SYLLABUS

2017

[D] Electrical and Electronic Engineering

Kyoto University, Faculty of Engineering

[D] Electrical and Electronic Engineering

Electrical and Electronic Engineering

60740 Introduction to Electrical and Electronic Engineering	1
60630 Fundamentals of Circuit Theory	2
60030 Electric and Electronic Circuits	3
60100 Electronic Circuits	4
61180 Exercise of Electric and Electronic Circuits	5
61190 Electrical and Electronic Engineering Practice A	6
60620 Exercise of Computer Programming in Electrical and Electronic Engineering	7
61020 Mathematics for Electrical and Electronic Engineering 1	8
60080 Electromagnetic Theory 1	9
60120 Logic Circuits	10
60160 Computer Architecture Basics	11
60130 Information Theory	12
60150 Fundamentals of Electron Physics and Devices	13
60401 Semiconductor Engineering	14
61010 Electric and Electronic Measurement	15
62010 Practice of Electrical and Electronic Engineering	16
62020 Advanced Practice of Electrical and Electronic Engineering	17
60800 Computational Methods and Exercise in Electrical and Electronic Engineering	18
90302 Graph Theory	19
60220 Electric Circuits	20
60090 Electromagnetic Theory 2	21
61050 Electric Machinery Fundamenntals	22
61030 Mathematics for Electrical and Electronic Engineering 2	23
60600 Digital Circuits	24
60260 Control Engineering	25
60270 Digital Control	26
60660 System Optimization	27
61060 Applied Electric Machinery	28
60720 Power Electronics	29
62030 Power System Engineering	30
60310 Electrical Discharge and Breakdown	31
60320 Modulation Theory in Electrical Communication	32
60330 Information Transmission	33
60340 Telecommunication Networks	34
61090 Radio Engineering	35
60370 Computer Software	36
61110 Embedded Computer Systems	37
60610 Digital Signal Processing	38
60390 Solid-State Electronics	39

60810 Quantum Theory for Electrical and Electronic Engineering	40
60410 Plasma Engineering	41
60420 Vacuum Electronic Engineering	42
60430 Electrical and Electronic Materials	43
60440 Fundamentals of Optical Engineering 1	44
61120 Basics of Biomedical Engineering	45
61140 Introduction of Mechatronics	46
60360 Microwave Engineering	47
60480 Optical Communications	48
60560 Optoelectronic Devices	49
60570 Fundamentals of Optical Engineering 2	50
60670 Intelligent Systems	51
61040 Electrical Conduction in Condensed Matter	52
62040 Applied Electric Power Engineering	53
61100 Antenna and Propagation Engineering	54
61130 Integraged Circuits Engineering	55
61150 Information and Communication Engineering	56
62000 Electrical and Electronic Engineering in Biomedical Applications	57
61160 Solid State Physics and Engineering	58
60580 Laws and Regulations of Electric Power Engineering	59
60590 Laws and Regulations of Radio Wave Engineering	60
64000 English for Electrical and Electronic Engineering	61
21050 Engineering Ethics	62
21080 Introduction to Engineering	63
22210 Engineering and Economy(in English)	64
24010 Global Leadership Seminar I	65
25010 Global Leadership Seminar II	66
24020 International Internship of Faculty of Engineering I	67
25020 International Internship of Faculty of Engineering 2	68

Introduction to Electrical and Electronic Engineering 電気電子工学概論

[Code] 60740 [Course Year] 1st year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] [Lecture Form(s)] [Language] Japanese [Instructor] All,

[Course Description] By understanding the activities conducted in the laboratories that belong to the Electrical and Electronic Engineering Course, the students learn what is the electrical and electronic engineering. Except the first time in the beginning of this course, the students will investigate the activities in the lab and have a presentation of their investigations. The students are expected to deeply understand the activities by actively investigating them by themselves and by explaining the results to other students. The students are also expected to make acquaintance with teachers and senior students (in the final year, and in master or PhD course) in the lab, and to recognize that it is essential to understand the contents lectured in the basic courses that they will learn in the first and second year, thorough the investigation of the lab and special lectures. The class will be usually conducted every two weeks and continue for two lecture-units in each lecture day. The class number of times in the table below shows the number of the lecture days.

[Grading] The grading is conducted by evaluation of various points, including the attendances at the lectures, the visit to the laboratories, and the presentation; the scores of the report; the score of the presentation.

[Course Goals] The goal of this lecture is that the students view how he or she will develop the field of the electric and electronic engineering and simultaneously how they develop their faculties in the field. For this purpose, the students will make teams, and each team will investigate the activity of a laboratory that belong to the Electric and Electronic Engineering Course. The teams cover all of the labs, and the students will share the results of their investigations through the presentation. Then, they will acquire an overview of the field of the electric and electronic engineering.

[Course Topics]

Theme	Class number of times	Description
		A overview of the education that will be provided in the Electric and Electronic
Overview	1	Engineering Course is lectured. After an introduction of how to proceed this
		course, the teams for investigation of each laboratory are announced.
Visiting of	1	Each team visits the assigned laboratory (No. 1) that belongs to the Electric and
laboratories (No. 1)	1	Electronic Engineering Course, and investigates the activities in the lab.
Visiting of	2	Each team visits the assigned laboratory (No. 2) that belongs to the Electric and
laboratories (No. 2)	2	Electronic Engineering Course, and investigates the activities in the lab.
Preparation of	2	The students prepare a poster presentation to introduce the activities in the
presentation	2	laboratory (No. 2) that they visit and investigate.
		Each team performs a poster presentation. The students learn the activities in the
Presentation	1	laboratories that belong to the Electric and Electronic Engineering Course from the
		poster presentations of the other teams.

[Textbook] The materials will be distributed.

【Textbook(supplemental)】

[Prerequisite(s)]

[Web Sites]

[Additional Information] There is a possibility that some parts of the lectures would be removed or some new lectures would be additionally included, according to the total class number of times.

Fundamentals of Circuit Theory 電気回路基礎論

[Code] 60630 [Course Year] 1st year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] The course introduces the fundamentals of the electric circuit. Topics covered include: resitive elemnts and networks; independent sources; switches and dynamics of first- and second-order networks; phasor analysis; 2-port circuits.

[Grading] Reports and examinations

[Course Goals] Students are expected to learn the transient analysis by differential equation and steady state analysis by phasor.

[Course Topics]

Theme	Class number of times	Description
DC circuit	3	We introduce Kirchhoff's current law and Kirchhoff's voltage law, Ohm's law
DC circuit	3	and independent sources.
Differential equation	F	We introduce inductors and capacitors and explain the differential equation of
of circuit	5	circuit.
AC circuit	4	We introduce phasor and explain the steady state analysis.
two-port circuit	2	We extend one-port elements to two-port circuits.
academic	1	
achievement test	1	The level of understanding on this lecture will be confirmed.

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

[]

[Web Sites]

Electric and Electronic Circuits 電気電子回路

[Code] 60030 [Course Year] 1st year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Osami WADA,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Basic Three Phase	2	
Circuits	Z	
Passive Circuit	4	
Analysis	4	
Circuit Equations	2	
Active Circuit	3	
Analysis	3	
Frequency		
Characteristics of	2	
Electronic Circuits		
Basic Semiconductor		
Devices and	1	
Switching		
	1	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

[]

[Web Sites]

Electronic Circuits 電子回路

[Code] 60100 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Kazuhiko Sugiyama

[Course Description] Following the lecture of fundamentals of active device circuits in the course "Electric and Electronic Circuits", modeling of active devises, fundamentals of transistor circuits, various amplifier circuits, negative feedback in circuits, operational amplifiers, and oscillators are lectured. Nonlinear circuits, power supplies, and noise would be included in the course, when the lecture time remains.

[Grading] Examination and reports. More details are opened on the homepage of this lecture located on PandA.

[Course Goals] The goal of this course is to acquire the fundamentals of electronic circuits. Starting with understanding of a fundamental concept of electronic circuits i.e., modeling of active devices, the lecture based on the fundamental concept proceeds step by step to understand electric circuits. In this style, the lecture wants to give the students an ability to understand the principles of more complicated circuits by application of deep understanding the fundamentals. The main targets to be understood are the circuits with bipolar transistors and operational amplifiers, as well as the fundamental concepts.

[Course Topics]

Theme	Class number of times	Description
Modeling of estive		The essential concepts in the electronic circuit are lectured in order to treat active devices in
Modeling of active devices	3	the electric circuit theory. The concepts are the controlled source and the linearization. The
devices		decoupling between the bias and the signal, another important concept, is lectured.
Free de mante la cef		The characteristics of the basic bipolar-transistor circuits of three different common
Fundamentals of	3	references are lectured based on the operation principle of the bipolar transistor. The biasing
transistor circuits		circuits are lectured with somewhat practical circuits.
M		Several power amplifier circuits are lectured as we focus on their power efficiencies. DC
Various amplifier	3	amplifier circuits are lectured as we bear in mind that they are applied in operational
circuits		amplifiers.
		The concept and advantages of the negative feedback circuit are lectured, and an important
On	2	concept in the operational amplifier, the virtual short, is explained. The linear operational
Operational amplifiers	2	circuits such as integrator and differential circuits, and nonlinear operational circuits such as
		logarithmic and exponential amplifiers are introduced.
Occiletere	2	The principle of the oscillator circuit is lectured as a concept of the positive feedback.
Oscilators	2	Various oscillator circuits are introduced with their characteristics.
		If we have a more lecture time, nonlinear circuits of multiplier and modulation/demodulation
Others	1	circuits, power supplies for electronic circuits, and the noise in electronic circuits will be
		lectured.
E	1	We make an examination in order to investigate the achievement in the lecture. We will offer
Examination	1	an additional chance for discussion to the students who do not achieve satisfactorily.

[Textbook] M. Kitano, Fundamentals of Electronic Circuits (Reimei Publishing, Kyoto, 2011)

[Textbook(supplemental)] In addition to Japanese books, Tietze and Schenk: Electronic Circuits (Splinger);

Hayes and Horowitz: Student Manual for the Art of Electronics (Cambridge)

[Prerequisite(s)] "Electric and Electronic Circuit (60030)" and "Fundamentals of Circuit Theory (60630)". (The lecturer recommends moderate understanding of fundamentals of electric circuit as the minimum prerequisites in order to achieve this course.)

