
one dimension	3	
Harmonic oscillator	1	
WKB approximation	2	
Particle motion in	1	
three dimensions (2)	1	
Confirmation of	1	
achievement in study	I	

【Textbook】

【Textbook(supplemental)】 Modern Quantum Mechanics (J.J.Sakurai)

Lectures on Quantum Theory (C.J. Isham)

[Prerequisite(s)] Classical mechanics, Linear algebra

[Web Sites]

Quantum Physics 2

量子物理学2

[Code] 50192 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Miyadera,,

[Course Description]

【Grading 】 examination

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
Fundamental		
framework of	2	
quantum mechanics		
Angular momentum	3	
Central potential	1	
Perturbation theory	3	
(stationary method)	3	
Perturbation theory	2	
(interaction picture)	2	
Many particle system	2	
Recent developments	1	
Confirmation of	1	
achievement in study	ı	

【Textbook】

【Textbook(supplemental)】 Modern Quantum Mechanics (J.J.Sakurai)

Lectures on Quantum Theory (C.J. Isham)

【Prerequisite(s)】Quantum Physics 1

[Web Sites]

Electronic Circuits

電子回路

[Code] 60100 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Kazuhiko Sugiyama

[Course Description] Following the lecture of fundamentals of active device circuits in the course "Electric and Electronic Circuits", modeling of active devises, fundamentals of transistor circuits, various amplifier circuits, negative feedback in circuits, operational amplifiers, and oscillators are lectured. Nonlinear circuits, power supplies, and noise would be included in the course, when the lecture time remains.

[Grading] Examination and reports. More details are opened in the URL of this lecture.

[Course Goals] The goal of this course is to acquire the fundamentals of electronic circuits. Starting with understanding of a fundamental concept of electronic circuits i.e., modeling of active devices, the lecture based on the fundamental concept proceeds step by step to understand electric circuits. In this style, the lecturer wants to give the students an ability to understand the principles of more complicated circuits by application of deep understanding the fundamentals. The main targets to be understood are the circuits with bipolar transistors and operational amplifiers, as well as the fundamental concepts.

[Course Topics]

Theme	Class number of times	Description
36.13' 6.4'		The essential concepts in the electronic circuit are lectured in order to treat active devices in
Modeling of active	3	the electric circuit theory. The concepts are the controlled source and the linearization. The
devices		decoupling between the bias and the signal, another important concept, is lectured.
Fundamentals of	3	The characteristics of the basic bipolar-transistor circuits of three different common
transistor circuits		references are lectured based on the operation principle of the bipolar transistor. The biasing
transistor circuits		circuits are lectured with somewhat practical circuits.
Various amplifier		Several power amplifier circuits are lectured as we focus on their power efficiencies. DC
Various amplifier	3	amplifier circuits are lectured as we bear in mind that they are applied in operational
circuits		amplifiers.
Operational amplifiers	2	The concept and advantages of the negative feedback circuit are lectured, and an important
		concept in the operational amplifier, the virtual short, is explained. The linear operational
		circuits such as integrator and differential circuits, and nonlinear operational circuits such as
		logarithmic and exponential amplifiers are introduced.
Oscilators	2	The principle of the oscillator circuit is lectured as a concept of the positive feedback.
		Various oscillator circuits are introduced with their characteristics.
Others	1	If we have a more lecture time, nonlinear circuits of multiplier and modulation/demodulation
		circuits, power supplies for electronic circuits, and the noise in electronic circuits will be
		lectured.
Evamination	1	We make an examination in order to investigate the achievement in the lecture. We will offer
Examination		an additional chance for discussion to the students who do not achieve satisfactorily.

[Textbook] M. Kitano, Fundamentals of Electronic Circuits (Reimei Publishing, Kyoto, 2008)

【Textbook(supplemental)】 In addition to Japanese books, Tietze and Schenk: Electronic Circuits (Splinger);

Hayes and Horowitz: Student Manual for the Art of Electronics (Cambridge)

[Prerequisite(s)] "Electric and Electronic Circuit (60030)" and "Fundamentals of Circuit Theory (60630)". (The lecturer recommends moderate understanding of fundamentals of electric circuit as the minimum prerequisites in order to achieve this course.)

[]

[Web Sites] Link to the homepage of this course is here; (https://panda.ecs.kyoto-u.ac.jp/portal/site/2014-110-6010-000) Sorry for Japanese version only.

[Additional Information] The topics will be selected owing to limit of lecture time. The students should prepare "Bar Cover (http://www.kuee.kyoto-u.ac.jp/barcover/)" by themselves, used as a title page of each report. The homepage of this course is located in PandA (https://panda.ecs.kyoto-u.ac.jp/portal/). Contact the instructor after the lecture, when the students have any questions.

Modulation Theory in Electrical Communication

通信基礎論

[Code] 60320 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

【Grading】

【Course Goals】

[Course Topics]

Theme	Class number of times	Description
	4-5	
	5-6	
	4-5	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

工学部シラバス 2015 年度版

([E] Informatics and Mathematical Science) Copyright ©2015 京都大学工学部 2015 年 4 月 1 日発行 (非売品)

編集者 京都大学工学部教務課 発行所 京都大学工学部

〒 606-8501 京都市左京区吉田本町

デザイン 工学研究科附属情報センター

工学部シラバス 2015 年度版

- · Common Subjects of Faculty of Engineering
- [A] Global Engineering
- [B] Architecture
- [C] Engineering Science
- [D] Electrical and Electronic Engineering
- [E] Informatics and Mathematical Science
- [F] Industrial Chemistry
- ・**オンライン版** http://www.t.kyoto-u.ac.jp/syllabus-s/本文中の下線はリンクを示しています.リンク先はオンライン版を参照してください.

オンライン版の教科書・参考書欄には京都大学蔵書検索(KULINE)へのリンクが含まれています.