[]

[Web Sites] Link to the homepage of this course is here; (https://panda.ecs.kyoto-u.ac.jp/portal/site/2017-110-6010-000) or (https://panda.ecs.kyoto-u.ac.jp/portal/). Sorry for Japanese version only.

[Additional Information] The topics will be selected owing to limit of lecture time. The students should prepare "Bar Cover" from the website of the Faculty of Electric and Electronic Engineering (http://www.s-ee.t.kyoto-u.ac.jp/ja/student/index.html)) by themselves, and use it as a title page of each report and the exercise in the lecture. The homepage of this course is located on PandA (https://panda.ecs.kyoto-u.ac.jp/portal/). Contact the instructor after the lecture, when the students have any questions.

Exercise of Electric and Electronic Circuits 電気電子回路演習

[Code]61180 [Course Year]2nd year [Term] [Class day & Period] [Location] [Credits]2 [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	2	
	2	
	1	
	3	
	3	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

[]

[Web Sites]

Electrical and Electronic Engineering Practice A 電気電子工学基礎実験

[Code]61190 [Course Year]2nd year [Term] [Class day & Period] [Location] [Credits]2 [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	2	
	6	
	2	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Exercise of Computer Programming in Electrical and Electronic

Engineering

電気電子プログラミング及演習

[Code] 60620 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Seminar [Language] Japanese

[Instructor] Takashi Mastuyama, Sadao Kurohashi, Megumi Nakao, Shohei Nobuhara,

[Course Description] This course is aimed at learning programming in C, one of the most popular procedural programming languages in practice. The topics include: fundamental concept of programming, various data structures and control flows, practical skills on using compilers and debuggers.

[Grading] (1) weekly reports, (2) a final project, and (3) an interview on the final project.

[Course Goals] To understand the fundamental concept of programming, data structures, and control flows as well as to learn practical skills on using compilers and debuggers.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	Introduction of the importance and contributions of computer programming,
Introduction	1	followed by some instructions on weekly reports and a final project.
Drana quisitas of		Usages of C compilers and debuggers. Basic knowledge in C such as
Prerequisites of	3	operators, data types and their representations inside the computer, control
Programming		flows.
Dagia Dragramming	4	Arrays, multi-dimensional arrays, functions, scopes, bit-operations, recursive
Basic Programming	4	calls.
Advanced	2	Strings in C and their representations inside the computer, pointers, structures,
Programming	3	file I/Os.
Final Project	4	A final project of this year.

【Textbook】 Bohyoh Shibata: "Meikai C Gengo Nyuumon-hen (in Japanese)" (Softbank Creative)

[Textbook(supplemental)] Chinese version (9789862010426) and Korean version (9788991767447) of the textbook are available.

[Prerequisite(s)] "Information Processing Basics" and "Exercises in Information Processing Basics" (basic skills on using UNIX-like systems)

[]

[Web Sites] PandA: https://panda.ecs.kyoto-u.ac.jp

[Additional Information] You can use your own laptop PC (Windows, Mac, Linux) for weekly reports and the final project. Please bring your laptop PC at the 1st week of the course. TAs will help you to setup programming environment and wifi connection.

Plus, please consider installing Cygwin environment by following the instruction at http://www.bme.sys.i.kyoto-u.ac.jp/~meg/lecture/laptop_setting.pdf (id: member, pass: cpro) before the 1st week of the course by yourself. This will make the setup process in the 1st week much quicker.

Mathematics for Electrical and Electronic Engineering 1 電気電子数学 1

[Code] 61020 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] English

【Instructor】 Yoshiharu Omura and Shinji Doi,

[Course Topics]

[Course Description] We study properties of eigenfunctions, such as trigonometric functions, Bessel functions, Legendre functions as solutions of linear differential equations, which appear in various subjects of electric and electronic engineering such as electromagnetics, plasma physics, and quantum mechanics. As applications of these eigenfunctions, we also study Fourier series, Fourier transform, and Laplace transform.

[Grading] The grade will be given by adding all points of reports (5points x 13times) and a term examination(100 points). A grade grater than or equal to 60 is successful. If the total point exceeds 100, the grade is given as 100. [Course Goals] We learn mathematical methods to describe spatial and temporal evolutions of various physical phenomena.

Theme	Class number of times	Description	
Classification of		Partial Differential Equations (PDE) : Laplace, Helmholtz, and diffusion equations;	
Partial Differential	2	elliptic, hyperbolic, and parabolic types of 2nd order PDE.; derivation of Ordinary	
Equations		Differential Equations (ODE) from PDE by separation of variables	
Ordinary Differential		Series solutions by Frobenius' method; trigonometric, Bessel, and Legendre	
Ordinary Differential	2	functions. Singular points for ODE; Wronskian; linear indepedence of solutions;	
Equations		second solution	
Sturn-Liouville	1	Salf sigist ODE: Hamiltian anagatan Stump Liquville theory	
Theory	1	Self-ajoint ODE; Hermitian operator; Sturm-Liouville theory	
Green's Function	1	Crean's function method to solve nonhomogeneous equations	
Method	1	Green's function method to solve nonhomogeneous equations.	
		MATLAB Demonstration (vibrating membrane, EM wave radiation), generating	
Bessel Functions	2	function, Bessel series; application to frequency modulation. Hankel functions; 3D	
		Helmholtz equation in spherical coordinates, spherical Bessel functions	
Learn due Errestione	1	Legendre functions; generating functions; boundary value problems; associated	
Legendre Functions	1	Legendre polynomials.	
Fourier Series	1	Properties of Fourier Series, Gibbs Phenomenon	
Fourier Transform	2	Fourier integral, Fourier transforms of Gausian and derivatives, Dirac delta	
	2	function, Solutions of wave equation and diffusion equation	
Laplace Transform	2	Laplace transform, inverse Laplace transform, initial value problems of ODE	
Confirmatin of	1	The level of understanding on all topics covered by this lecture will be confirmed	
Understanding	1	through questions and discussion.	

[Textbook] Mathematical Methods for Physicists: A Comprehensive Guide, Seventh Edition, Arfken, Weber, and Harris (Kindle version is available.)

【Textbook(supplemental)】

[Prerequisite(s)] Calculus, Vector Analysis, Functions of Complex Variable, and English comprehension of the level of VOA Special English

[]

[Web Sites]

[Additional Information] Lectures are given mostly in English.

Electromagnetic Theory 1

電磁気学 1

[Code] 60080 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Matsuo,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2 ~ 3	
	2 ~ 3	
	5 ~ 6	
	3 ~ 4	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Logic Circuits 論理回路

[Code] 60120 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description] This lecture covers analysis and design of logic circuits that form a basis of digital circuits such as processors. First, Boolean algebra, logic function and its minimization are explained. Then, analysis and design of combinational and sequential circuits are covered. Finally, arithmetic circuits for binary numbers are discussed.

[Grading] The level of achievement toward the goal of this lecture will be examined by a regular exam.

[Course Goals] To obtain basic knowledge that enables the analysis and design of small-scale logic circuits both for combinational and sequential operations

Theme	Class number of times	Description
Basics of logic	2	Digital circuits and logic circus, number systems, Boolean algebra, logic
functions	2	functions, and logical expressions are covered.
T	4	Methods for logic minimization using Boolean cubes and Karnaugh maps,
Logic minimization	4	Quine-McCluskey method, properties of logic functions are explained.
Combinational	2	Logic gates, analysis and design of combinatorial circuits, representative
circuit	2	combinational circuits are discussed.
		Operation and expression of sequential circuits, organization and operation of
Sequential circuit	5	flip-flops, analysis and design of sequential circuits, synchronous counters and
		registers are explained.
		The effect of delay and hazard in logic circuits are explained. Methods for
Arithmetic circuit	1	binary addition and subtraction, organization and operation of binary adders

are discussed.

[Course Topics]

【Textbook】 Naofumi Takagi, Logic Circuits, Ohmsha.

1

[Textbook(supplemental)] Teruhiko Yamada, Theory of Logic Circuits, Morikita Publishing. Keikichi Tamaru, Basics of Logic Circuits, Kougaku-Tosho.

[Prerequisite(s)]

Confirmation of

understanding

[Web Sites]

[Additional Information]

The level of understanding on this lecture will be confirmed.

Computer Architecture Basics 計算機工学

[Code] 60160 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Takashi Sato and Toru Ishihara

[Course Description] This course attempts to provide a foundation for students to understand modern computer architecture and to apply the insights and principles to understand operation of the computer systems.

[Grading] A final course grade is given on the basis of the end-of-term exam. Results of homework assignments given in almost every class may be additionally considered for the grading.

[Course Goals] The primary goal is to help students understand how computer systems work. The course places a strong emphasis on the organization and operation of a basic pipelined microprocessor.

[Course Topics]

Theme	Class number of times	Description	
Computer systems	2	Fundamentals of computers history, data representation and arithmetic on	
overview	Z	computers, instruction sets, and components.	
Number		Integers, fixed point float, IEEE 754 floating numbers; binary arithmetic, and	
representation and	4		
binary arithmetics		logic operations in ALU.	
Machine language	2	Instruction formats of RISC processors; basic assembly language	
ALU and data path	2	Composition of ALU, highlighting the correspondence with ISA	
Control path and	4	Data flow and control in the computer singlining instruction execution	
pipelining	4	Data flow and control in the computer; pipelining; instruction execution	
Course summary	1	Summarize overall computer architecture	

[Textbook] Printed handouts are provided. Recommended to have following supplemental textbook.

[Textbook(supplemental)] David Patterson and John Hennessy, Computer Organization and Design: The Hardware/Software Interface (4th ed.)

[Prerequisite(s)] Logic circuits (60120).

[] Short quiz will be given as a homework at the end of the classes, which covers some of the key topics discussed in the lecture. Students are asked to solve them and submit by the next class. Through solving problems, students should try to enhance understanding of the design concepts and the mechanisms of the computers.

[Web Sites] Materials are provided through KULASIS.

https://www.k.kyoto-u.ac.jp/student/

[Additional Information] This syllabus is subject to change. Any changes to the syllabus shall be distributed in writing, which may include electronic communication.

Information Theory 情報理論

[Code] 60130 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	2	
	5	
	2	
	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

[]

[Web Sites]

Fundamentals of Electron Physics and Devices

物性・デバイス基礎論

[Code] 60150 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Tsunenobu Kimoto, Jun Suda,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Quantum mechnics	4-5	
Statistics	3-4	
Solid state physics	2-3	
Electrons in solids	3-4	
Summary	1	

【Textbook】Tanaka Tetsuro: Busseikougaku no kiso (Asakura Shoten)

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Semiconductor Engineering

半導体工学

[Code] 60401 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Tsunenobu Kimoto, Jun Suda,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Introduction to		
semiconductor	1	
engineering		
		Band structure, carrier statistics, intrinsic/n-type/p-type, current transport
Semiconductor	4-5	(drift, diffusion), mobility, conductivity/resistivity, majority/minority carrier,
physics	4-3	Hall effect, optical properties, photoconductivity, photovoltaics, high-field
		effect
Theory of pn		metal/semiconductor interface, ohmic and Schottky contacts, space charge,
	3-4	current-voltage characteristics, capacitance-voltage characteristics,
junctions		generation/recombination, pn junction
Transistors	4-5	bipolar transistors, MOSFETs
Summary	1	

【Textbook】Hiroyuki Matsunami: Handoutai kougaku (Shoukoudou)

[Textbook(supplemental)] WILEY S. M. Sze, Kwok K. NG ""Physics of Semiconductor Devices"" .

[Prerequisite(s)]

[]

[Web Sites]

Electric and Electronic Measurement 電気電子計測

[Code] 61010 [Course Year] 2nd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Graduate School of Engineering, Professor, Shigeki Takeuchi

(Course Description **)** The basics of the measurement of electrical and magnetic quantities will be explained. First we describe the general theory of the measurement, to explain the principles of the various measurement methods and measuring instrument on the amount of electricity. In addition, as electrical and electronic application measurement, optical measurement will be overviewed.

[Grading] The result of the final test, the results of tests at each lecture, and some reports will be taken into account for the total evaluation.

[Course Goals] Understand the basics of the electrical and electronic measurements.

[Course Topics]

Theme	Class number of times	Description
Standards and	2	The general theory of the measurement, the unit system, outlined of
traceability	Z	measurement standards and traceability.
Error and evaluation of the measurement data	2 ~ 3	The concept of error and uncertainty, as well as the basic evaluation method of measurement data such as regression analysis
Analog&digital	0 0	Amplification circuit using an operational amplifier (OA), DA and AD
signal processing	2 ~ 3	conversion, and Fourier transform.
		The most basic is to explain the principles of the instruction type electric
measurement		instrument, described voltage, current, power, the electrical quantities of the
technologies for	5 ~ 6	measurement method of the power factor and the like. In addition, measures
electrical quantities		for small voltage measurement and noise, also mentioned for measurement of
		the frequency domain.
Applied electric		
electronic	1 ~ 2	For example, optical measurements.
measurements		
Confirmation of	1	Confirmation of learning achievements on electric and electronic
learning achievement	1	measurements.

[Textbook] Kohro Yamazaki, Denki-denshi-keisoku-no-kiso (The institute of electrical engineers of Japan)

【Textbook(supplemental)】

[Prerequisite(s)] Electromagnetism, electrical and electronic circuits, mechanics

[]

[Web Sites]

[Additional Information] Some topics may be skipped or swapped according to the progress of the lecture.

Practice of Electrical and Electronic Engineering 電気電子工学実験

[Code]62010 [Course Year]3rd year [Term] [Class day & Period] [Location] [Credits]2 [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	4	
	2	
	2	
	2	
	2	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

[]

[Web Sites]

Advanced Practice of Electrical and Electronic Engineering 電気電子工学実習

[Code]62020 [Course Year]3rd year [Term] [Class day & Period] [Location] [Credits]2 [Restriction]

[Lecture Form(s)] Exercise [Language] Japanese [Instructor]

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Techniques and		
safety for	1	
experiments		
Power electronics	4	
DC servo mortors	4	
Semiconductor	4	
devices	4	
Materials for	4	
electronics	4	
Communication	4	
systems	4	
Logic circuits	4	
Feedback	2	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Computational Methods and Exercise in Electrical and Electronic

Engineering 電気電子計算工学及演習

[Code] 60800 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 3

[Restriction] No Restriction [Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description] This course introduces the students the fundamentals of numerical analysis required for electrical and electronic engineering. In addition, the course offers exercises to develop the skills in computer programming to solve the related problems.

[Grading] Grading will be made based on reports, interview, attendance to the class, and several quizzes.

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Numerical		
expression and errors	1 ~ 2	
in computer		
Solution of linear	2 ~ 3	
equation	2~3	
Solution of nonlinear	2 ~ 3	
equation	2~3	
Solution of	1~2	
eigenvalue problem	1~2	
Interpolation and	2 ~ 3	
numerical Integration	2~3	
Solution of ordinal	2 ~ 3	
differential equation	2 ~ 3	
Solution of partial	2 ~ 3	
differential equation	2~3	
Interview	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Graph Theory グラフ理論

[Code]90302 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction]

 $\label{eq:lecture Form(s)} \ensuremath{\mathsf{Lecture Form}(s)} \ensuremath{\mathsf{Lecture [Language]}} \ensuremath{\mathsf{Japanese [Instructor]}},$

[Course Description] We learn basic theories of graphs and their applications, and fundamental algorithms for solving graph problems.

[Grading] Mainly evaluated by the final exam. In some cases, exercises, discussions in class, and the number of attendance to the class may be considered.

[Course Goals] The goal of this course is to learn basic theories of graphs and their applications, and fundamental algorithms for solving graph problems.

[Course Topics]

Theme	Class number of times	Description	
Graphs and	4	I explain definition of graphs and basic properties of graphs. I also briefly	
algorithms	4	review the basics of algorithms and their complexity.	
Minimum spanning	1	Knakala algorithm Drim's algorithm Stainer tree problem	
trees	1	Kruskal's algorithm, Prim's algorithm, Steiner tree problem.	
Shortest path	1	Diikatra'a algorithm	
problems	1	Dijkstra's algorithm	
Eurer circuits and	2	Euror airquita Hamiltonian qualas Diras's theorem Ora's theorem	
Hamiltonian cycles	2	Eurer circuits, Hamiltonian cycles, Dirac's theorem. Ore's theorem.	
	2	Vertex coloring, and edge coloring. Brooks's theorem, Vizing's theorem,	
Graph coloring		Konig's theorem. Coloring maps.	
Maximum flow	2	Ford Fulkerson's algorithm	
problems	Δ	Ford-Fulkerson's algorithm.	
Matahing	2	Matchings, in particular, bipartite matchings. Hall's theorem, Hungarian	
Matching	Z	method.	
Exam	1		

【Textbook】グラフ理論入門 ~基本とアルゴリズム~,宮崎修一,森北出版株式会社 (in Japanese)

[Textbook(supplemental)] I show some recommended books in class.

[Prerequisite(s)] Basics of algorithms, data structures, and set theory.

[]

[Web Sites]

Electric Circuits 電気回路

[Code] 60220 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description] The course introduces the fundamentals of transmission line which is essensial for high-frequency circuit design. Topics covered include: circuit model of transmission line; telegraph equation, transient and steady states in transmission line, analysis with Laplace transform.

[Grading] Reports and examination

[Course Goals] Students are expected to learn the transient and steady states of the circuit with transmission line.

[Course Topics]

Theme	Class number of times	Description	
Distributed and	1	We introduce transmission line.	
lumped circuit	1	we introduce transmission line.	
Transient englusis	5	We introduce the circuit model of transmission line and derive telegraph	
Transient analysis	5	equation. Transient analysis in transmission line is explained.	
AC analysis	3	Steady state analysis in transmissionline.	
Transient analysis of	2	Transient en alvais with Lonloss transform	
lumped circuit	3	Transient analysis with Laplace transform	
synthesis of circuit	2	Synthesis of circuit by network functions.	
academic	1	The level of understanding on this lecture will be confirmed	
achievement test	1	The level of understanding on this lecture will be confirmed.	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Electromagnetic Theory 2

電磁気学 2

[Code] 60090 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Matsuo, Amemiya,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	2 ~ 3	
	3 ~ 4	
	3 ~ 4	
	1 ~ 2	
	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

[]

[Web Sites]

Electric Machinery Fundamenntals 電気機器基礎論

[Code] 61050 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description] Fundamental theory of electro-magnetic energy conversion, fundamental configuration and characteristics of transformer, induction rotating machine, synchronous rotating machine and direct current rotating machine are lectured.

[Grading] mini-exercises in class and regular exam

[Course Goals] Master the fundamentals of various types of electric machinery

[Course Topics]

Theme	Class number of times	Description	
General Introduction	1-2	History of electro-magnetic energy conversion and electric machinery	
Electro-magnetic	2.4		
energy conversion	3-4	fundamental theory of electro-magnetic energy conversion	
basic characteristics	8-9	basic characteristics and configuration, equivalent circuit of various types of	
of electric machinery	8-9	electric machinery	
general theory of	1	concerned any managine of electric marship on the dynamic performance analysis	
rotating mahine	1	general expression of electric machinery for dynamic performance analysis	
Evaluation of	1		
achievement	1	Exercise	

【Textbook】Resume

【Textbook(supplemental)】 Electric machinery (1),(2) Ed. Sakutaro Nonaka, Morikita Syuppan (in Japanese) ISBN 4627720106

Electric machinery (1),(2) Ed. Takao Okada, Ohm-Sya (in Japanese) ISBN 4274128970

[Prerequisite(s)] Electric Circuits, Electromagnetic Theory 1

[]

[Web Sites]

[Additional Information] Office hour : Monday 12:00-13:00

Mathematics for Electrical and Electronic Engineering 2 電気電子数学 2

[Code] 61030 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3-4	
	2-4	
	2-3	
	2-3	
	2-4	
	1	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

[]

[Web Sites]

Digital Circuits

ディジタル回路

[Code] 60600 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

【Course Description】 This lecture covers basics of digital circuits. First, fundamental properties of digital signals such as frequency characteristics, transmission and shaping of digital signals will be explained. Next, switching operation of semiconductor devices such as diodes, bipolar transistors and MOS transistors will be examined. Finally, circuit structure and performance of logic gates and memories for digital integrated circuits will be discussed.

[Grading] The level of achievement toward the goal of this lecture will be examined by a regular exam.

[Course Goals] To understand basic properties of digital signals and linearized circuits. To understand operating principles, circuit performance, and design method of logic gates and memories.

Theme	Class number of times	Description	
Basic properties of	2	Frequency spectrum of digital signals and step response of linearized circuit	
digital signals	2	will be explained.	
Transmission of	2	Signal transfer characteristics of loss-less transmission lines will be explained.	
digital signals	2	Lossy transmission lines will also be covered.	
Switching			
characteristics of	3	DC and transient characteristics of pn junction diodes, bipolar transistors,	
semiconductor	5	MOS transistors will be explained.	
devices			
Waveform shaping	1	Waveform shaping circuits such as a clipper, limiter, and Schmitt-trigger	
of digital signals	1	circuits will be explained.	
		Basic logic gates using bipolar transistors are explained. First, DC and	
Bipolar digital	2	transient characteristics of an bipolar inverter circuit will be analyzed. Next,	
circuits	2	circuit configuration, operating principle and circuit performance of an ECL	
		gate will be discussed.	
		Basic logic gates using MOS transistors are explained. Circuit configuration,	
MOS digital circuits	3	operating principle and circuit performance of a complementary logic gate, a	
		complex logic gate, and a dynamic logic gate will be discussed.	
MOS memory	1	Circuit configuration of POM and PAM will be explained	
circuits	1	Circuit configuration of ROM and RAM will be explained.	
Confirmation of	1	The level of understanding on this lecture will be confirmed.	
understanding	1	The level of understanding on this fecture will be commined.	

[Course Topics]

[Textbook] Hand-outs will be provided.

【Textbook(supplemental)】

[Prerequisite(s)] Semiconductor Engineering, Logic Circuits, Electronic Circuits

[]

[Web Sites]

Control Engineering 自動制御工学

[Code] 60260 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】T. Hagiwara, E. Furutani,

[Course Description] This course covers a basic theory of feedback control for linear continuous-time systems in the frequency domain. The fundamentals of control systems are lectured on through such concepts as the Laplace transformation, transfer functions, block diagrams, transient responses, frequency responses, and stability criteria. The course proceeds in parallel to the contents of Chapters 1 through 4 and the former half of Chapter 5 of the textbook. The stress of the lecture, however, is placed on the theoretical framework, the basic concepts, and their interrelations. Hence some topics are left to the spontaneous studies of the class members, who are also supposed to work on assignments to have better understanding.

[Grading] The assignments are only for motivating review; the grading will be based on the exam.

[Course Goals] To understand the basic treatment of linear feedback systems in the frequency domain, particularly the Laplace transformation and its role, the transient responses, stability and performance evaluation of feedback systems, frequency responses, as well as their relations.

[Course Topics]

Theme	Class number of times	Description	
Feedback systems		Fundamental notions for feedback systems, history and roles of control	
and the Laplace	4 ~ 5	technologies, the Laplace transformation as a key tool for dealing with	
transformation		feedback control systems, and transfer functions.	
Block diagrams and		Block diagrams and their equivalent transformations, the performance of	
feedback control	3 ~ 4	feedback control systems and its evaluation, basic properties of feedback	
	3~4	control systems and their roles observed through the analysis of step responses	
systems		of simple examples.	
Transient responses		Transient responses of systems and algebraic stability oritoric of foodbook	
and stability of	1 ~ 2	Transient responses of systems and algebraic stability criteria of feedback	
systems		systems.	
		Frequency responses and their representation such as the vector loci and the	
T.		Bode diagrams, manipulations of Bode diagrams, the Nyquist stability	
Frequency responses	4 ~ 5	criterion, and stability margins. Checking degrees of understanding of all the	
		lecture topics, e.g., through comments on the exam, closes the class.	

【Textbook】荒木光彦:古典制御理論 [基礎編](培風館)

【Textbook(supplemental)】

[Prerequisite(s)] Theory of functions in complex variables, as well as basic understanding about complex numbers.

[]

[Web Sites] (from within the university) http://www-lab22.kuee.kyoto-u.ac.jp/~hagiwara/ku/AC/

[Additional Information] The contents of the lecture and their order are subject to changes depending on the situation each year.

Digital Control

ディジタル制御

[Code] 60270 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】T. Hagiwara, Y. Ebihara,

[Course Description] This course covers a basic theory of digital control systems, based on the understanding on "Control Engineering." The treatment of discrete-time signals and linear discrete-time systems in the frequency domain is first introduced through the z-transformation and pulse transfer functions. Digital compensators as well as their programs and frequency responses, the stability and steady-state errors of closed-loop feedback systems, sampling period selection and anti-aliasing filters are then lectured on. The class members are supposed to understand the fundamental treatment of digital control systems through such concepts, who are also supposed to work on assignments about computational techniques to have better understanding.

[Grading] The assignments are only for motivating review; the grading will be based on the exam.

[Course Goals] To understand the basic treatment of digital control systems including their components and the associated difficulties and measures, particularly the z-transformation and its role, the discretization of controlled objects, the similarity to and differences from the analysis of continuous-time control systems, as well as aliasing.

[Course Topics]

Theme	Class number of times	Description	
Fundamentals of		The fundamental structure of digital control systems and the associated issues,	
digital control and	4 ~ 5	the z-transformation as a key tool for dealing with digital control systems, the	
the z-transformation		frequency-domain interpretation of samplers, and aliasing.	
Pulse transfer		Basic components such as hold circuits and pulse transfer functions,	
functions, frequency	4 ~ 5	discretization of controlled objects, the pulse transfer functions and programs	
response, and digital	4~3	of digital compensators, transient responses of discrete-time systems, stability	
compensators		and frequency responses, and basic digital compensators.	
		Analysis of digital control systems with pulse transfer functions through the	
		discretization of the controlled object and disturbances, the stability, stability	
Closed-loop digital	5~6	criteria and steady-state errors of closed-loop systems, basic standpoint for the	
control systems	5~6	disturbance rejection in digital control systems, sampling period selection and	
		anti-aliasing filters. Checking degrees of understanding of all the lecture	
		topics, e.g., through comments on the exam, closes the class.	

【Textbook】 荒木光彦: ディジタル制御理論入門(朝倉書店)

【Textbook(supplemental)】

[Prerequisite(s)] "Control Engineering", "Exercise of Computer Programming in Electrical and Electronic Engineering" (basic understanding about programming)

[Web Sites] (from within the university) http://www-lab22.kuee.kyoto-u.ac.jp/~hagiwara/ku/DC/

[Additional Information] The contents of the lecture and their order are subject to changes depending on the situation each year.

System Optimization

システム最適化

[Code] 60660 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] E. Furutani [Course Description] The course deals with mathematical methods of system optimization for linear programming and nonlinear programming problems. It covers such topics as the formulation of optimization problem, solution and analysis methods of linear programming problems, optimality conditions and solution methods of nonlinear programming problems.

[Grading] The assignments are only for understanding; the rating will be based on an exam.

[Course Goals] To understand fundamentals of linear programming and nonlinear programming: the simplex method, duality, locally and globally optimal solution, convex space and convex functions, optimality conditions for nonlinear programming problems, and basic solution methods.

Theme	Class number of times	Description	
Optimization	1	optimality, overview and classification of optimization problems,	
problems	1	mathematical preliminary	
Linear programming and simplex method	7-8	definition of linear programming problems, standard form, simplex method and simplex tableau, duality, dual problems, duality theorem, dual simplex method, and sensitivity analysis	
Nonlinear programming problems	1	definition of nonlinear programming problems, locally optimal solution and globally optimal solution, convex space and convex function, mathematical preliminary	
Solution methods for nonlinear programming problems without constraints	2-3	optimality conditions for nonlinear programming problems without constraints, steepest descent method, conjugate gradient method, Newton method, and quasi-Newton method	
Solution methods for nonlinear programming problems with constraints	2-3	optimality conditions for nonlinear programming problems with constraints, Lagrange function, Lagrange multiplier method, duality, saddle point theorem penalty function method, multiplier method, and sequential quadratic programming method	
Review	1	The level of understanding on this lecture will be confirmed.	

[Course Topics]

[Textbook] H. Tamaki (ed.): System Optimization (in Japanese), Ohm-sha, 2005.

[Textbook(supplemental)] M. Fukushima: Introduction to Mathematical Programming (in Japanese), Asakura, 1996 .

[Prerequisite(s)] linear algebra and analytics

[]

[Web Sites] http://turbine.kuee.kyoto-u.ac.jp/~furutani/system-optimization/

[Additional Information] The contents of the lecture and their order are subject to changes depending on the situation each year.

Applied Electric Machinery 応用電気機器

[Code] 61060 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Taketsune Nakamura, [Course Description] This lecture will explain principles and concepts of electric machineries used in the fields of our living and industrial applications. Especially, detailed explanation will be made for variable speed control of the rotating machines and re-generation method. Recent trends for the developments of the electric machineries such as ones for the electric vehicle and the wind turbine are also to be outlined.

[Grading] Evaluated by means of the examination. Imposed drills at the lecture and reports may also be considered for the evaluation.

[Course Goals] Understand fundamentals of designs, kinetic characteristics, coordinate transform as well as concept of variable speed control and drive-control method of rotating machineries. Also, understand basic concepts on recent trends of the developments.

[Course Topics]

Theme	Class number of times	of Description	
Concept of output			
power and		Discuss the relationship among output power, rotating speed, pole number, electric	
fundamental aspects	2-3	loading and magnetic loading in electric machineries. Also, concept of temporal	
of design in electric		rating and that of object oriented design are also to be explained.	
machineries			
load characteristics		Discuss the load characteristics, kinetic characteristics, etc. of the rotating	
and kinetic	1-2	machineries are explained. Examples of visulalized simulation results may also be	
characteristics		shown for the aid of easier understanding.	
		Based upon concrete examples, necessity for the variable speed control of the	
Principle of variable		rotating machineries is discussed. And then, fundamental equations of respective	
speed control of	6-8	rotating machines, method of coordinate transform for the expression of dynamic	
rotating machineries		characteristics are explained. Further, basic concept and fundamental principle of	
		the variable speed control is described.	
Power conversion for			
drive of rotating	1-2	Power conversion method for the realization of variable speed control is explained.	
machines			
Permanent magnet	1	Permanent magnet rorating machine, which is one of the most major motors, is	
rotating machines	1	explained from the point of view of its rotating principle as well as characteristics.	
Trends of new electric		Trends of developments of new rotating machineries, e.g., electric (hybrid)	
machineries	1	automobile, linear motor, wind turbine, etc., are outlined. Also, concept and	
machineries		meaning of re-generation is explained.	
Summary	1	The classes are summarized. This is the feedback to students according to their	
	1	score.	

【Textbook】Tokai Kim, "Modern electric machinery" Denki-gakkai

[Textbook(supplemental)] Takao Okada et al., "Electric machinery (2)"(second edition) Ohmsha,

Sakutarou Nonaka, "Electric machinery (1), (2)" Morikita-shuppan

[Prerequisite(s)] Electric Circuits, Electromagnetic Theory, Power Electronics, Control Theory

[]

[Web Sites]

[Additional Information] Documents will be distributed if necessary.

Power Electronics

パワーエレクトロニクス

[Code] 60720 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Takashi Hikihara

[Course Description] Power Electronics is a filed of power conversion and system control through applications of power semiconductor devices. In class, fundamental lectures include the basic of poser conversion by switching circuit and circuit behavior in transient. The applications include the control methods of power sources and motors by conversion circuits.

[Grading] The final evaluation is decided based on examination (70%) and homework (30%).

[Course Goals] Students are expected to learn the method of power conversion and its applications based on circuit theory, switching circuit, and semiconductor engineering. They are also requested to understand the method for achieving the functions of actuators through the control of electric power convertor.

[Course Topics]

Theme	Class number of times	Description	
Outline of power electronics	4	Introduction of power electronics. Fundamental topics of LRC circuit based on stored energy and power and switching circuit are lectured. The lecture will be interconnected with semiconductor engineering.	
dc/dc convertors	4	The dynamic behavior and characteristics of Buck and Boost converters are explained.	
ac/dc convertors	4	Various conversion circuits are explained. Configurations of single phase and three phase circuits are lectured with the analysis of harmonic components of output.	
allications of power electrinics	2	As the applications of power electronics, the motor drive by inverters are lectured.	
Summary	1	The classes are summarized. This is the feedback to students according to their score.	

[Textbook] Lecture notes will be posted at the web page.

[Textbook(supplemental)] There are many supplemental texts. If students request their English version, please contact to the professor.

[Prerequisite(s)] Electric circuit, Electronic circuit, Power circuit, and Electric apparatus.

[]

[Web Sites] Lecture data are offered on kulasis.

https://www.k.kyoto-u.ac.jp/student/

[Additional Information] Students are recommended to download the note from home page and study them before the classes. If you miss one of the mid and final exam, it becomes too hard to pass this class. Taking the follow-up lecture will be requested to the students who is difficult to pass the requested level.

Power System Engineering 電力システム工学

[Code] 62030 [Course Year] 3rd year [Term] Fall semester, 2017 [Class day & Period] Monday, 1st.

[Location] Denki Sogokan, 3F [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture

[Language] Japanese [Instructor] Takashi Hikihara and Yasuyuki Shirai

(Course Description **)** Electric power system is a large-scale engineered system to supply electrical energy from generation facilities, through substations, transmission and distribution networks, to loads. This course provides an introduction to power systems engineering for students of electrical and electronic engineering. Topics include the system structure, interconnected systems, dc and ac transmissions, stability, frequency and voltage control, economic aspects of power system operation, and fault analysis.

[Grading] Final examination and homework.

[Course Goals] The goal of this course is to understand fundamentals of power systems engineering, including their operation, analysis, and control.

Theme	Class number of times	Description	
Intriductuon	1	Features of power system and the purpose of network operation are introduced.	
System structure and	1.0	Dc and ac power transmission are explained from the view point of system	
Per Unit (PU) system	1-2	structure. Per unit method is explained.	
Frequency control	2-3	Controlling methods for keeping synchronicity at 60/50 Hz are explained.	
V-ltl	2	Voltage levels of power system is classified. The control method for keeping	
Voltage control		the voltage constant is explained.	
C4-1:1:4	3	System stability is explained from the view point of engineering and applied	
Stability		mathematics.	
Fault analysis	2	Fault analysis of power system is introduced.	
System Operation	1-2	Operating method of power system with various power sources.	
Summary	1		

[Course Topics]

[Textbook] Handouts.

【Textbook(supplemental)】Y. Ohsawa, Power Systems Engineering (Ohm-Sha) (in Japanese);Y. Sekine, Power system engineering (Denki-Shoin) (in Japanese)

[Prerequisite(s)] Circuit Theory (60630, 60030, 60220); Electric Machinery Fundamentals (61050); Electric Power Engineering 1 (61070)

[]

[Web Sites]

Electrical Discharge and Breakdown 放電工学

[Code] 60310 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	3	
	6	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Modulation Theory in Electrical Communication 通信基礎論

[Code] 60320 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4-5	
	5-6	
	4-5	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Information Transmission 情報伝送工学

[Code] 60330 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Eiichi Murata, Koji Yamamoto,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	2	
	2	
	2	
	1	
	1	
	3	
	2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Telecommunication Networks

通信ネットワーク

[Code] 60340 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	3	
	2	
	3	
	1	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

[]

[Web Sites]

Radio Engineering 電波工学

[Code] 61090 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Toru Sato and Naoki Shinohara

[Course Description] In this class we study basics of the radio wave and antennas. We first examine the nature of the electromagnetic wave based on the wave equation derived from the Maxwell's equations. We discuss the relation between the source current distribution and the radiated wave field in terms of various antenna parameters. We further study the wave propagation, such as refraction, reflection, scattering, and diffraction. We also derive the basics of guided wave transmission from the boundary conditions of the Maxwell's equations.

[Grading] Grading is based on the regular examination, but the rating of reports may be considered as well. [Course Goals] Understand the basic theory of the radio wave, and technology for its industrial applications. [Course Topics]

Class number of Theme Description times We solve the Maxwell's equation in its simplest form to show that it gives the Nature of the radio 2 ~ 3 electromagnetic wave propagating in space. Basic nature of planar wave is wave examined including its reflection, transmission, velocity and polarization. We derive the radiation field from the Maxwell's equation with sources, and study its characteristics in the near and far fields. We examine the radiation Radiation and basics from short dipole and linear antennas in terms of important parameters such as 4 ~ 5 of antennas the gain, impedance, frequency characteristics, and effective area. We also study principle, structure, and basic analysis methods of various realistic antennas such as array and aperture antennas. We study basic issues related to various types of the radio wave propagation Radio wave including the ground wave, tropospheric and ionospheric propagation, and $2 \sim 3$ propagation space communication. We also discuss diffraction and scattering of the radio waves. We first study basic ideas related to the guided wave transmission, such as the transmission line theory and the Smith chart. We then study individual Guided wave 4 ~ 5 elements including coaxial line, microstrip line, rectangular waveguide, and transmission circular waveguide, mainly focusing on their propagation modes, transmission characteristics, and loss.

[Textbook] Hasebe, 'Denpa kogaku (radio engineering),' 2nd Ed., Corona publishing, 2005.

[Textbook(supplemental)] Balanis, 'Antenna theory,' 2nd Ed., Wiley, 1997.

[Prerequisite(s)] Knowledge of Electromagnetic theory 2 is required. Modulation Theory in Electrical Communication is recommended.

[Web Sites]

Computer Software

計算機ソフトウェア

[Code] 60370 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3	
	3	
	3	
	2	
	2	
	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

[]

[Web Sites]

Embedded Computer Systems

組み込み計算機システム

[Code] 61110 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Takashi Sato and Tohru Ishihara,

[Course Description] This lecture covers basics of embedded systems. Processor architectures, memory subsystems, I/O systems, and overall system architectures in embedded systems will be explained.

[Grading] The level of achievement toward the goal of this lecture will be examined by a regular exam.

[Course Goals] To understand basic structures of embedded computer systems. To understand impacts of architectural design choices on performance and energy consumption of embedded systems.

[Course Topics]

Theme	Class number of times	Description
Basic properties of computer systems	1	History of embedded computer systems will be overviewed.
Cache memory	3	Cache architectures, data transfer between main memory and cache will be explained.
Compiler optimization	1	A role of compilers in computer systems and performance tuning by code optimization will be explained.
Main memory virtualization	2	Relation between main memory and secondary memory, memory virtulization, and address conversion will be explained.
Operating system and interrupt	2	The concept of interrupt, interrupt handling, and necessary hardware supports for the interrupt will be explained. Relation between operating systems and the interrupt, and time overhead for the interrupt will be explained.
instruction pipeline	2	The concept of instruction pipelining, necessary mechanisms for the pipelining, and characteristics of RISC processors will be explained.
Instruction formats and addressing modes	2	Formats and addressing modes of typical instructions will be explained.
Latest embedded systems	1	Latest computer architectures such as a multi-core processor will be explained.
Confirmation of understanding	1	The level of understanding on this lecture will be confirmed.

[Textbook]

[Textbook(supplemental)] David Patterson and John Hennessy, Computer Organization and Design: The Hardware/Software Interface (4th ed.)

[Prerequisite(s)] logic circuits (60120), computer architecture basics (60160)

[]

[Web Sites]

Digital Signal Processing

ディジタル信号処理

[Code] 60610 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Takashi Matsuyama, Shohei Nobuhara

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	1	
	3	
	3	
	2	
	3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Solid-State Electronics 固体電子工学

[Code] 60390 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Susumu Noda, Takashi Asano,

(Course Description **)** There are various devices which make use of electrons and photons in solid state (or materials). The examples are solar cells, semiconductor lasers, and transistors. These devices are indispensable for all areas of technologies, and thus regarded as brains in society. In this lecture, we explain various phenomena based on electrons and photons in solid states, where the focus is on the interaction between solid states and photons via electron transitions.

[Grading] Examination and submission of a few reports

[Course Goals] Understanding of fundamental of band structures in solid state and the related phenomena such as light absorption and amplification based on the electron transitions between valence and conduction bands.

[Course Topics]

Theme	Class number of times	Description
Overview of		After the explanation of progress in electronics based on solid-state
solid-state	1	electronics, we show the contents of this lecture.
electronics		electronics, we show the contents of this fecture.
Fundamentals of		First, we explain the method to derive band structure of solid state using
solid-state	1 ~ 2	Kronig-Penney model. Then, we describe various fundamental concepts in
electronics		solid state, such as density of states, phonons, etc.
Photon absorption in	4	We will explain the mechanism of photon absorption in solid state and derive
solid state	4	some equations to expess the absorption quantitatively.
Amplification of	2 ~ 3	We will explain the mechanism of optical amplification and derive some
light	2 3	quantitative equations.
Various photonic	3 ~ 4	Various photonic devices based on the above discussions are given, such as
devices	5~4	solar cells, semiconductor lasers, etc.
Verification of	1	We confirm whether the students can understand the above subjects.
understanding	1	we commin whether the students can understand the above subjects.

【Textbook】Note stile

[Textbook(supplemental)] We will show some references during the lecture

[Prerequisite(s)] It is desirable to learn some related lectures such as semiconductors, fundamental of material and devices, etc.

[]

[Web Sites]

[Additional Information] The numbers and order of course topics described above might be changed.

Quantum Theory for Electrical and Electronic Engineering

電気電子工学のための量子論

[Code] 60810 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	3	
	3	
	2	
	2	
	1	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Plasma Engineering

プラズマ工学

[Code] 60410 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2 ~ 3	
	6 ~ 8	
	3 ~ 4	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Vacuum Electronic Engineering 真空電子工学

[Code]60420 [Course Year]3rd year [Term] [Class day & Period] [Location] [Credits]2 [Restriction]

[Lecture Form(s)] Lecture [Language] Japanese [Instructor]

[Course Description] Fundamentals on behavior of electrons in vacuum, and also fundamentals on the control of electron beams are given; the lecture includes electrons in solids, extraction of electrons from solid to vacuum, electron optics, and electron devices.

[Grading] Grading will be done with the result of the term-end examination.

[Course Goals] The goal of the course is to understand the fundamental physics of the electron motion in electromagnetic fields.

[Course Topics]

Theme	Class number of times	Description	
Electrons in solids	3	Crystal structures and their periodicity, band formation, and work function are	
Electrons in solids		described. The behavior of the electrons in solids is also given.	
E-traction of		Some methods to extract electrons from solid to vacuum are described.	
Extraction of	4	Especially, thermionic emission and field emission are emphasized. Effects of	
electron beam		image force and space charge are also introduced.	
	4	Motion of the electron beam in electromagnetic fields is described. Lens	
Electron beam optics		effects caused by electrostatic field and magnetic field are also presented.	
	3	Operational principles of vacuum electron devices are given with some	
Electron devices		exaamples: ultrahigh to extremely high frequency devices.	
Evaluation of	1		
achievements	1	Achievements of the study will be evaluated.	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)] Knowledge on electromagnetics, mechanics, and solids are necessary.

[]

[Web Sites]

[Additional Information] Bring your calculator, because tiny exercise will be in the class.

Electrical and Electronic Materials 電気電子材料学

[Code] 60430 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	4	
	2	
	2	
	3	
	2	
	1	

[Textbook]

Textbook(supplemental)

[Prerequisite(s)]

[]

[Web Sites]

Fundamentals of Optical Engineering 1

光工学 1

[Code] 60440 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2-3	
	3-4	
	3-4	
	3-4	
	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

[]

[Web Sites]

Basics of Biomedical Engineering 生体工学の基礎

[Code] 61120 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Prof. Tetsuo Kobayashi and Prof. Shinji Doi

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
Life system	2	
Electrophysiology &	5	
Neurophysiology	5	
Central nervous	2	
system	3	
Measurement and		
imaging methods	4	
Review	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

メカトロニクス入門

[Code] 61140 [Course Year] 3rd year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	6	
	3	
	2	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Microwave Engineering

マイクロ波工学

[Code] 60360 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Naoki Shinohara, Tomohiko Mitani, Shigeo Kawasaki (JAXA),

[Course Description] Theory and applications of microwave transmittion line, microwave passive circuits, active circuits, and microwave tubes are given. Applications of thier devices and elements for mobile phones, radar and wireless power transmission are given.

[Grading] Grading will be done with the result of the final report and several reports in lectures.

[Course Goals] The course goal is to understand the principle of microwaves and microwave circuits and to understand the principle of mobile phones and the other microwave applications.

[Course Topics]

Theme	Class number of times	Description	
		After confirmation of Maxwell's equations and wave guide theory, general	
General concepts	1 ~ 2	concepts of microwave enginnering are presented as introduction of the	
		following theme.	
Circuit theory of	2 ~ 3	Characteristics of microwave transmission line and circuit theory of	
transmission line	2 ~ 3	transmission line are given. Impedance matching and Smith Chart are given.	
Mionomono noosius		Connector, circuit device in waveguide, impedance matching load, attenuator,	
Microwave passive	2 ~ 3	phase shifter, T-blanch, isolator, circuilator, directional coupler, power	
circuits		divider/combiner are given.	
Microwave resonator	2 ~ 3	Microwave resonator and filter are given.	
and filter	2~3	Microwave resonator and micr are given.	
Microwave tubes	1 ~ 2	Generation/amplifier mechanism of microwave tubes of Klystron, TWT,	
where tubes	1~2	magnetron are given.	
Micorwave active		Diode as microwave passive semiconducotor and FET and HBT as microwave	
circuits and	2 2	-	
semiconductor	2 ~ 3	active semiconductors are given. Its applications like Parametric amplifier are	
devices		given.	
NC.		Theory, requirements, and typical components of RF circuits in mobile	
Microwave	3 ~ 4	communication are given. The other applications of radar, microwave heating,	
Applications		and wireless power transmission are given.	
Confirmation of		Student's understanding of this lecture is confirmed. Opportunity of feed-back	
Understanding	1	lecture is given if the student's understanding is not enough.	

[Textbook] Masamitsu Nakajima: Microwave Engineering (in Japanese) (Morikita Syuppan)

[Textbook(supplemental)] Toshio Nojima and Yasushi Yamao: RF Circuit Technologies for Mobile COmmunication (in Japanese)(IEICE)

Yoshihiro Konishi: Theory and Applications of Microwave Circuits (in Japanese) (Sogo Denshi Syuppan) [Prerequisite(s)] "Radio Engineering", Maxwell's equations, theory of radio waves, electric circuits, Distributed parameter circuits

[] [Web Sites] [Additional Information]

Optical Communications 光通信工学

[Code] 60480 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Oki Eiji

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	2	
	1 ~ 2	
	1 ~ 2	
	2	
	1 ~ 2	
	2 ~ 3	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Optoelectronic Devices 光電子デバイス工学

[Code] 60560 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor] Asano, Noda,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	4 ~ 5	
	4 ~ 5	
	4~5	
	1	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Fundamentals of Optical Engineering 2

光工学 2

[Code] 60570 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	3-4	
	5-6	
	3-4	
	1	
	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

[]

[Web Sites]

Intelligent Systems

知能型システム論

[Code] 60670 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits] 2

 $\label{eq:construction} \ensuremath{\left[\ensuremath{\operatorname{Restriction}} \ensuremath{\left[\ensuremath{\operatorname{Lecture}} \ensuremath{\left[\ensuremath{\operatorname{Restriction}} \ensuremath{\left[\ensuremath{\operatorname{Instructor}} \ensuremath{\left[\ensuremath{\operatorname{Restriction}} \ensuremath{\left[\ensuremath{\operatorname{Restriction}} \ensuremath{\left[\ensuremath{\operatorname{Restriction}} \ensuremath{\left[\ensuremath{\operatorname{Restructor}} \ensuremath{\{Restructor}} \e$

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	1	
	1	
	1	
	2	
	4	
	4	

[Textbook]

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Electrical Conduction in Condensed Matter 電気伝導

[Code] 61040 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

【Instructor】 Toshiya Doi, Itsuhiro Kakeya,

(Course Description **)** A fundamental aspect of the electrical conduction in solids is discoursed in terms of physics based on the classical dynamics and later on the quantum physics. An important concept of the phonon and the electron-phonon is discoursed, which play a very important role in the electrical conduction in solids. The electrical conductivity is discoursed with a frequency from 0, that is dc, to optical frequency, by which a unified understanding of electrical conduction and the optical property is intended.

[Grading] Basically, an examination is imposed after the last class. A report may be imposed in case of necessity. [Course Goals] This class in intended to bestow the understanding of the solid state physics of a level dealt in the celebrated textbook by Ashcroft and Mermin. It is also intended for those attending in this class to acquire an ability sufficient to strive through such a textbook by himself or herself after the class is completed.

Theme	Class number of times	Description
Lattice and	2	
reciprocal lattice	2	
Fundamentals of		
quantum mechanics	2	
and hydrogen atom	2	
model		
Free electron fermi	3	
gas	5	
Energy band	2	
Electron-phonon		
interaction and the		
electrical conduction	2	
in metals and		
semiconductors		
Superconductivity	3	
Feedback	1	

[Course Topics]

[Textbook] C. Kittel, Introduction to Solid State Physics, 8th ed., Wiley

[Textbook(supplemental)] "Solid State Physics" by Ashcroft and Mermin

[Prerequisite(s)] Those who would like to attend in this class are recommended to study electrodynamics, statistical physics, and introduction to the solid state devices in advance. The lecture is, however, given in Japanese.

[]

【Web Sites】 【Additional Information】

Applied Electric Power Engineering 応用電力工学

[Code]62040 [Course Year]4th year [Term] [Class day & Period] [Location] [Credits]2 [Restriction]

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Takashi Hikihara and Shigeomi Takai

(Course Description **)** This course provides an introduction to power generation technologies for students of electrical and electronic engineering. This is the first course in power and energy engineering in the School of Electrical and Electronic Engineering. Topics include fundamentals of hydraulic, thermal, and nuclear power plants, fundamentals and current trends of renewable energy resources, and batteries.

[Grading] Final examination or homeworks in the term.

[Course Goals] The goal of this course is to understand fundamentals of power generation technologies.

[Course Topics]

Theme	Class number of times	Description
Introduction	1	
Hydraulic generation	2	
Thermal generation	3	
Nuclear generation	3	
Renewable energy	2	
Battery	2	
Sumary	1	

[Textbook] Handouts.

【Textbook(supplemental)】

[Prerequisite(s)] Basic circuit theory; Fundamental physics and chemistry

[]

[Web Sites]

Antenna and Propagation Engineering

アンテナ・伝搬工学

[Code]61100 [Course Year]4th year [Term] [Class day & Period] [Location] [Credits]2 [Restriction]

[Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Mamoru Yamamoto, Hiroyuki Hashiguchi, Toru Sato,

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2-3	
	3-4	
	2-3	
	2-3	
	1-2	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Integraged Circuits Engineering 集積回路工学

[Code]61130 [Course Year]4th year [Term] [Class day & Period] [Location] [Credits]2 [Restriction]

[Lecture Form(s)] Lecture [Language] Japanese [Instructor] Hidetoshi Onodera, Takashi Sato, Tohru Ishihara,

[Course Description] This lecture explains design methodologies for CMOS LSI circuits. Both analog and digital circuits will be covered.

[Grading] The level of achievement toward the goal of this lecture will be examined by the results of reports. All reports are mandatory.

[Course Goals] To understand design flow of CMOS LSI circuits.

[Course Topics]

Theme	Class number of times	Description
CMOS process and		Overview of CMOS process technology related to LSI circuit design will be
CMOS process and devices	2	explained. Structures, characteristics and modeling methods for MOS
		transistors, capacitors, inductors and interconnects will be also explained.
		 Architecture and behavior of basic analog circuits such as constant current source and current mirror amplifier will be explained. Design methods for op-amps will be explained. Design methodologies for combinational and sequential circuits are explained. Hardware algorithms for alithmetic logic unit will be discussed. Methodologies for evaluating and optimizing the power consumption and delay of circuits are explained. Test methods will be also explained.
Analog circuit design	2	source and current mirror amplifier will be explained. Design methods for
		op-amps will be explained.
Digital airquit design	4	Design methodologies for combinational and sequential circuits are explained.
Digital circuit design	4	Hardware algorithms for alithmetic logic unit will be discussed.
Evaluation and		Methodologies for evaluating and optimizing the power consumption and
optimization of	2	
digital circuits		deray of circuits are explained. Test methods will be also explained.
Full custom lavout		Design rules and layout verification methods will be explained. Full-custom
Full custom layout	2	layout design methods for analog circuits and basic logic gates are explained.
design		Design methodologies for ROM and RAM will be explained.
Chip level layout	2	Layout design methods and chip-level assembly methods in a cell-based
design	2	design flow will be explained.
Confirmation of	1	The level of understanding will be confirmed.
understanding	1	The level of understanding will be contributed.

[Textbook]

[Textbook(supplemental)] Waste and Harris, "CMOS VLSI Design: A Circuits and Systems Perspective"

[Prerequisite(s)] Logic circuits, Computer engineering, Digital circuits, Embedded computer system

[]

[Web Sites]

Information and Communication Engineering 情報通信工学

[Code]61150 [Course Year]4th year [Term] [Class day & Period] [Location] [Credits]2 [Restriction]

[Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	3	
	3	
	3	
	3	
	2	
	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

[]

[Web Sites]

Electrical and Electronic Engineering in Biomedical Applications 生体医療工学

[Code]62000 [Course Year]4th year [Term] [Class day & Period] [Location] [Credits]2 [Restriction]

[Lecture Form(s)] Lecture [Language] Japanese

[Instructor] T. Matsuda, T. Kobayashi, K. Koyamada, S. Ishii, S. Doi, H. Shimoda, S. Oba, E. Furutani, M. Nakao

[Course Description] The course provides technologies based on electrical and electronic engineering in biomedical applications.

[Grading] A report is given in the class on each theme for evaluating the level of understanding of the fundamentals of electrical and electronic engineering in biomedical applications. Rating is based on the comprehensive evaluation of the reports.

[Course Goals] To acquire fundamental knowledge of physiological phenomena and functions, and mathematical models, and understand simulation and analysis methods in biomedical applications

[Course Topics]

Theme	Class number of times	Description	
Cell/biodynamics	2-3	alastrophysiclosy computer simulation of call and high manies	
simulation	2-3	electrophysiology, computer simulation of cell and biodynamics	
Brain function	2-3	brain nerve system, magnetoencephalogram (MEG), functional magnetic	
measurement	2-3	resonance imaging (fMRI), and their applications	
Visualization	2-3	visualization techniques for numerical simulation, steering, optimization	
Modeling and		simulation of information processing in nauron, mathematical modaling and	
simulation of brain	2-3	simulation of information processing in neuron, mathematical modeling and	
nerve system		analysis of higher brain function, bioinformatics	
Cognitive	2-3	features of human cognitive activities from the viewpoint of psychology,	
engineering	2-3	congnitive engineering and its applications	
Biomedical and		design and analysis of physical state control systems, systems an sine spin	
clinical control	2-3	design and analysis of physiological state control systems, systems engineering	
systems		approach and biomedical application to life	
Review	1	The level of understanding on this lecture will be confirmed.	

[Textbook] Handouts are given at the class.

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

[Additional Information] The contents of the lecture and their order are subject to changes depending on the situation each year.

Solid State Physics and Engineering 電子物性工学

[Code] 61160 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits] 2

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor]

(Course Description **)** Spintronics handles a wide variety of solid-state physics, and students are requested to understand various physics including quantum and statistical physics. We review a basis of solid-state physics, and then study mathematical physics such as group theory. The final goal is to master the cutting edge of modern solid-state physics for understanding frontier studies in spintronics.

[Grading] Exam. and reports

[Course Goals] As described in the course description

[Course Topics]

Theme	Class number of times	Description	
Interaction between			
electron beam and	3		
atoms			
	2		
	2		
k-space	3		
physics of	1		
quasi-particle	1		
magnetics and	2		
spintronics	3		
	1		

【Textbook】None

[Textbook(supplemental)]

[Prerequisite(s)] Brief review of solid-state physics until the 3rd year courses.

[]

[Web Sites]

Laws and Regulations of Electric Power Engineering 電気法規

[Code] 60580 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2	
	1	
	1	
	1	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Laws and Regulations of Radio Wave Engineering 電波法規

[Code] 60590 [Course Year] 4th year [Term] [Class day & Period] [Location] [Credits]

[Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	1	
	10	
	1	
	2	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

English for Electrical and Electronic Engineering 電気電子英語

[Code]64000 [Course Year]4th year [Term] [Class day & Period] [Location] [Credits]2 [Restriction]

[Lecture Form(s)] [Language] English [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	2	
	2	
	3	
	2	
	3	
	2-3	
	1	

【Textbook】

[Textbook(supplemental)]

[Prerequisite(s)]

[]

[Web Sites]

Engineering Ethics 工学倫理

[Code] 21050 [Course Year] 4th year [Term] 2017 first semester [Class day & Period] Thu 3rd [Location] Research Bldg. No.8, 3F, NS Hall

[Credits] 2 [Restriction] No Restriction [Lecture Form(s)] Lecture [Language] Japanese

[Instructor] Dean of the Faculty of Engineering

Graduate School of Energy Science, Professor, Toshihiko HOSHIDE

Graduate School of Engineering, Professor, Makoto OHSAKI

Graduate School of Engineering, Junior Associate Professor, Ryosuke MATSUMOTO

[Course Description] Modern ethics based on engineering aspect are becoming essential to present engineers and scientists. Instructors from various faculties give lectures about ethics in their research fields.

[Grading] Class participation and reports.

[Course Goals] The goal of this class is to understand engineering ethics, and to develop the ability to judge by yourself when you encounter ethical issues.

[Course Topics]

Theme	Class number of	Description
	times	
Ethics for technologists(4/13)	1	
Manufacturing and ethics(4/20	1	
)	1	
Engineering ethics as applied	1	
ethics (4/27)	1	
Basic theory of ethics		
associated with engineering	1	
ethics (5/11)		
Ethics for news reports(5/18)	1	
Ethics for engineers and	1	
scientists(5/25)	I	
Ethics for architectural	1	
engineers(6/1)	1	
Patents and ethics (1/2)(6/8)	1	
Patents and ethics (2/2) (6/15)	1	
Ethics in chemistry and	1	
molecular biology(6/22)	1	
Ethics and problems involved	1	
in public works tender (6/29)	1	
Ethics for advanced science(7	1	
/6)	1	
Ethics in biotechnology (7/13)	1	
Design of technologies		
intended for living creatures	1	
and society I (7/20)		
Design of technologies		
intended for living creatures	1	
and society II (7/27)		

[Textbook] Lecture materials will be distributed.

【Textbook(supplemental)】北海道技術者倫理研究会編「オムニバス技術者倫理」(第2版),共立出版(2015)、

中村収三著「新版実践的工学倫理」,化学同人 (2008) 、 林真理・宮澤健二 他著「技術者の倫理」(改訂版),コロナ社 (2015) 、

川下智幸・下野次男 他著「技術者倫理の世界」(第3版),森北出版 (2013)

[Prerequisite(s)]

[]

[Web Sites]

[Additional Information] The class order is subject to change.

Introduction to Engineering

工学序論

[Code] 21080 [Course Year] 1st year [Term] [Class day & Period] [Location] [Credits] 1

[Restriction] No Restriction [Lecture Form(s)] [Language] [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1~2	
	6	

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)]

[]

[Web Sites]

Engineering and Economy(in English)

工学と経済(英語)

[Code] 22210 [Course Year] 2nd year and above [Term] 2017 first semester [Class day & Period] Tuesdays 5th-6th

【Location】工学部総合校舎111講義室 【Credits】2 【Restriction】 【Lecture Form(s)】 【Language】English 【Instructor】,

[Course Description] The purpose of this course is to teach economy from an engineer viewpoint. The course especially contains such economic topics which engineer can use to solve practical engineering economy problems. The course is consisted of lectures and additional exercises, of which the student should complete five (5) written short reports and five (5) 60 minutes laboratory session attendances. The laboratory sessions are held weekly after the lecture, and consist of interactive group work tasks. Laboratory sessions are held weekly from 18 to 19 o ' clock.// The course is aimed for both Japanese and Foreign nationals.// The course starts on April 11th.

【Grading】Test, reports, laboratory performance.

[Course Goals] This course will provide tasks for engineering students to be able to understand relationships between engineering and engineering economy. Students will learn solving economic problems related to engineering project at various levels. The course also prepares the students to write engineering related economic topics in English as well as verbally express themselves of these subjects.

[Course Topics]

Theme	Class number of times	Description
Student orientation,		
Introduction to	1	Course introduction; Principles of engineering economy
engineering economy		
Cost concept	1	Cost terminology; Competition; Total revenue function; Breakeven point
Design economics	1	Cost-driven design; Making vs. purchasing; Trade-offs
Cost estimation techniques I	1	Integrated approach and WBS; Index, unit, and factor techniques
Cost estimation techniques	1	Parametric estimating; Power-sizing technique; Learning curve; Cost estimation, bottom-up,
II	1	top-down, target costing
The time value of money I	1	Simple interest; Compound interest; Equivalence concept;Cash-flow digrams
The time value of money	1	
II	1	Present and future equivalent values of single cash flows
The time value of money	1	Uniform series cash flows; Deferred annuities; Uniform gradient cash flows; Nominal and
III	1	effective interest rates
Evaluation of a single	1	Determining minimum attractive rate of return (MARR); The present worth method; Bond value;
project I	1	Capitalized-worth method
Evaluation of a single	1	The future worth method; The annual worth method; The internal rate of return method; The
project II	1	external rate of return method
Comparison and selection	1	Pasis concents: The study (applying) period. Heaful lives are equal to the study period
among alternatives I	1	Basic concepts; The study (analysis) period; Useful lives are equal to the study period
Comparison and selection	1	Useful lives are unequal to the study period; Repeatability; Cotermination; The imputed market
among alternatives II	1	value technique
Income taxes and	1	Concepts and terminology; Depreciation; Straight-line method; Declining-balance method; Income
depreciation	1	taxes; Marginal tax; Gain or loss on the disposal of an asset; After-tax economic analysis
Final test	1	The test is based on the above topics

[Textbook] Sullivan, Wicks, Koelling; Engineering Economy, 15th Ed. 2012, Chapters 1-7.

【Textbook(supplemental)】

[Prerequisite(s)] Note:

-Interactive lessons (discussion), Small group working method

-This course is held in English.

[]

[Web Sites] None

[Additional Information] If you have any questions or need further information, feel free to contact at 090aglobal@mail2.adm.kyoto-u.ac.jp.

Global Leadership Seminar I

GLセミナー (企業調査研究)

[Code] 24010 [Course Year] [Term] [Class day & Period] [Location] [Credits] 1 [Restriction]

[Lecture Form(s)] [Language] Japanese [Instructor],

[Course Description]

[Grading]

[Course Goals]

[Course Topics]

Theme	Class number of times	Description
	1	
	2~3	
	2~3	
	12	
	3~4	
	1	
	1	

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)]

[]

[Web Sites]

GLセミナー (課題解決演習)

[Code] 25010 [Course Year] 2nd year or higher [Term] FY2017, 2nd semester, intensive

[Class day & Period] Intensive course [Location] Announced elsewhere [Credits] 1

[Restriction] Restriction in number to around 20 selected students [Lecture Form(s)] Lecture and excercise [Language]

[Instructor] Faculty of Engineering, J. Assoc. Prof., Yoshinori Tanaka

Faculty of Engineering, J. Assoc. Prof., Ryuichi Ashida

Faculty of Engineering, J. Assoc. Prof., Aiko Takatori

Faculty of Engineering, J. Assoc. Prof., Tadao Mizuno

Faculty of Engineering, J. Assoc. Prof., Ryosuke Matsumoto

Related professors

(Course Description **)** This course is a small-group workshop program where students are supposed to extract or set up challenges by themselves aiming at creating new social values. In concrete, abilities of planning and problem-solving are trained through group works in residential training and skills of presentation and communication are enhanced through oral presentations regarding contents of the proposal at each step of the process from a preliminary draft to its completion.

[Grading] It is required to join the residential training. A report meeting is held and comprehensive evaluation concerning abilities in group discussion to extract or set up challenges and to propose solutions for achieving a goal is made through presentation of the proposal as well as a submitted report.

[Course Goals] Ability of planning, from extraction or setting up challenges to proposal of solutions aiming at creating new social values, is trained through group works.

Theme	Class number of times	Description
Orientation	1	A brief overview and a schedule of the course are explained and working
	1	groups are organized.
Lectures	2	Lectures by experts are given.
Croup works	3	Setting up challenges, extraction of problems, collecting information, and
Group works	3	group works are done.
D 11	7	Through intensive group works based on discussion, a proposal for solving
Residential training		problems is planned, a draft report is made, and a few presentations are made.
Preliminary review	1	A maliminant review meeting is held and discussions are made
meeting	1	A preliminary review meeting is held and discussions are made.
Report meeting	1	Final presentations are made and reports are submitted.

[Course Topics]

[Textbook] Will be indicated as necessary.

[Textbook(supplemental)] Will be indicated as necessary.

[Prerequisite(s)]

[]

[Web Sites]

[Additional Information] Course open period: October to January

How to register the course will be instructed.

*It depends on divisions which students belong to whether the earned credits are admitted as credits required for graduation. Please refer to the syllabus of your division.

International Internship of Faculty of Engineering I

工学部国際インターンシップ1

[Code] 24020 [Course Year] Junior and Senior students [Term] Through the academic year

[Class day & Period] Intensive course [Location] Defined in each internship program. [Credits] 1

[Restriction] Defined in each internship program [Lecture Form(s)] Exercise [Language] English, et al.

[Instructor] Chairperson of Foreign Students and International Academic Exchange Subcommittee, Faculty members in charge of educational affairs of the undergraduate school the registrant belongs to.

[Course Description] Acquisition of international skills with the training of foreign language through the internship programs hosted by the University, the Faculty of Engineering, or the undergraduate school the applicant belongs to.

[Grading] Marit rating is done based on the presentation or reports after each internship program. Each D epartment responsible to identify if the credit earned by this subject to be included as mandatory ones or not. If the credit is not included in the undergraduate school in which the participant belongs to, the credit is granted by the Global Leadership Education Center as a optional credit. The number of credits, either 1 or 2, will be determined depending on the contents and the duration of the program that the participant has participated in.

[Course Goals] The acquisition of international skills with the training of foreign language through the to internship programs hosted by the University is the major expectation to the students.

[Course Topics]

Theme	Class number of times	Description
Overseas Internship	1	The contents to be acquired should be described in the brochure of each
		internship program.
Final Presentation	1	A presentation by the student is required followed by discussion among
		participants.

【Textbook】

【Textbook(supplemental)】

[Prerequisite(s)] Described in the application booklet for each internship program. The registrant is requested to have enough language skills for the participation.

[]

[Web Sites]

[Additional Information] It is required for students to check if the internship program to participate in could be evaluated as part of mandatory credits or not and could earn how many credits before the participation to the undergraduate school or educational program the student in enrolled. If the credit could not be treated as mandatory ones, get in touch with the Global Leadership Engineering Education Center.

International Internship of Faculty of Engineering 2

工学部国際インターンシップ2

[Code] 25020 [Course Year] Junior and Senior students [Term] Through the academic year

[Class day & Period] Intensive Course [Location] Defined in each internship program. [Credits] 2

[Restriction] Defined in each internship program. [Lecture Form(s)] Exercise [Language] English, et al.

[Instructor] Chair of Foreign Students and International Academic Exchange Subcommittee, Faculty members of the Undergraduate School the registrant belongs to.

[Course Description] Acquisition of international skills with wth the training of foreign language through the participation to the international internship programs held by the Faculty of Engineering or its subsidiary bodies.

[Grading] Marit rating is done based on the presentation or reports after each internship program. Each D epartment responsible to identify if the credit earned by this subject to be included as mandatory ones or not. If the credit is not included in the undergraduate school in which the participant belongs to, the credit is granted by the Global Leadership Education Center as a optional credit. The number of credits, either 1 or 2, will be determined depending on the contents and the duration of the program that the participant has participated in.

[Course Goals] The acquisition of international and foreign language skills through the participation to international programs is expected. Detailed objectives of the participation should be identified by each program.

[Course Topics]

Theme	Class number of times	Description
Overseas Internship	1	The contents to be acquired should be described in the brochure of each
		internship program.
Final Presentation	1	A presentation by the student is required followed by discussion among
		participants.

[Textbook]

[Textbook(supplemental)]

[Prerequisite(s)] Described in the application booklet for each internship program. The registrant is requested to have enough language skills for the participation.

[]

[Web Sites]

[Additional Information] It is required for students to check if the internship program to participate in could be evaluated as part of mandatory credits or not and could earn how many credits before the participation to the undergraduate school or educational program the student in enrolled. If the credit could not be treated as mandatory ones, get in touch with the Global Leadership Engineering Education Center.

工学部シラバス 2017 年度版 ([D] Electrical and Electronic Engineering) Copyright ©2017 京都大学工学部 2017 年 4 月 1 日発行(非売品)

編集者 京都大学工学部教務課発行所 京都大学工学部〒 606-8501 京都市左京区吉田本町

デザイン 工学研究科附属情報センター

工学部シラバス 2017 年度版

- Common Subjects of Faculty of Engineering
- [A] Global Engineering
- [B] Architecture
- [C] Engineering Science
- [D] Electrical and Electronic Engineering
- [E] Informatics and Mathematical Science
- [F] Industrial Chemistry
- ・オンライン版 http://www.t.kyoto-u.ac.jp/syllabus-s/
 本文中の下線はリンクを示しています.リンク先はオンライン版を参照してください.

オンライン版の教科書・参考書欄には 京都大学蔵書検索 (KULINE) へのリンクが含まれています.

京都大学工学部 2017.4